

Introduction/Background

HiRA (High Resolution Array) is a charged particle detector which consists of multiple Si-CsI(Tl) telescopes.

HiRA has a modular setup

Relativistic Rutherford Scattering

- Detector can not be placed directly in front of the beam because the intensity would be to high and this would overload the readout system.
- We needed a way to redirect the particles, which is why we are using low energy beams and a target (in this case carbon-12 [around 0.44 microns thick]).
- The incoming beam will elastically scatter off of the carbon nuclei, but now we need a way to determine the energy loss from the scattering.
- The energy loss of the particle will be different depending on the angle it scatters (see figure 4), so we used LISE++ to predict the energies of the particles at the entrance of the detectors.

HiRA is funded in part by the NSF Major Research Instrumentation (MRI) grant PHY-1102511

Characterizing the Light Response of the CsI(Tl) Crystals in the HiRA Detector to Low-Energy Charged Particles

Zachary Benzerara, Advisor: Prof. Betty Tsang

Upgraded HiRA Detector

HiRA telescopes have been modified to have 10 cm long Csl crystals instead of 4 cm long crystals.

- Old HiRA (4-cm long crystals)
- In order to compare the two HiRA telescopes, the silicon strips were removed and we studied the light response of the two different length crystals to low energy [around 10] MeV] protons, deuterons, and alpha particles.
- Autodesk Inventor was used to model both HiRA telescopes as well as the experimental setup.

Figure 1: This is a graph of the energy at the entrance of the detector vs. the angle the particle scattered at. The shape of this graph depends on the target material/thickness and beam energy. This one is for carbon with a 0.44 µm thickness and a 9.00 MeV beam.

Acknowledgements: I would like to thank the entire HiRA group, Western Michigan University, and the National Science Foundation for allowing me to be a part of this research.

New HiRA (10-cm long crystals)

Count

Experiment at Western Michigan University

- Experiment conducted at Western Michigan University (WMU).
- Old and new HiRA were placed in a vacuum chamber, and a carbon-12 target along with a low energy beam were used to elastically scattering protons, deuterons, and alphas.
- the detectors.

Conclusion

Figure 2: This is the raw data collected for a 9 MeV proton beam for one of the crystals in HiRA 4 with a Gaussian fit on the elastic scattering peak.

• The light response of the CsI(Tl) crystals appear to have a linear relationship and HiRA can now be used to effectively study nuclear physics experiments.

References

1. The High Resolution Array (HiRA) for Rare Isotope Beam Experiments, M.S. Wallace, M.A. Famiano, M.-J. van Goethem, A.M. Rogers, W.G. Lynch, J. Clifford, F. Delaunay, J. Lee, S. Labostov, M. Mocko, L. Morris, A. Moroni, M.B. Tsang, Nucl. Instrum. Meth. A 583 (2007) 302

> MICHIGAN STATI UNIVERSIT

• LISE++ was used to predict the energies of the particles at the entrance of

the channel number vs. the corresponding energy value for all 3 particles. The slope of the equations for proton and deuteron will give the Ch.#/1MeV, and since alpha has a non-linear relation the entire fitting function is used for calibration.

> 2. LISE++ Nuclear Physics Program, O.B. Tarasov, D. Bazin, NIM B 266 (2008) 4657-4664

