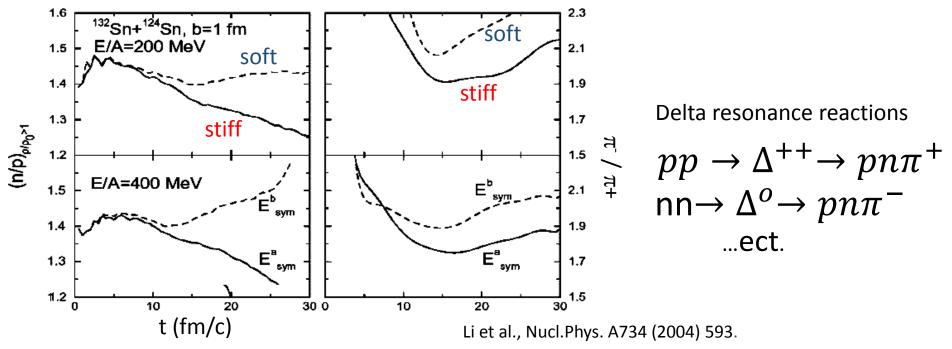
Probing the Symmetry Energy with pions

Justin Estee Michigan State University


IWND 2014, Lanzhou, China

Motivation for the pion observable

- Observables around ${\sim}2\rho_o$ (important for neutron –

 ρ_0 =.16 nucleons/fm³

Pion production and Symmetry Energy

- Dominant mode of production is through delta resonances
- In delta resonance model, Y(π^-)/Y(π^+) \approx (ρ_n ,/ ρ_p)²
- On average stiff symmetry expels more neutrons, less π^-
- High energy pions are of particular interest
 - Produced early at high density
 - Less likely to scatter and exchange charge

Transport equation

 BUU semi-classical equation governing the dynamics of phase space volume including collisions

$$\frac{\partial f_X}{\partial t} + \frac{\partial \varepsilon_X}{\partial \mathbf{p}} \frac{\partial f_X}{\partial \mathbf{r}} - \frac{\partial \varepsilon_X}{\partial \mathbf{r}} \frac{\partial f_X}{\partial \mathbf{p}} = \mathcal{K}_X^< (1 \mp f_X) - \mathcal{K}_X^> f_X. \qquad f_X \equiv f_X(\mathbf{p}, \mathbf{r}, t)$$

Force from Mean field

- L.H.S. of equation describes motion through mean field. R.H.S. describes collisions
- κ_x^{\leq} and κ_x^{\geq} are the feeding and removal rates of particles.

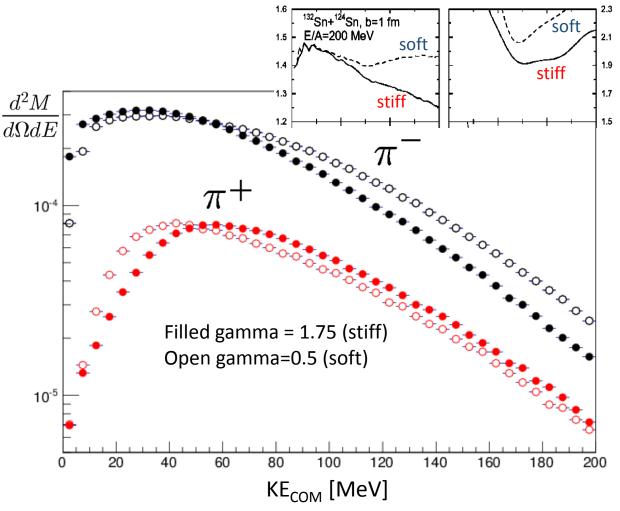
BUU by Danielewicz (pBUU)

• pBUU uses simple parameterization of symmetry energy.

$$S(\rho) = S_{kin}(\rho_o) \left(\frac{\rho}{\rho_o}\right)^{\frac{2}{3}} + S_{int}(\rho_o) \left(\frac{\rho}{\rho_o}\right)^{\gamma}$$

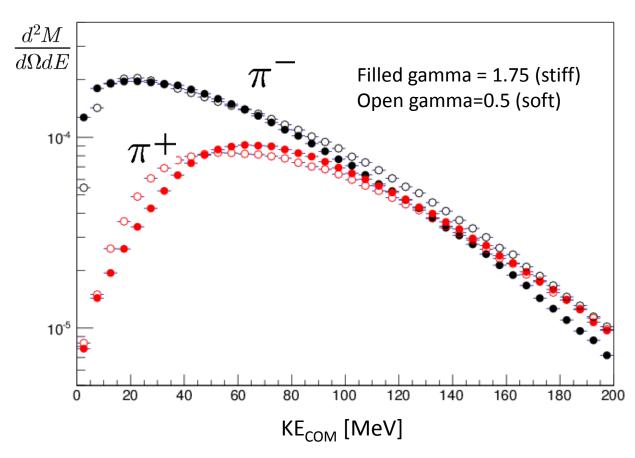
$$\varepsilon = \varepsilon(\rho, \delta = 0) + S(\rho) \cdot \delta^2$$
 $\delta = (\rho_p - \rho_n)/\rho$

- Stiff and soft symmetry energy dependence refers to larger and smaller γ respectively
- In this simulation pions are coupled not only through Coulomb interaction but also isospin.
- This isospin coupling is described by the pion optical potential

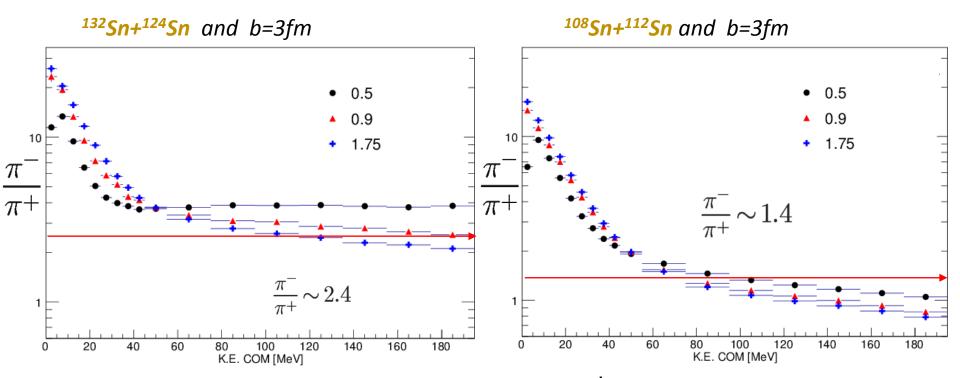

$$U_{\pi\pm} = \pm 8S_{int}(\rho_o)\rho_T\left(\frac{\rho^{\gamma-1}}{\rho_o^{\gamma}}\right) \qquad \rho_T \sim \left(\frac{\rho_p - \rho_n}{2}\right)$$
 is isospin density

First Experiments to be done with $S\pi iRIT TPC$

- Radioactive beams produced at RIKEN
- ¹³²Sn(beam) + ¹²⁴Sn(target), neutron rich
- ¹⁰⁸Sn(beam)+¹¹²Sn(target), neutron deficient
- E/A = 300MeV/A
- Perform pBUU simulations with several impact parameters and gammas.


π - & π + spectra; ¹³²Sn+¹²⁴ Sn and b=3fm

- Difference in π⁻ & π⁺, due to resonance model
- Stiffer symmetry energy, $\gamma = 1.75$, tends to expel neutrons more than $\gamma = .5$
- π⁺ peak at ~ 50
 MeV represents
 Coulomb peak.



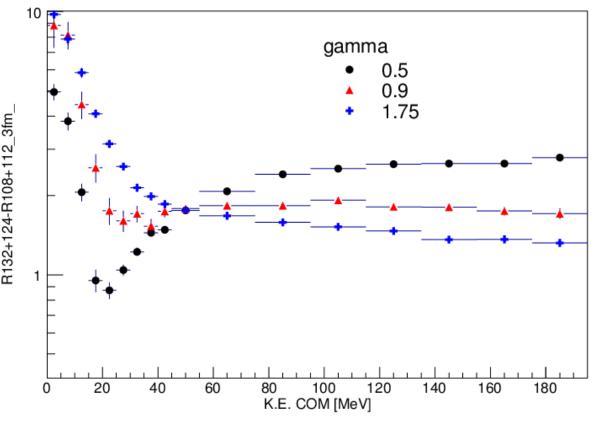
π - & π + spectra; ¹⁰⁸Sn+¹¹²Sn and b=3fm

- Pion yields are similar at high energy
- expected since the system is neutron poor and is closer to isospin symmetry

 π^{-}/π^{+} Ratios

- Coulomb interactions accelerate π⁺ and decelerate π⁻ boosting ratio at lower K.E., Lowering the ratio at higher K.E. (> 50 MeV)
- Sensitivity to the symmetry energy at energies >50 MeV but the effects are small.

New comparison; Subtracted π^{-}/π^{+} ratio


$$\Delta R_{(132+124)-(108+112)}(\pi^{-}/\pi^{+}) = R_{132+124}(\pi^{-}/\pi^{+}) - R_{108+112}(\pi^{-}/\pi^{+})$$
 b=3fm

High energy pions (Better understood)

- produced early in high • density regions
- less likely to be absorbed and exchange charge ow energy pions (less understood) Pion ratios lack sensitivity in the

Low energy pions (less understood)

- Coulomb region < 50 MeV
- Complicated by Coulomb and pion optical potential effects.
- The soft EOS can act opposite to the Coulomb potential.

Summary

- Spectral pion ratios are better observables to study symmetry energy
- Pions will provide critical constraints in high density regions
- High energy pions provide clear sensitivity to different EOS.
- The Coulomb and optical potential effects may mask the sensitivity in the low energy pions.

Thank you!

- Special thanks to Pawel Danielewicz and Jun Hong
- Betty Tsang, Bill Lynch, Bec Shane.