Current Status of SπRIT-TPC

Mizuki Kurata-Nishimura, RIKEN for the $S\pi RIT$ -TPC collaborators

Nuclear symmetry energy

- The purpose of this project is to constrain the symmetry-energy term in the nuclear Equation of State (EoS).
 - Measurements of the density dependence of the nuclear symmetry energy at suprasaturation densities on $\rho \sim 2\rho 0$.
 - The momentum distributions of pions and light particles with Z≤3 emitted in central collisions of neutron rich nuclei.
 - Systematic study by changing combination of beams and target

Prim. Beam	2 nd Beam + Target	Energy [MeV/A]	lsospin asymmetry
¹²³ Xe	¹⁰⁸ Sn + ¹¹² Sn	300	0.09
¹²³ Xe	¹¹² Sn + ¹²⁴ Sn	300	0.15
238U	¹³² Sn + ¹²⁴ Sn	300	0.22
²³⁸ U	¹²⁴ Sn + ¹¹² Sn	300	0.15

Experimental View in 2015

SπRIT-TPC structure

NIM A 784 (2015) 513-517.

Contents

- Biggest concern:
 - Installation test
 - Read out electronics (Presented by Dr. Isobe)
 - Cosmic ray data
 - Space charge effect (Gating Grid Driver by Mr. Suwat)
- Trigger Arrays
 - Active collimator: (Tsinghua Univ., China)
 - Krakow veto and Trigger wall: (IFJ-PAN, Poland)
 - Multiplicity trigger array: (Kyoto Univ., Japan)
- Accessories
 - Laser Calibration system: (RIKEN)
 - Cooling system: (RIKEN)

Installation Test done last Summer

Trusty crane operator

Checking clearance outside

Push with jacks

Success!

Cosmic Ray

A half of helical track was observed in 0.5 Tesla.

24 AsAds was mounted on TPC.

No missing pads was found on 6046 pads

Cosmic ray was detected

Space Charge Effect

Gating Grid Driver is discussed by Mr. Suwat later

600

400

200^l

w/ GGD

10

6

400

Pad layer Pad layer G.G.D. prevent gain dropping due to space charge.

w/o GGD

How to Trigger

Simulated tracks of central collision for ¹³²Sn + ¹²⁴Sn with 300MeV/u, generated by UrQMD and traced with GEANT4

Active Collimator

PM

Four Plastic scintillators read by MPPC(3x3mm)

- Detection efficiency of 100% is achieved.
- Position dependence of light output is small.
- It should be ready by middle of June.

Scint.

Krakow Veto Array and Trigger wall

MPPC: HAMAMATSU, 1×1 mm², 10000 pixels

WLS: BCF92

PA: current preamplifier, τ <2 ns (P. Lasko)

Active Collimator

Scintillator **Trigger**

prototype

discriminator

1 mm thick BC404 wrapped with ESR foil

10 channel fast discriminator with FPGA

Beam Test in HIMAC, Nov. 2014

Top view ~3 m ~60 cm VETO2 ¹³²Xe @ 300 AMeV **KRATTA** VETO1 **Target** BC404, 1 mm thick, 10×40 cm² PID KRATTA: ΔΕ-Ε Plastic (Top+Bottom) vs PD0 c2 01 M C2 484,485,498-504 PD0 30000 VETO1 25000 6000 5000 20000 Z = 404000 15000 3000 10000 2000 5000 1000

2000

6000

8000

12000

Constructing mounting frame It should be ready by 15 June 2015

10000

12000

8000

6000

Multiplicity Trigger Array

Extruded scintillator

 $1.3 \times 1.3 m$

m

Wave length shifter is inserted along hole and light output is read by MPPC

Beam Test in HIMAC

- Efficiency of 98 % was achieved in HIMAC.
- More than 50 photo-electrons were detected for whole position.
- Reduction of light correction from the far side is 16%
- Designing mount structure
- It should be ready by middle of June.

Readout by EASIROC

(Extended Analogue Silicon-pm Integrated Read Out Chip)

Originally, it was developed by Omega group LAL, France.

VME module is developed at Tohoku Univ.

図 2.1: EASIROC 内部回路

Logic out signal is delayed 52 ns.

The trigger logic combining trigger arrays will be tested soon.

Calibration System with N₂ Laser

Wave length: 337nm Power: 180 uJ/pulse

Anode wire signal was observed

Laser track

Laser Light deliver

Keeping the power density, laser light have to be divided into a several lines.

Two possibilities; using fiber bundle or optics

Air Cooling System

Air flow around the surface of AsAd

Summary

- It is confirmed $S\pi RIT$ -TPC is working properly.
 - Waiting for all AsAds mounted.
 - Gating Grid Driver is necessary.
- Trigger Arrays gave promising results.
 - Trigger logic out can be provided in 100 ns.
 - They will be ready on June.
 - Logic diagram is needed to be tested.
- Laser calibration system and cooling system are under developing.
- We are preparing to be ready by this September.