

Pion Simulations for Symmetry Energy Studies Search for Symmetry-Energy Observables to Understand the Properties of Neutron Stars

		HE
• Neutron stars are very dense	astronomical obj	ects
	Why does not a neutron star	a $\frac{E(\rho, \alpha)}{A}$
	collapse under its own weight Pressure from symmetry energy	? • Sym 3y unde
Neutron Star Source: nasa.gov	gravity.	 We high region
The nuclear symmetry energy, a part of the Nuclear Equation		• Our sense part
of State (EOS), is the price paid for having unequal numbers of neutrons and protons	The Nuclear Landsca Image by Andy Sproles, Oak Ridg	• Headone done Uhle
Symmetry energy influences wide from mass-radius relationship of halo nuclei and neutror	e range of objects neutron stars to n skins.	S References [1] J. Hong and
RESULTS		
Energy Spectra		¹³² Sn+ ¹²⁴ Sn F
10^{7} 10^{6} 10^{6} 10^{6} 10^{6} $E_{beam} = 300 \text{ MeV/u}$ $\gamma = 0.8$ $\gamma = 0.8$	Figure 1 <i>Relative yield</i> <i>for neutron,</i> <i>proton, triton,</i>	+ + + + + + + +
\tilde{J}_{n}^{2} \tilde{J}_{n}^{2} \tilde{J}_{n}^{2} \tilde{J}_{n}^{2} \tilde{J}_{n}^{2} \tilde{J}_{n}^{2} \tilde{J}_{n}^{2} \tilde{J}_{n}^{2} \tilde{J}_{n}^{2}	pions.	

ACKNOWLEDGEMENTS: US Department of Energy Grant No. DE-SC0004835 MSU NSCL/FRIB and HiRA/SEP group J. Estee, J. Barney, Z. Chajecki, P. Danielewicz, J. Hong, W.G. Lynch, R. Shane, S. Tangwancharoen, M.B. Tsang, R. Showalter, S. Sweany, J. Winkelbauer, J. Manfredi

300

 KE_{COM} (MeV)

200

100

400

500

600

10

100

Soft

Stiff

Hananiel Setiawan

Advisor: Dr. M.B. Tsang, National Superconducting Cyclotron Laboratory

EAVY ION COLLISIONS & pBUU TRANSPORT MODEL

well nmetry energy ٦Ot erstood, especially at high density.

can use **Colliding heavy ions at** energy to produce high-density on to study symmetry energy.

goal is to find the best & most sitive observable constructed from ticles produced during the collisions.

avy Ion Collision simulations were e using pBUU (Boltzmann-Uehlingenbeck) transport model [1]:

- ${}^{132}Sn + {}^{124}Sn$ and ${}^{108}Sn + {}^{112}Sn$
- Beam energy: 200 & 300 MeV/u
- 2 E_{sym} parametrizations:
 - Soft (γ =0.5, $E_{svm} \propto \sqrt{\rho}$)
 - Stiff (γ =1.75, $E_{svm} \propto \rho$)

(above) Figure A U. W. Heinz, J. Phys. A42 214003 (2008)

Subtracted Ratios - $E_{beam} = 200 \text{ MeV/u}$ Figure 3 Enhanced pion ratios of ¹³²Sn + ¹²⁴Sn & Subtracted Ratios -6¹⁰⁸Sn + ¹¹²Sn E_{beam} = 300 MeV/u Ra using double & Ó subtracted Soft ratios methods. Stiff 12 100 150 200

SUMMARY & NEXT STEP

- Simulations show that pion ratio is most sensitive observable, the compared to n/p and triton/³He.
- Experiments of (Sn+Sn) collisions will be carried out in RIKEN, Japan in 2015-16.
- We plan to do more simulations asymmetric system with $^{48}Ca+^{124}Sn$ and $^{40}Ca+^{112}Sn$ for planning future experiments.

MICHIGAN STATE UNIVERSITY

The NSCL is funded in part by Michigan State University and the National Science Foundation.

