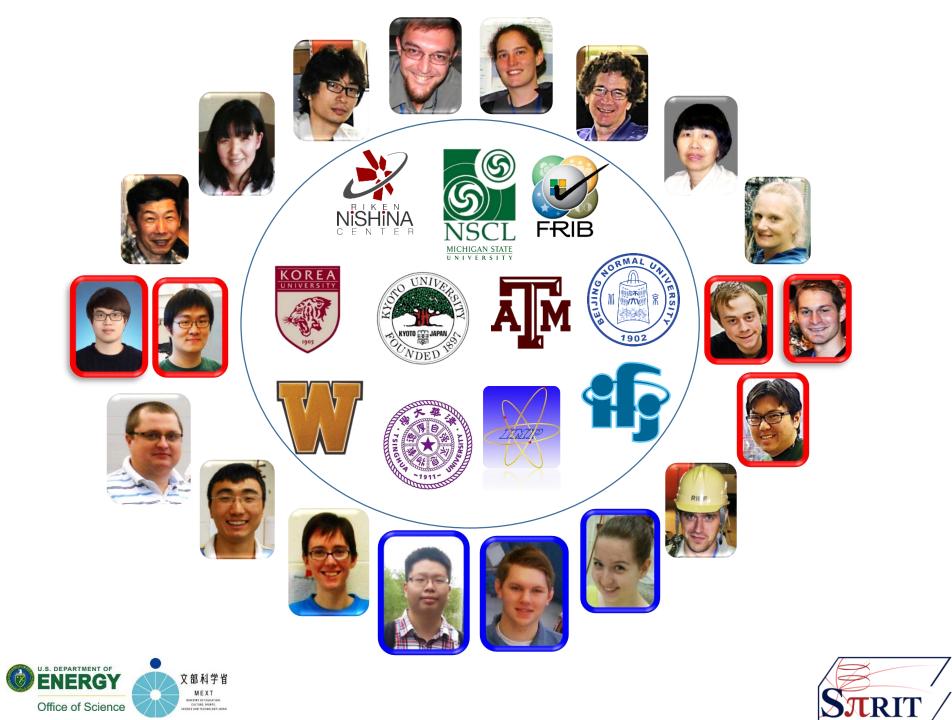
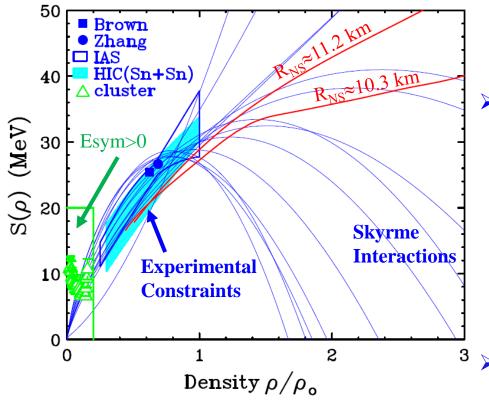

S π RIT TPC: Device to constrain the symmetry energy at supra-saturation densities

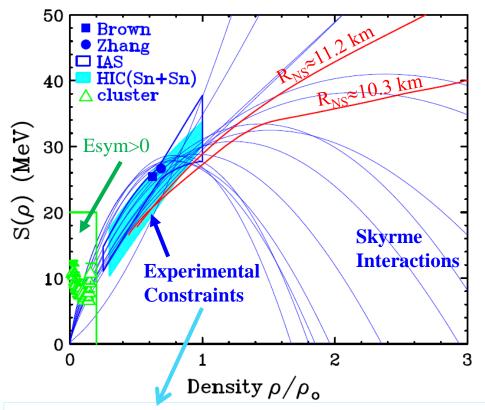
Jonathan Barney for $S\pi RIT TPC$ Collaboration 4/17/2015


Outline

- Motivation: Probing the EoS at suprasaturation densities $\rho \approx 2\rho_0$
- Design and Construction of SpRIT TPC
- Experimental Programs.


R. Shane, et al., Nuclear Instruments & Methods in Physics Research A (2015), http://dx.doi.org/10.1016/j. nima.2015.01.026i

From Earth (Finite Nuclei) to Heavens (Neutron Star) Density Dependence of Symmetry Energy


•Status and LRP objectives:

- > At $\rho << \rho_0$: Initial measurements to benchmark
 - Clustering effects in low-density EoS.
 - Relevant to Core-Collapse SN neutrinosphere.
- ➤ At p≤p₀: Consistent constraints from both structure and reaction experiments:
 - Need precision measurements of skins (PREXII and CREX), polarizability, Giant Resonances, isospin transport, (n/p, t/³He) from heavy ion reactions and sub-barrier fusion cross-sections.
 - New measurements of fission barriers of exotic nuclei surface symmetry energy.
- → At $\rho \approx 1.5 2.5 \rho_0$: Large uncertainties from theory, and NS mass vs. radius relationship.
 - Need laboratory experiments to constrain density and momentum dependence of symmetry energy at $\rho > \rho_0$.

The Equation of State of Asymmetric Matter

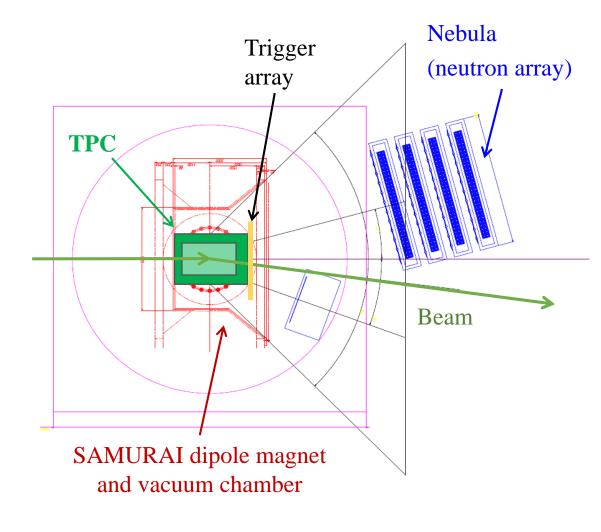
•E/A (ρ , δ) = E/A (ρ , 0) + $\delta^2 \cdot \mathbf{S}(\rho)$

 $\delta = (\rho_n\text{-}~\rho_p)/~(\rho_n\text{+}~\rho_p) = (N\text{-}Z)/A{\approx}1$

The symmetry energy influences many properties of neutron stars but is highly uncertain especially at high density.

•Future Directions: Constrain the symmetry energy at supra-saturation densities with comparisons of (π^-, π^+) , (n, p) (t, ³He) production and flows. Such observables are selectively sensitive to the symmetry energy.

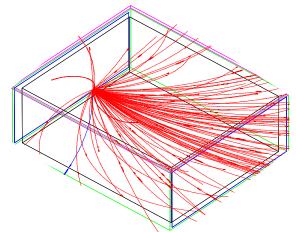
•At $\rho < \rho_0$, consistent constraints obtained from different observables: •Heavy Ion Collisions, Giant Dipole Resonances, Isobaric Analog States, Nuclear masses, Pygmy Dipole Resonances, Pb skin thickness measurements, and neutron star radii. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012) <u>http://link.aps.org/doi/10.1103/PhysRevC.86.015803</u>



TPC and SAMURAI

 Time-projection chamber (TPC) will sit within SAMURAI dipole magnet.

Mass		
B _{typ} , B _{max}	0.5T, 3T	
R, pole face	1 m	
Gap	80 cm	
Usable gap	75 cm	


• Open allows detection with auxiliary detectors for heavyions, light charged particles, neutrons, and an external trigger

Desired TPC properties

GEANT simulation

 132 Sn+ 124 Sn collisions at E/A=300 MeV

- Good efficiency for pion track reconstruction is essential.
- Initial design is based upon EOS TPC, whose properties are well documented.
- SAMURAI has same pole diameter (2 m) as HISS, but a smaller gap of 80 cm (really 75 cm) vs. the 1m gap of HISS)

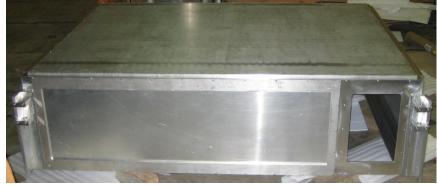


SAMURAI TPC Parameters	Values	
Pad plane area	1.34m x 086 m	
Number of pads	12096 (108 x 112)	
Pad size	12 mm x 8 mm	
Drift distance	53 cm	
Pressure	1 atmosphere	
dE/dx range	Z=1-3 (STAR EI.), 1-8 (GET EI.)	
Two track resolution	2.5 cm	
Multiplicity limit	200 (may impact absolute pion eff. in large systems.)	

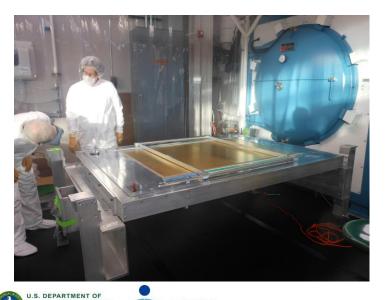
TPC Design and construction:

- Construction of TPC finished May 2013. Shipped to RIKEN January 2014. Tested with 6048 channels February 2015
- Construction Topics
 - Chamber enclosure
 - Field cage
 - Entrance and exit windows
 - Voltage step down
 - Pad plane
 - Wire planes
- Development Topics:
 - Electronics systems
 - Electronics cooling
 - Insertion

https://groups.nscl.msu.edu/hira/sepweb/pages/slideshow/tpc-exploded.html


SAMURAI TPC Enclosure fabrication

A. McIntosh, Texas A&M



- Contains gas, and keeps pad plane and field cage protected
- Aluminum, plus Lexan windows
- **Skeleton**: Angle bar, welded and polished for sealing.
- Sides & Downstream Walls: framed aluminum sheet, to minimize neutron scattering
- **Bottom Plate**: Solid, to support voltage step-down
- Upstream Plate: Solid. Beam line-coupling hole machined

Manipulation of SAMURAI TPC (~ 0.6 ton)

文部 科 学 省

MEXT

TRY OF EDUCATIO

ERG)

Office of Science

- •Motion Chassis and Hoist Beams work as designed.
- •The TPC Enclosure can be lifted and rotated with relative ease.
- •The Motion Chassis can also be mounted on the top plate and facilitates transportation of the TPC and work on the top plate.

SAMURAI TPC: Exploded View

Front End Electronics Air Cooled

> Field Cage Defines uniform electric field. Contains detector gas.

Calibration Laser Optics

Target Mechanism

<u>Rails</u>

beam

Inserting TPC into SAMURAI vacuum chamber⁻

<u>Rigid Top Plate</u>
 Primary structural member,
 reinforced with ribs.
 Holds pad plane and wire planes.

Pad Plane (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cathode

(20kV) to ground

Thin-Walled Enclosure

Protects internal components, seals insulation gas volume, Supports pad pan while allowing particles to continue on to ancillary detectors.

Field cage – the Heart of the TPC

step down

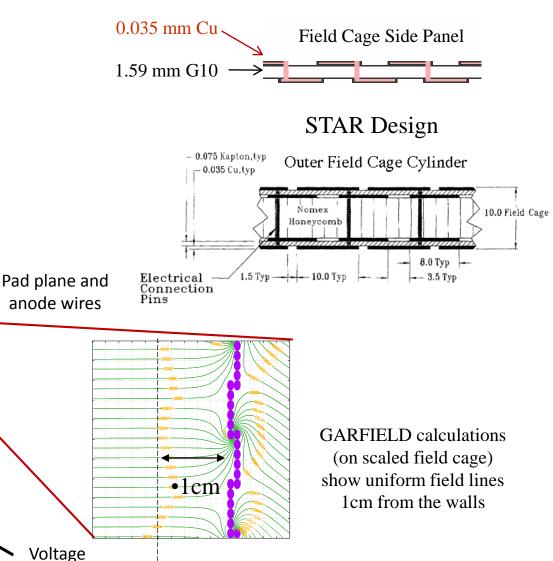
- Produces uniform electric field for electron drift to amplification region
- Made of two layer PCB's
- Thin walls for particles to exit

Enclosure FC wall

Beam direction

U.S. DEPARTMENT OF

=RC


Office of Science

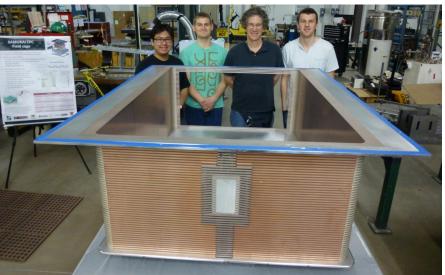
Gas tight (separate gas volumes)

Cathode (9-20kV)

文部科学省

MEXT INISTRY OF EDUCATION CULTURE SPORTS.

Calculations courtesy of F. Lu

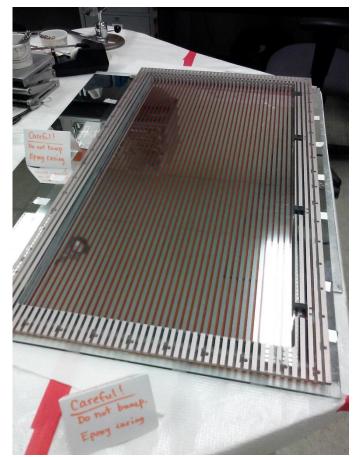


Assembling Field Cage.

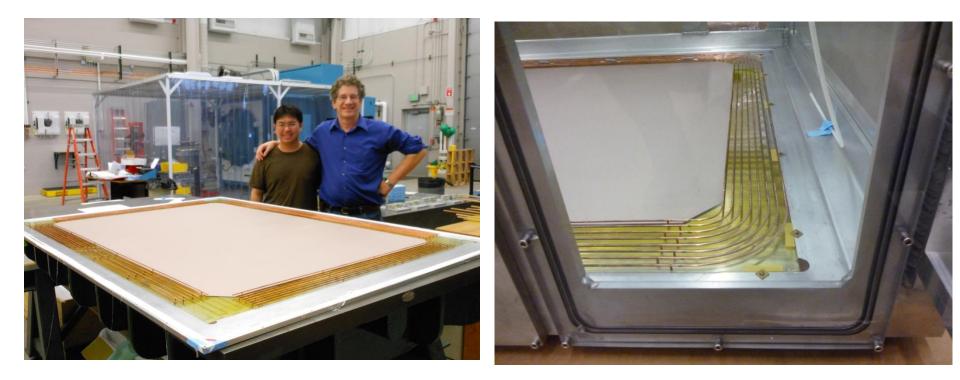
Components

- Side panels are PCB's fabricated with Halogen-free G-10.
- Corners are fabricated from Halogen-Free G-10.
- Front and rear window frames and side struts are polycarbonate.
- Front window will be 12 μm PPTA and back window will be 125 um Kapton, with evaporated Aluminum electrodes.
- Electrode surfaces on polycarbonate and on G-10 corners are conductive epoxy.
- Cathode is aluminum honeycomb.
 Cathode electrode surface is Aquadag E.
- Field cage is insulated from top plate by polycarbonate ring.

Windows on Field Cage


- Aluminum entrance and exit window electrodes evaporated on PPTA and Kapton foils, respectively.
- Thin windows allow beam to enter and light fragments to pass through

Entrance window


Evaporation performed at the NSCL detector lab

85 cm x 50 cm exit window.

Voltage step down

- Eight concentric copper rings step the voltage down from cathode HV (~10kV) to ground without sparking. Tested to 20 kV.
- Situated about 6 mm below the cathode
- Polycarbonate (6 mm) epoxied to bottom plate of enclosure.
- Copper-silver epoxy electrode surface below cathode is biased to the cathode voltage.

SAMURAI TPC: Exploded View

Front End Electronics Air Cooled

> <u>Field Cage</u> Defines uniform electric field. Contains detector gas.

Calibration Laser Optics

Target Mechanism

Rails

beam

Inserting TPC into SAMURAI vacuum chamber⁻

<u>Rigid Top Plate</u>
 Primary structural member,
 reinforced with ribs.
 Holds pad plane and wire planes.

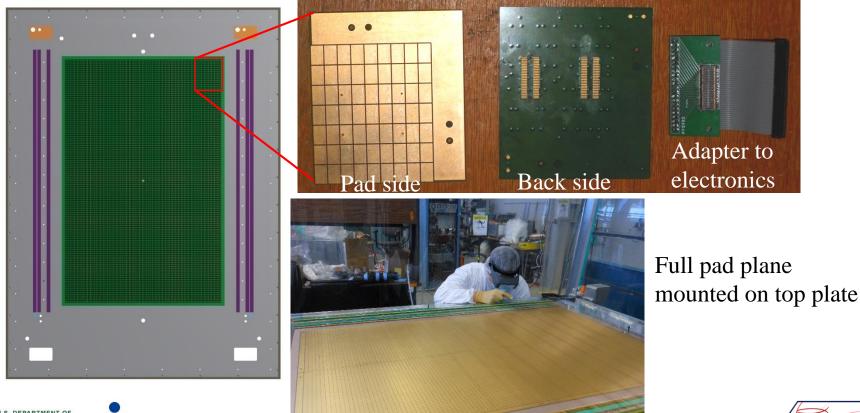
Pad Plane (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cathode

(20kV) to ground

Thin-Walled Enclosure

Protects internal components, seals insulation gas volume, Supports pad pan while allowing particles to continue on to ancillary detectors.



Full pad plane

- Provides 2-D readout of tracks
- Mounted on bottom of top plate
- 112 x 108 = 12096 pads
- Each pad: 12mm x 8mm

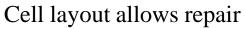
Pad plane

- Small scale prototype: Pad plane unit cell (192 in full plane)
- Capacitance: 10pf pad-gnd, 5pf adjacent pads
- Cross talk:
 - ~0.2% between adjacent pads
 - <0.1% between non-adjacent pads

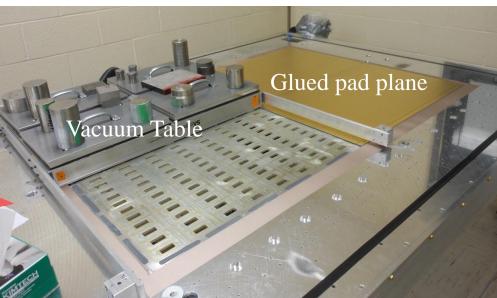
Gluing and Assembly of pad planes

- Pad plane glue applied in a grid layout to facilitate leak repair
- Pad planes held flat relative to one another by use of a vacuum table during gluing
- Leak-tested on sealed TPC

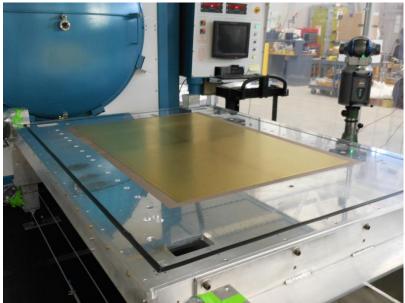
S. DEPARTMENT OF


Office of Science

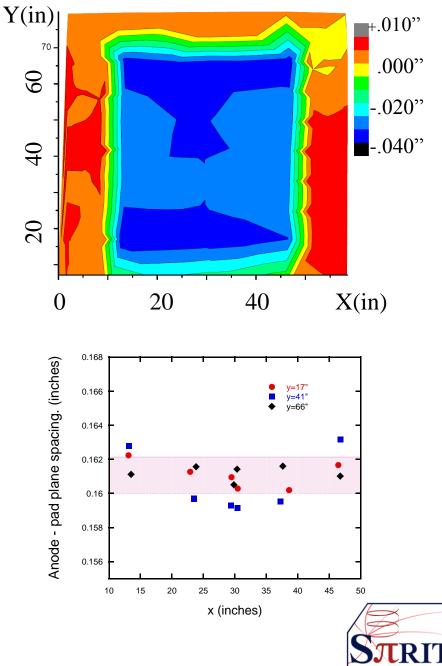
 Small leaks were found and fixed successfully


文部科学省

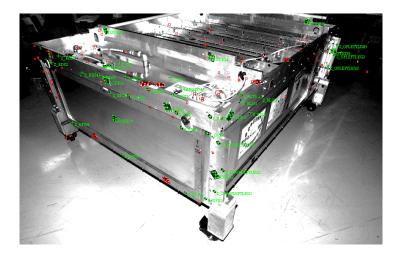
Hole for connection



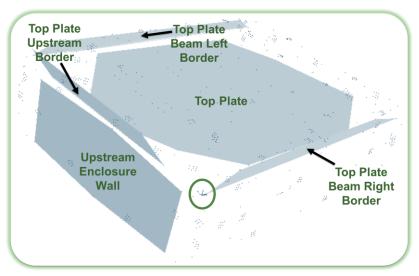
Glue applied on top plate



Leveling of top plate with laser

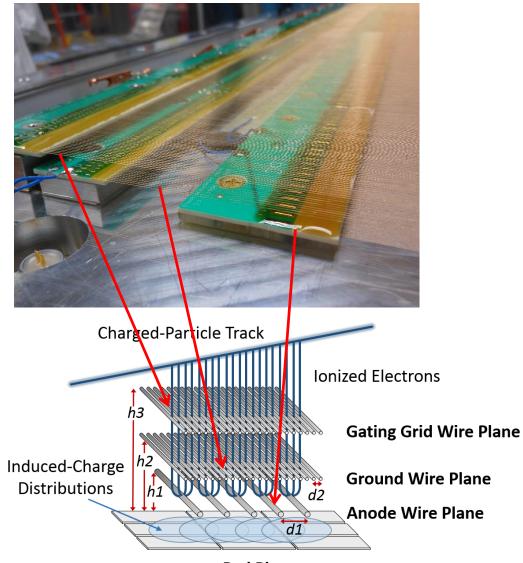


- The top plate is flat to within about 5 mils.
- The pad plane is slightly higher at the center than elsewhere. This is likely the result of the weight applied while gluing.
- Based on these measurements, we adjusted the bars for anode and ground plane to make the anode – pad plane spacing to be approximately 4.05 mm.
- As a result, pad-plane—anode wire heights should be constant to within 2 mils.



Photogrammetry Checks

- The assembled TPC was checked using photogrammetry measurements
- The flatness of the top plate is consistent with the laser level checks
- Photogrammetry will be used to determine the position in the magnet chamber



Wire planes

- Anode and ground plane create avalanche region for electrons
- Anode plane induces image charge on the pad plane
- Gating grid closes off amplification region when not triggered

Plane	height (mm)	pitch (mm)	diameter(μm)
Anode	4.05	4	20
Ground	8.1	1	75
Gating grid	14	1	75

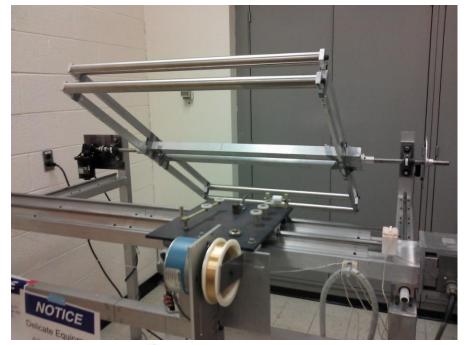
文部科学省

MEXT

TURE SPORTS.

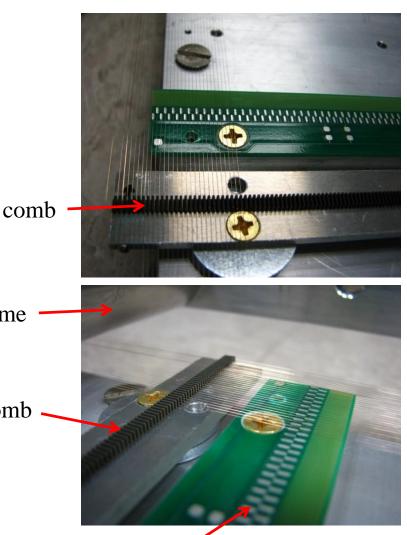
U.S. DEPARTMENT OF

ERG


Office of Science

Wire planes – winding

- Wire winding and wire plane assembly are performed in separate class 10K clean areas.
- Frame size allows winding of a complete wire plane in one pass.
- Each frame holds ½ of a wire plane.

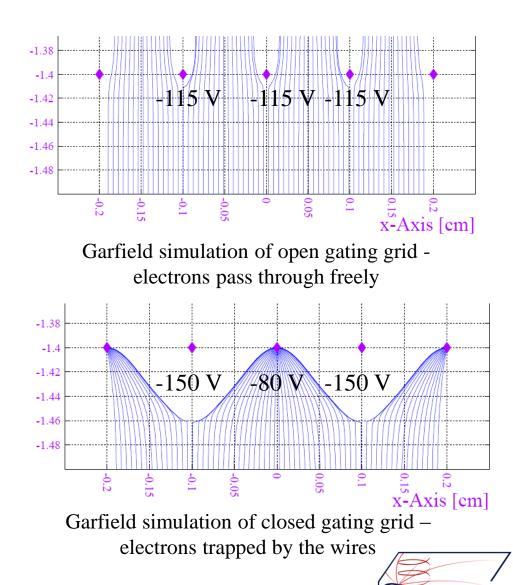

Wire planes – mounting

frame

comb

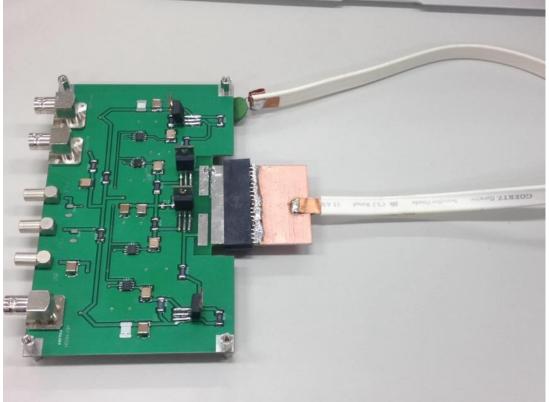
- Wires were wound on frame in detector lab and transported in box to assembly area.
- Frame is positioned so that wires pass ٠ through teeth of comb and rest on circuit board (CB)
- Comb sets pitch, CB sets the height
- After gluing and soldering wires to CB, wires are cut and frame removed.

Test setup


S. DEPARTMENT OF 文部 科学省 ERC TURE SPORTS. Office of Science

circuit board with solder pads

Gating grid


- Gating grid closes amplification region when not needed
- Beam height is 18.7 cm from gating grid.
- "Lost" drift length = $\Delta t_{grid} \cdot v_{drift}$ should be minimized by shortening Δt_{grid}
- Δt_{grid} is governed by three factors:
 - The capacitance of the grid (~15 nF).
 - The impedance of the driver and transmission line.
 - The matching of the currents drain the positive and negative wires on the grid as it discharges. (Charging can take longer.)

Gating Grid Driver

- Switches gating grid from closed to open in as little time possible
- Impedance matching is critical to reduce noise
- Circuit board has an on-board 50 Ω transmission line that could be decreased to 2Ω.
- This is supplemented with two commercial 4 Ω transmission lines that go along both ends of the gating grid.

SAMURAI TPC: Exploded View

Front End Electronics
Air Cooled

<u>Field Cage</u> Defines uniform electric field. Contains detector gas.

Calibration Laser Optics

Target Mechanism

Rails

beam

Inserting TPC into SAMURAI vacuum chamber⁻

<u>Rigid Top Plate</u>
 Primary structural member,
 reinforced with ribs.
 Holds pad plane and wire planes.

Pad Plane (108x112) Used to measure particle ionization tracks

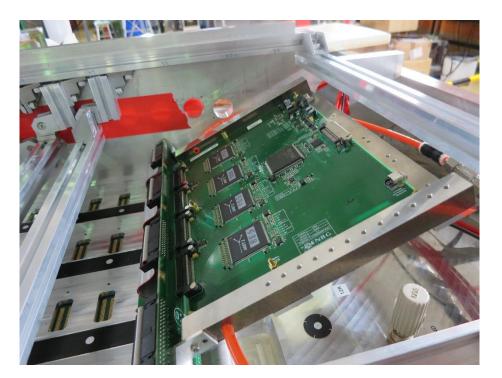

<u>Voltage Step-Down</u> Prevent sparking from cathode

(20kV) to ground

Thin-Walled Enclosure

Protects internal components, seals insulation gas volume, Supports pad pan while allowing particles to continue on to ancillary detectors.

GET Front End Electronics


Generic Electronics for TPCNewly developed by GET collaboration

•Used by other TPC projects

ZAP board for interface between TPC and GET electronics

AsAd board mounted on TPC

•Software Development: Jhang et al

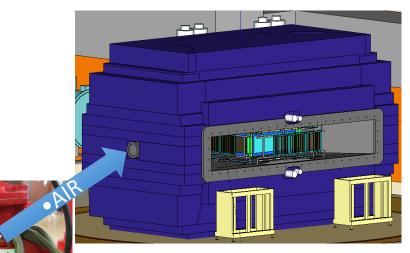
Frame work establishedEffort will continue until data analyzed

Found 170 tracklets out of 80 produced charged particles

All tracklets

Cosmic tracks with GET (6048 channels) February 2015

TPC with GET electronics installed on half of pad plane



Reconstructed path from cosmic ray in TPC

Cooling Design

- Air flow around the surface of AsAd to cool electronics
- Necessary to dissipate heat from small space
- Test results: w/o cooling, ~44 deg; w/cooling ~37 deg

SAMURAI TPC: Exploded View

Front End Electronics Air Cooled

> <u>Field Cage</u> Defines uniform electric field. Contains detector gas.

Calibration Laser Optics

Target Mechanism

<u>Rails</u>

beam

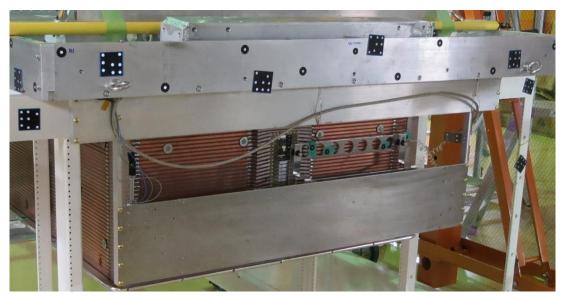
Inserting TPC into SAMURAI vacuum chamber⁻

<u>Rigid Top Plate</u>
 Primary structural member,
 reinforced with ribs.
 Holds pad plane and wire planes.

Pad Plane (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cath

Prevent sparking from cathode (20kV) to ground


Thin-Walled Enclosure

Protects internal components, seals insulation gas volume, Supports pad pan while allowing particles to continue on to ancillary detectors.

Target Ladder

- •Contains multiple targets for experimental run
- •First design installed on TPC
- •Motion is controlled from outside the magnet chamber
- •Second design underway to bring target closer to field cage

Target ladder installed on TPC

Second design underway

SAMURAI TPC: Exploded View

Front End Electronics Air Cooled

> <u>Field Cage</u> Defines uniform electric field. Contains detector gas.

Calibration Laser Optics

Target Mechanism

Rails

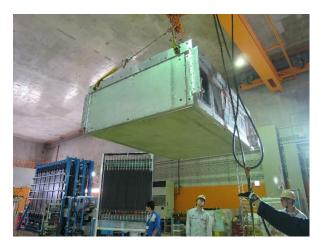
beam

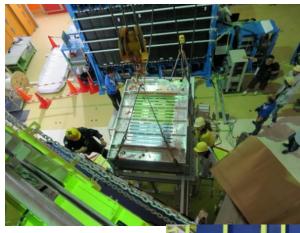
Inserting TPC into SAMURAI vacuum chamber

<u>Rigid Top Plate</u>
 Primary structural member,
 reinforced with ribs.
 Holds pad plane and wire planes.

Pad Plane (108x112) Used to measure particle ionization tracks

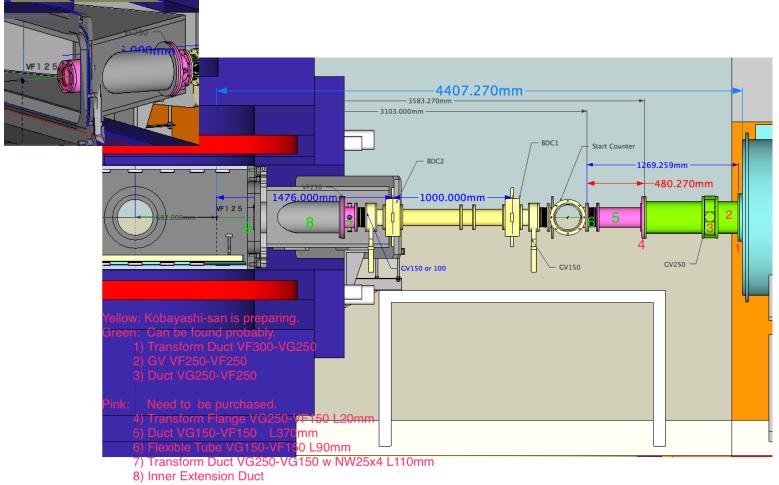
Voltage Step-Down


Prevent sparking from cathode (20kV) to ground


Thin-Walled Enclosure

Protects internal components, seals insulation gas volume, Supports pad pan while allowing particles to continue on to ancillary detectors.

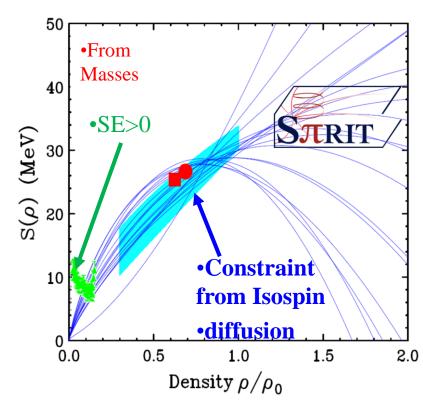
Installation of TPC into magnet


- Rails allow TPC to be inserted and removed from magnet chamber
- Successful insertion first tested Summer 2014

Beam Line configuration design

9) Window Flange VF125 w foil

Upcoming Experimental Plans with $S\pi RIT$


Determination of the density and momentum dependence of EOS (m*) at supra-saturation density

Symmetric and asymmetric reactions $^{132}Sn+^{124}Sn; ^{124}Sn+^{112}Sn$ $^{108}Sn+^{112}Sn; ^{112}Sn+^{124}Sn$ E/A=300 MeV at RIKEN

Observables:

 π^+/π^- , n/p, t/³He ratios,

13.5 days approved by NP-PAC in 2013.

