Photogrammetry measurements of the 5π RIT TPC

SirRIT Time Projection Chamber

- Built to study the symmetry energy at ${ }^{\sim} 2 \rho_{0}$
- Multi-wire proportional chamber
- Large pad plane for particle detection (12,096 channels)
- Designed, constructed and assembled at MSU \& TAMU

S π RIT Time Projection Chamber

- Built to study the symmetry energy at ${ }^{\sim} 2 \rho_{0}$
- Multi-wire proportional chamber
- Large pad plane for particle detection (12,096 channels)
- Designed, constructed and assembled at MSU \& TAMU
- Shipped to RIKEN (~10,000 km trip)

S π RIT Time Projection Chamber

- Built to study the symmetry energy at ${ }^{\sim} 2 \rho_{0}$
- Multi-wire proportional chamber
- Large pad plane for particle detection (12,096 channels)
- Designed, constructed and assembled at MSU \& TAMU
- Shipped to RIKEN (~10,000 km trip)
- Will operate inside SAMURAI magnet at RIKEN

SirRIT Time Projection Chamber

- Thin walled enclosure with angle iron (aluminum) frame
- Field cage made of G10 circuit board
- Thick aluminum plate with ribs designed to keep detection elements fixed

Important measurements

Flatness of the pad plane

- Distance from pads to wires affects gain of detector
- Measure pad plane by measuring top plate

Pad plane is attached to large aluminum plate

Original Laser measurements

- Flatness measured using FARO laser system at NSCL during assembly
- Flat within $125 \mu \mathrm{~m}$
- Flatness of pad plane within machining tolerances of top plate

Important measurements

- Angle of field cage to pad plane
- Affects drift path of electrons
- Also affects simulations

Important measurements

- Check position inside magnet chamber
- Adjust so that E field is parallel to B field
- Check position of detection elements relative to beam line

Photogrammetry measurements on the TPC

- Photogrammetry is the measurement method available at RIKEN
- Study performed by Justin Estee, July 2014
- 3 studies:
- Flatness of top plate
- How parallel is field cage
- Changes to TPC on uneven surface

Figure courtesy B. Brophy

How does photogrammetry work?

- Use multiple images to triangulate points on a 3D object
- "Resection" to determine the position of the camera for each photo
- Geodetic V-stars program reconstructs a 3D image of the points

http://www.geodetic.com/v-stars

Resection

- Use coded targets as unique points
- Coded targets in picture help identify which face is photographed
- Requires a scale
- Scale bar included in measurements

The size is now evident

Study of accuracy

- Measurement of a granite flat plate ($1.35 \times 0.9 \mathrm{~m}$)
- Flatness expected to be within $125 \mu \mathrm{~m}$ (or better)
- Measured with photogrammetry

Target style	Standard Deviation [رm]	Max/Min [$\mu \mathrm{m}]$
6-Single targets	20	$+16 /-19$
38-tape targets	24	$+52 /-47$
42-tape targets	23	$+57 /-46$

- Accuracy of photogrammetry measurements is within machining tolerance

Photogrammetry measurements on the TPC

Checking measurements

- The measured points can be analyzed with V-stars program
- Points can also be exported to check against 3D design
- Check position of field cage relative to reference points

Initial location

83% within $+/-48 \mu m$

- Baseline measurement to see how flatness changes

Deviation from average plane (mm)

Initial location

83% within $+/-48 \mu \mathrm{~m}$

Moved across floor

$\sim 72 \%$ within $+/-48 \mu \mathrm{~m}$

Changes to TPC on unleveled surface

- Lifted one side to determine if warping occurs
- Also check field cage to determine if position changes

Lifting up one side of TPC

- Minimal deviation from original measured plane within $48 \mu \mathrm{~m}$
- Overall flatness does not change more than $+/-75 \mu \mathrm{~m}$

Deviation from original measurement (mm)

Orientation of field cage

- The exact angle of the field cage determines the electrical field.
- Panels were removed to measure the field cage
- Within 2 miliradians of design value for all measurements
- Provides position of field cage against reference points

Summary

- $\mathrm{S} \pi$ RIT TPC pad plane is within expected flatness, even when not on a level surface
- Field cage is within 2 miliradians of expected value
- We will be able to position and level detector using photogrammetry

Thank you!

This material is based on work supported by the DOE under Grant No. DE-SC0004835, NSF under Grant No. PHY1102511 and the Japanese MEXT Grant-in-Aid for Scientific Research on Innovative Area Grant No. 24105004

