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ABSTRACT

EQUILIBRIUM AND NON-EQUILIBRIUM MODELS FOR PARTICLE

PRODUCTION IN HEAVY-ION COLLISIONS

By

Catherine Marie Mader

In Part I, a non-equilibrium hadronic transport model which numerically solves

the Boltzmann-Uehling-Uhlenbeck (BUU) equation, is introduced to probe the space-

time evolution of the reaction zone formed in heavy-ion collisions. First, the emission

of fragments from a compound nucleus formed during intermediate-energy heavy-

ion collisions is explored. A hybrid formalism is introduced in which the transport

model is used to study the initial ≈ 50 fm/c of 129Xe-induced reactions at E/A

= 50 MeV, and then a statistical evaporation model is used to evaluate the light

particle and fragment emission from the hot reaction zone. While the model is only

qualitative, comparison to data demonstrates the need to include dynamics when

studying fragment production in intermediate-energy heavy-ion collisions.

Second, the two-proton correlation function is introduced. Using the proton phase-

space predicted by BUU and the folding formalism of Koonin to combine it with the

two-proton relative wave function, the size of the emitting source can be studied.

Comparison to recent experimental results for 36Ar + 48Sc at E/A = 80 MeV charac-

terizes the reaction zone as a function of impact parameter.

Third, the Koonin formalism is used again to calculate both the π+ − π+ and

π+ − π− correlation functions at relativistic energies. Both correlation functions are



studied for 1.6 GeV p + C and 1.6 GeV p + Pb reactions. The results for the heavy

system are shown to be strongly affected by the absorption and rescattering of pions,

while the lighter system is not dramatically affected by this nuclear shadowing.

In Part II, an equilibrium model, the Nuclear Firestreak model (NFS), is intro-

duced, to explore strange particle production in heavy-ion collisions at highly rela-

tivistic energies. An increase in strange particle production has been proposed to

be an indication of the formation of a quark-gluon plasma at these energies. The

experimental observation of such an increase in strange particle production with an

increase in the mass of the colliding system at ≈ 15 GeV/nucleon, is compared to

predictions from the purely hadronic firestreak model, which assumes the interacting

hadrons are in thermal and chemical equilibrium. This model is able to reproduce

the experimental results, which indicates that increased strange particle production

alone is not an unambiguous signal of a quark-gluon plasma.
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Chapter 1

Introduction

Matter is often described using an equation of state (EoS). A familiar example is

the ideal gas equation of state, often displayed as isotherms on a P-V (Pressure-

Volume) diagram. Such phase diagrams are important because, by knowing the EoS,

predictions can be made about how a system will behave under different conditions.

In the case of an ideal non-interacting gas, the EoS can be derived from thermo-

dynamic principles. The ideal system is, of course, not necessarily realistic. Better

understanding of the molecular forces led to a more realistic EoS called the Van der

Waals equation:

P =
nkT

V − nb −
an2

V 2
. (1.1)

This equation relates the pressure (P ) of a system of n molecules to its volume (V ),

and its temperature (T ) (k is the Boltzmann constant). By experimentally varying

the pressure, volume or temperature, one can determine the parameters a and b, which

are related to the strength of the Van der Waals forces and finite size effects. For

example, an experimentalist can measure the change in the pressure of a container of

gas while changing the temperature of the container. Measurements of macroscopic

systems where one state variable is kept fixed, while another varies, have allowed not

only the constants a and b to be determined, but the regions of validity of the Van

1



2

der Waals EoS to be understood as well.

Because of the similarities between the general behavior of the nuclear force and

the Van der Waals force, analogies are often drawn between the well-known behavior

of Van der Waals gases and nuclear matter. Both forces exhibit a strong short-range

repulsive force and an intermediate-range attractive force. Thus, similar equations of

state relating pressure, volume and temperature have been derived for nuclear matter.

Figure 1.1 shows one equation of state for nuclear matter which was derived using

Skyrme type interactions [Jaq83]. Also shown on the plot is the equation of state for

a Van der Waals gas, where equation 1.1 has been rewritten in a dimensionless form.

The two equations of state do, in fact, agree qualitatively.

However, there is a significant difference between them. The EoS of molecular

gasses can be studied through direct measurements of macroscopic systems. These

experimental results can be compared directly to models, such as the Van der Waals

EoS which are derived assuming that the system is large (if it is studied at room

temperature and pressure, the system contains ≈ 1023 molecules). However, a sim-

ilar direct measurement of nuclear state variables is not possible. There is no way

to access a system containing 1023 nucleons to perform experiments to determine

thermodynamic properties of nuclear matter.

Nature does provide one system of the appropriate size. Neutron stars are ex-

pected to have densities ranging from 107 − 1015 g/cm3. Cold nuclear matter has

a density of ≈ 1014 g/cm3 or 0.168 nucleons/fm3 (≈ 1039nucleons/liter). So, while

natural macroscopic systems do exist, measurement of the temperature, volume and

pressure of these systems with any reasonable degree of accuracy is not possible.

However, if the nuclear EoS was well-known, it could be used in various models of

stellar evolution to better understand the natural nuclear processes occurring in as-
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Figure 1.1: The solid lines represent isotherms for an equation of state for nuclear
matter derived using Skyrme interactions. The dashed lines represent isotherms of a
Van der Waals the equation of state. The temperatures (T), pressure (P) and volume
(V) are given in multiples of the critical values.
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trophysical systems.

One way to observe the effects of varying the nuclear EoS state variables is via

heavy-ion reactions. During the initial stages of a central heavy-ion collision, the

two nuclei can compress. As the collision progresses, the interaction region will then

expand and cool. In fact, during the various stages of the collision, the state variables

for nuclear matter (pressure, volume, and temperature) will vary, just as for the

macroscopic Van der Waals system. However, it is still impossible to make direct

measurements of these variables. For this reason, model calculations which include

information about the nuclear EoS are introduced. Within each model, predictions

about the evolution of the nuclear reaction zone can be obtained for a particular

nuclear EoS. Then, the calculated results for various observable quantities can be

compared to experimental measurements to try to gain insight into the nuclear EoS,

and to quantitatively describe the behavior of nuclear matter.

However, there are many complications in comparing the results deduced from

nuclear collision observables with the results observed for macroscopically measurable

systems. First and foremost is the finite size of the system. In Van der Waals

gas studies, both experimental and theoretical assumptions of infinite size are valid.

However, in nuclear experiments, we are limited to particle numbers smaller than

≈ 500 and length scales less than ≈ 100 fm. So, while some information about

nuclear interactions in finite systems is available, direct comparisons to infinite nuclear

systems are difficult to make.

In addition, heavy-ion collisions are practically never head on collisions. They

always occur at a finite impact parameter (which is defined as the projection of the

separation of the centers of the nuclei on the beam axis). Since there is no way to

measure this distance exactly in a single collision, care must be taken when comparing



5

to theoretical results, since all that is measured is an average property over many

possible collisions. Often, some centrality selection can be used to limit the range of

impact parameters observed, but there is always some uncertainty involved.

Also, the orientation of the reaction plane can not be directly measured. The

reaction plane is the plane containing the beam axis and the impact parameter vector.

Typically, what is measured is the result of heavy-ion collisions where the reaction

plane is randomly oriented over 2π possible angles. All of these finite-size effects

(both particle number and geometrical) affect the measured quantities, and must be

taken into consideration when comparing theoretical results with data.

In the following chapters, two models of heavy-ion collisions will be described.

In Part I, the the hadronic transport model, BUU will be introduced. This non-

equilibrium transport model will be used to study heavy-ion collisions at beam ener-

gies from 35 MeV/nucleon to ≈ 1 GeV/nucleon. Several comparisons to experimental

observations will be made in order to better understand the evolution of the reaction

zone formed in heavy-ion collisions, and to obtain information on the nuclear equation

of state.

The second model concerns more exotic regimes of nuclear systems. As experi-

mental technology has improved, nuclear matter can be forced to higher and higher

densities, and the theoretical study of the nuclear equation of state at these high

densities becomes important. In astrophysical systems, these densities may occur

at the centers of neutron stars. However, as beam energies begin to exceed several

GeV/nucleon, the equation of state studied in Part I becomes invalid. At the particle

and energy densities attained in these collisions, the forces being studied are no longer

just the conventional nuclear forces due to meson exchanges.

The fundamental degrees of freedom which need to be considered are those of
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free quarks and gluons, which may no longer be confined to the color singlet states

of nucleons and other hadrons. At sufficiently high densities during a relativistic

heavy-ion collision, a plasma of quarks and gluons may briefly exist. Experimental

signatures for a conversion of nuclear matter into a quark-gluon plasma (qgp) have

been predicted by theoretical studies, and are currently being sought experimentally.

An interesting question arises as to whether these signatures are unique to a nuclear

phase transition, such as a qgp. In Part II, a hadronic thermal model is developed

which assumes that chemical and thermal equilibrium is attained in the reaction

zone. Within the purely hadronic scenario, the production of strange particles for

various systems is studied. Strangeness enhancement was proposed as one possible

qgp signal [Raf82]. However, it will be shown that the experimental evidence on

strangeness enhancement collected at the AGS thus far can still be explained by this

hadronic model. Therefore the experimental observations are not a unique signal that

a qgp has been created.



Part I

Non-equilibrium Model of
Heavy-Ion Collisions
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Chapter 2

Introduction

Intermediate-energy heavy-ion reactions (beam energies of 30 - 300 MeV/nucleon) are

frequently described as a two-stage process: a compressional phase during which the

nuclear matter is heated, followed by an expansion phase during which the nuclear

matter cools. On the phase diagram in Figure 1.1, assuming a dense, hot ball of

nuclear matter was formed at a given temperature, volume and pressure, the reaction

begins at the point labelled A. If the nuclear matter then undergoes an isothermal

expansion to point B, the pressure decreases. In fact, at low temperatures, T < 1,

the pressure becomes negative due to the attractive part of the nuclear force. If the

expansion energy is not large enough to overcome this attractive force, the system

can hold together and cool by radiating photons, particles and fragments. On the

other hand, if the temperature of the nuclear matter is high, T > 1, the system will

not reach negative pressure, and the system will continue to expand after the initial

collision.

While isothermal expansion is useful only as an illustrative example, it does show

the challenge faced in modelling heavy-ion collisions. At the extremes of the en-

ergy scale (at either very low or high temperatures), different models successfully

describe either the formation of a compound nucleus that evaporates light particles,

8
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or the complete “explosion” of the system into light particles. For the region in-

between, more complicated studies are necessary. How does the reaction proceed in

the intermediate-energy region?

A powerful tool for studying this dynamic evolution of the reaction zone is the

hadronic transport model, BUU, a semi-classical model which describes the evolution

of a nucleus-nucleus collision at a microscopic level [Bau86, Ber84, Ber88, Dan91,

Kru85, Li91a, Li91b, Wan91]. The motion of the constituent nucleons is determined

by solving the Boltzmann-Uehling-Uhlenbeck equation. In this way, the nucleons

in the heavy-ion reaction are studied from from the earliest stages of the collision

(before the nuclei even begin to interact) until the collision has ended. In this way,

the transient nature of the system created in the heavy-ion reaction can be modelled,

and various assumptions about the nuclear EoS can be tested. The model will be

described in detail in the following chapter.

In order to verify that the assumptions in the model are valid, the calculated

results are compared to several experimental observations. In this way, the parameters

of the equation of state as well as other model parameters can be determined. These

comparisons will be presented in chapters 4 - 6 of part I.

Specifically, the cooling and expanding phase of the reaction will be explored in

chapter 4. During the expansion phase, nuclear matter can emit particles. These par-

ticles may be photons, neutrons, protons, deuterons, tritons, alphas or even heavier

fragments. Within the BUU formalism, only the emission of single particles (e.g. pho-

tons, protons and neutrons) can be studied. In order to study the emission of heavier

fragments, a hybrid model is developed in which the early stages of the collision are

simulated using the BUU model. Then, as the system expands and cools, a statistical

decay model (Expanding Emitting Source) is introduced to study the production of
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heavier fragments. While this is an inexact method for studying fragment formation,

the comparison of the predicted observables with the data does provide insight into

the evolution of the reaction zone.

In chapter 5, the evolution of the reaction zone will be studied further via exper-

imental particle-particle correlation measurements, which directly probe the size of

the reaction zone as a function of time. In this instance, proton-proton correlations

are measured and direct quantitative comparisons with the single-particle predictions

of the BUU model are possible. This comparison shows that the model provides valu-

able information on the evolution of the reaction zone formed in heavy-ion collisions.

In addition, by adjusting parameters in the code, quantitative information about the

nuclear EoS and the effect of the nuclear medium on nucleon-nucleon collisions is

obtained.

The effects of the finite size of the reacting system in heavy-ion collisions can also

be studied in the framework of the BUU transport model. In chapter 6, collisions of

relativistic protons with both heavy and light targets will be studied. The measured

pion correlation results from the light and heavy targets are dramatically different.

Comparison to the predictions of the BUU transport model show that, at least for

the systems studied, intriguing aspects of the experimental data can be explained

by finite-size geometric effects. Simple, but careful consideration of the geometric

orientation of the colliding system, which cannot be determined precisely in the ex-

perimental observations, can account for the unusual experimental data. Thus, these

data are shown not to require the inclusion of any exotic nuclear matter phenomena,

which had been suggested.



Chapter 3

BUU-Hadronic Transport Model

3.1 The Model

The BUU model is a microscopic approach to studying heavy-ion collisions. For-

mally, it is a numerical solution of the Boltzmann-Uehling-Uhlenbeck equation [Nor28,

Ueh33]:

∂f(~r, ~p, t)

∂t
+ ~v · ∇rf(~r, ~p, t) − ~∇rU(ρ(~r)) · ~∇pf(~r, ~p, t) = (3.1)

4

(2π)3

∫
d3k2d

3k3dΩv12
dσ

dΩ
δ3(~p+ ~k2 − ~k3 − ~k4)

×[f1f2(1− f3)(1− f4)− f3f4(1− f1)(1− f2)].

The nucleons are represented by a distribution function f(~r, ~p, t). The left-hand side

of equation 3.1, when equal to 0, reduces to the Vlasov equation [Vla38, Vla45]. This

represents the time evolution of the distribution function under the influence of the

mean field, U(ρ(~r)), due to the nuclear (and Coulomb) interactions. The right-hand

side of equation 3.1 determines the effects of the individual hadron-hadron collisions

where Pauli-blocking of the final states of nucleon-nucleon collisions is taken into

account through the fi(1− fj) terms.

In practice, equation 3.1 is solved numerically using the test-particle method

[Won82]. The nucleons are represented as an ensemble of point particles which are

11
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initially uniformly distributed in a sphere representing the nucleus. The number of

test particles used to represent each nucleon is usually greater than 100 to reduce the

fluctuations due to numerical uncertainties. If the collision is non-central, then the

centers of the nuclei are offset by the impact parameter. The particles are randomly

assigned momenta so that they are uniformly distributed in a Fermi-sphere. The

projectile is then assigned an additional boost, equal to the beam velocity, toward

the target. Both projectile and target nucleons are bound by a mean field determined

by the distribution of all test particles. This mean field contains the information of

the nuclear equation of state. Once the nuclei begin to overlap, nucleon-nucleon colli-

sions begin to occur among nucleons the individual ensembles. The frequency of these

collisions is governed by the nucleon-nucleon cross section (σnn) and by the possible

blocking of final states due to the Pauli exclusion principle. In the case of high-energy

collisions, particle and resonance production is possible. This, too is governed by the

appropriate reaction cross sections.

In particular, the single-particle phase space f(~r, ~p) is written as:

f(~r, ~p) =
∑

i

δ(~r − ~ri)δ(~p− ~pi). (3.2)

Substituting this into the Vlasov equation allows the equations of motion for the test

particles to be written as:

d

dt
~pi = −~∇rUnucl(ρ(~ri)) +

1

N

∑

j 6=i

qiqj
|~ri − ~rj|3

(~ri − ~rj), (3.3)

d

dt
~ri =

~pi
Ei

=
~pi√

m2
i + p2

i

, (3.4)

i = 1, ..., (At + Ap)N +Nπ, (3.5)

where Ai is the number of nucleons in the target or projectile, N is the number of

parallel ensembles (or test runs), and Nπ is the number of pions which are present in
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the system. If the particle is not a nucleon, it will not feel the nuclear potential and

thus Unucl used in equation 3.3 will equal zero. However, for nucleons, a Skyrme-type

interaction is used to represent the nuclear mean field [Sky59, Zam73]:

Unucl(ρ(~r)) = A

(
ρ(~r)

ρ◦

)
+B

(
ρ(~r)

ρ◦

)σ
, (3.6)

where A,B and σ are input parameters which describe the nuclear equation of state.

As discussed earlier, the nuclear force has attractive and repulsive components. In

equation 3.6, the coefficient A determines the magnitude of the attractive part while

the coefficient B determines the repulsive part. After a choosing a compressibility,

K, which is related to the three parameters through:

K = 9

(
p2
F

3m
+ A+ σB

)
, (3.7)

A,B and σ are determined from nuclear saturation properties. The two parameteri-

zations used throughout this work are referred to as the “soft” and “stiff” equations of

state. They are frequently compared to the soft and stiff spring constants in harmonic-

oscillator type problems. The values of the parameters and their corresponding com-

pressiblities are given in Table 3.1 [Ber89]. In addition, a parameterization for a

“medium” EoS is also given [Bau86].

The right-hand side of equation 3.1 is the collision integral. It determines the

effects of both elastic and inelastic scattering of the test particles. In the case

of nucleon-nucleon collisions, dσ
dΩ

is the energy-dependent, experimentally measured

nucleon-nucleon cross-section. Initially, there are no resonances or pions present in

the system. Resonance production proceeds via the following mechanisms:

N +N ↔ N +N, (3.8)

N +N ↔ N + ∆,

N +N ↔ N +N ?.
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Table 3.1: Equation of state parameters used in BUU calculations.

EoS K A B σ
(MeV) (MeV) (MeV)

Stiff 380 -124 70.5 2

Medium 235 -218 164 4
3

Soft 200 -356 303 7
6

Where possible, experimentally measured cross sections are used. Detailed balance is

used to determine all other cross sections [Dan91, Li93]. In addition, pion production

and absorption is possible. This occurs via resonance decay and pion recapture, the

mechanisms for which which are:

∆ ↔ π +N (3.9)

N? ↔ π +N.

3.2 Single Particle Observables

BUU calculations have successfully predicted single particle spectra, such as gamma,

proton and pion spectra [Aic85, Bau86, Bau87, Li91a]. In most cases, the spectra

have been inclusive. New detection devices that have angular coverage of almost 4π

have recently been developed. Thus, in some events, they are able to detect more

than 80% of the charge of the initial system. One of the benefits of having 4π detector

coverage is that the events can now be classified as central or peripheral based on the

multiplicity of observed particles, the measured transverse energy or the mid-rapidity

charge of the event.
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Central collisions are more violent. The complete overlap of the projectile and

target allows most of the beam energy to be shared among the nucleons of both

heavy ions. In addition, the compressional energy from the initial compressed stage

of the collision converts to kinetic energy away from the reaction zone, and leads to

a large number of detected particles with a large amount of energy perpendicular to

the beam direction. This transverse kinetic energy is given by:

Et =
p2
x + p2

y

2m
=
p2sin2(θ)

2m
, (3.10)

where θ is the angle between the particle’s momentum and the beam axis (z-axis)

and non-relativistic kinematics are assumed. In peripheral collisions, the amount of

overlap between the target and projectile nuclei is significantly less. This leads to

less energy transferred to the target nucleons by the projectile, and less compres-

sion. Thus, the central events will have not only more detected particles, but more

transverse kinetic energy than peripheral events.

The ability to select event classes with centrality allows for more detailed com-

parisons between BUU and experiment. Figure 3.1 shows both the experimentally

measured and calculated proton transverse energy (Et) spectra from 80 MeV/A 36Ar

+ 45Sc collisions, where the results of the numerical calculations have been passed

through a detector filter[Lis]. In these calculations, a stiff EoS has been used. For

central events, the BUU results are in good agreement with the data. As expected,

the kinetic energy spectrum of the central events does extend out to higher energies

than the peripheral events. For the peripheral events the BUU results slightly under-

predict the low Et portion of the spectra. Since the spectra are nearly linear on the

semi-log plot, a fit with an exponential in kinetic energy can be made:

dN

dEt
≈ N◦exp

(−Et
A

)
. (3.11)
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Figure 3.1: Transverse energy spectra for 80 MeV/A 36Ar + 45Sc at 〈θlab〉 = 38◦.
Solid symbols represent data [Lis]. Histograms represent results of BUU calculations,
filtered for geometrical acceptance.
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The slope parameter (A) for the experimentally observed central events is≈ 16.5 MeV,

while the slope of the calculated spectrum is ≈ 17.9 MeV. For the peripheral events,

the experimental and theoretical slope parameters are more similar, ≈ 13.9 MeV and

≈ 13.5 MeV respectively. In the peripheral case, however, the calculated spectrum at

low transverse energy falls far below the straight line fit assumed for extracting the

slope parameters. If one were to equate this slope parameter to a temperature of the

emitting source, these spectra would imply that the protons emitted in the central

events are coming from a hotter source than the protons emitted in the peripheral

events.

The differences in the slope parameter for the calculated and measured spectra

could be due to several factors. First, the experimental centrality selection is not

exact. Thus, the selection of impact parameters to include in the comparison with

theory is also inexact. In addition, the equation of state chosen in this comparison was

a stiff equation of state. A medium or soft equation of state would produce slightly

less transverse momentum, thus reducing the central slope slightly and possibly filling

in the low-energy part of the peripheral spectrum.

Adjusting these two assumptions to provide better agreement is possible, but

not reasonable. One limitation of BUU is that it is a semi-classical, single-particle

model. Thus, fragment production cannot be directly studied. Previous studies have

shown discrepancies between the predicted proton spectra of BUU and experimental

measurement, which are most likely due to the inclusion of protons which should be

bound in fragments in the BUU predictions. However, the purpose of this work is

not to study the single particle observables predicted by BUU, but to build on the

previous successes of BUU and to provide a better picture of the evolution of the

reaction zone formed in heavy-ion collisions.



Chapter 4

Fragment Production in Heavy Ion
Collisions

As experiments have increased in sophistication, theoretical models have improved

in order to provide useful information about the new aspects of reaction dynamics

being experimentally probed. For example, new detection devices are able to detect

charged fragments emitted in heavy-ion collisions with energies as low as a few MeV

in virtually any direction. One recent result from of a 4π detection system was the

observation of a large number of intermediate-mass fragments (IMFs) in heavy-ion

collisions of 50 MeV/A 129Xe + Au [Bow91], where IMFs are defined as all particles

with charge greater than 2. In fact, as many as 14 IMFs were detected in a single

central event. Comparisons with several models showed that most models signifi-

cantly underpredicted the observed results. However, the expanding emitting source

(EES) model [Fri90] was able to reproduce the experimental results [Bow91]. In this

statistical model, the hot compound nucleus formed during the collision is allowed to

expand while emitting fragments and particles from its surface.

However, this model (and all statistical decay models) requires information about

the initial conditions of the compound nucleus. These conditions are determined by

the early stage of the collision prior to the formation of the compound nucleus. The

18
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model requires 5 input parameters: mass (A), charge (Z), temperature (T ), radial

expansion energy (Er), and compressibility (KEES). In the comparisons of reference

[Bow91], these values were varied in order to obtain reasonable agreement with the

data.

Are the chosen values reasonable?

In order to address this question, the BUU model described in chapter 3 is used to

characterize the initial stages of the collision. Although this is a single particle model

and IMF production cannot be directly predicted by BUU, the input parameters of

the EES model can be determined from the BUU results. This is a “hybrid” model

approach. Several assumptions must be made when using this hybrid approach in

which a microscopic model is combined with an evaporation model. In sections 4.1

and 4.2, both the EES model and the assumptions needed to perform the calculations

are described. Of course, the final goal is to compare the results with data to see

if this hybrid model is, in fact, a reasonable one. This comparison will be done in

section 4.3.

4.1 Evaporation Model

There are several statistical models of the decay process. The principle assumption

of these models is that the mechanism by which the hot drop of nuclear matter, a

compound nucleus, was formed is unimportant. All that is necessary is that by the

end of the initial phase of the collision a compound nucleus is present [Boh36]. Once

this hot system is formed, it can decay via two modes: fission and evaporation. In

1937, Weisskopf developed an evaporation model which described the statistical de-

cay of a compound nucleus [Wei37]. In this model, the compound nucleus cooled by

evaporating smaller droplets of nuclear matter. Only the information which affected
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the decay modes (such as size, energy, rotational energy, and parity) were important,

how the system reached this state was not. It should be pointed out that this for-

malism was developed for light-ion reactions where the total energy of the compound

nucleus was less than 50 MeV.

The method proposed by Weisskopf predicts the emission of light particles (p,

n, and α) by assuming the hot compound nucleus cools by sequentially emitting

particles until it no longer has enough energy to continue. This principle is the basis

of many models and can be expanded to include IMF production [Bon82, Bon85,

Cha88, Fai82, Fai83, Fri83, Lop84, Mek77, Mek78, Mor75, Ran81, Rop82a, Rop82b].

The probability for emitting a particle or fragment is determined from the principle

of detailed balance.

This concept of statistical emission from a single hot source is used in many

models. Its success at predicting light particle emission has been demonstrated

[Dau68, Flu69, Ree69]. With the inclusion of IMF emission, some models have

had great success with heavy-ion reactions for beam energies below 20 MeV/nucleon

[Cha88, Fri83, Fri83a]. However, when applied to collisions at 50 MeV/nucleon, these

models fail to produce enough fragments when compared to data. At these energies,

the assumption that a single, well-defined compound nucleus is formed is no longer

valid. In central collisions, the beam energy is high enough that initially, the central

overlap region is compressed. The energy deposited by the projectile in the reaction

zone is comparable to the binding-energy, and thus the expansion of the residual nu-

cleus is significant. A model that takes into account the dynamical expansion of the

hot reaction zone is necessary.

The expanding-evaporating source (EES) model is, as implied by the name, a

model in which the hot reaction zone evaporates particles while it is allowed to ex-



21

pand. The evaporation process is calculated in the standard Weisskopf formalism.

The expansion is assumed to be an isotropic radial expansion of a uniform distri-

bution of nucleons. Thus, in addition to the size (Ares) and thermal energy (E?)

needed in standard evaporation models, these residual nucleons are described by a

collective radial expansion energy (Er) and a collective compressional energy (Ec).

Since the phenomenon being studied occurs in central events, the rotational energy

of the compound nucleus is neglected in the evaporation process.

The total energy of the system is conserved, thus:

∂Etotal
∂t

= 0 =
∂Ec
∂t

+
∂Er
∂t

+
∂E?

∂t
+
∂Eemit

kin

∂t
+
∂Esep
∂t

, (4.1)

where Esep is the separation energy of the fragments emitted, and Eemit
kin is the kinetic

energy of the emitted particles. The separation energy of the nucleus is determined

by total energy conservation. In a case were parent nucleus (P) decays to daughter

nucleus (D) and fragment (f), total energy conservation requires:

MP (ρ(t)) + E?
P = MD(ρ(t)) + E?

D +Mf + Ekin
f , (4.2)

where Mi(ρ) is the mass of a given nucleus with density ρ, and Mi is the mass of the

ground state nucleus. E?
i is the excitation energy of nucleus i, and Ekin

i is the kinetic

energy of the emitted particle. In this model, the recoil energy of the daughter nucleus

is neglected. The the emitted fragment is assumed to be at normal nuclear matter

density, thus its mass is simply the measured mass. The parent and daughter nuclei,

however, are not at normal nuclear matter density. The model then assumes that the

total mass difference between the initial and final state is just the mass for nuclei at

normal nuclear matter density plus the collective compressional energy released by

creating the fragment:

MP (ρ(t))−MD(ρ(t)) = MP (ρ◦)−MD(ρ◦) + Ec(Af , ρ(t)). (4.3)
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The separation energy is then:

Esep = E?
D − E?

P = −Ef
kin +MP (ρ◦)−MD(ρ◦)−Mf + Ec(Af , ρ(t)). (4.4)

The compressional energy is, in effect, the energy due to the nuclear forces. In

the EES model, it is expressed as:

Ec(ρ(t), A(t)) = A(t)
KEES

18

(
1− ρ(t)

ρ◦

)2

(MeV ). (4.5)

The constant KEES is a compressibility constant. It is labelled with the subscript

EES in order to distinguish it from the the compressibility of infinite nuclear matter

as discussed in regard to the BUU model. KEES represents the compressibility of

finite nuclei, and is an input parameter of the EES model.

Finally, the radial expansion energy is:

Er(ρ(t),A(t)) =
1

2
mṘ2

rms =
1

18
mR2

rms

(
Ȧ(t)

A(t)
− ρ̇(t)

ρ(t)

)2

, (4.6)

where the density is given by:

ρ(t) =
A(t)
4
3
πR3

. (4.7)

Now that all energies have been expressed in terms of ρ and A, equation 4.1 can

be expressed in terms of ρ, ρ̇, A, Ȧ and the compressibility KEES. Given the initial

conditions of the system, the residue is allowed to evaporate particles as it expands

isotropically under the constraint of total energy conservation. This model is, of

course, a gross oversimplification of the nuclear fragmentation process, in particular

in the presence of true multifragmentation. However, some limited insight into the

influence of collective expansion on nuclear fragmentation can be obtained with its

aid.
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4.2 EES-BUU Hybridization

The initial conditions of the residue are inputs to the statistical model, EES. So

while it may be useful to describe the fragment-production stage of the reaction, EES

contains no information about the initial conditions. On the other hand, the BUU

transport model contains information about the single-particle aspects of the collision

and can be used to model the first few hundred fm/c of the collision during which the

hot residual nucleus is formed. Due to its single-particle formalism, the BUU model

is unable to predict IMF production, however, the BUU transport model can be used

to simulate the initial stages of the collision and to determine the input parameters

for the EES model.

In particular, the necessary quantities are:

Ares =
1

N

∑

i

1 (4.8)

Zres =
1

N

∑

i

qi (4.9)

R = Rrms =

√ ∑
i r

2
i

NAres
(4.10)

Er =
1

2
mṘ2

rms =
(
∑
i ~r.~p)

2

2m(NRrms)2
(4.11)

T =
2k

π

(
EfE

?

Ares

)0.5

=
2k

π


Ef ( 1

N

∑
i(
p2
i

2m
+ Ui)− E◦bind)
Ares




0.5

, (4.12)

where the sums are over all particles in the residue, N is the number of test particles

per nucleon, k is the Boltzmann constant and Ef is the Fermi-energy of the nucleus.
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U is the potential energy (both nuclear and Coulomb), and E◦bind is the binding energy

of the ground state nucleus. E◦bind is determined using the Weizäcker mass formula for

a nucleus of mass Ares and charge Zres. The EES model is initialized with these input

parameters and used to calculate the statistical decay of the residue while allowing it

to expand.

Figure 4.1 shows the values of these input parameters as a function of time, as

predicted by BUU calculations for central collisions of 50 MeV/A 129Xe on 51V for

both stiff and soft equations of state. As the reaction proceeds, a density cut is used

to determine whether a nucleon is part of the residue. If the local density is greater

than 1
8
ρ◦, the test particles are considered to be part of the residue. If not, the test

particles are considered to be free.

The surfaces of the two nuclei are initially separated by 4 fm. For this system, the

surfaces begin to touch at ≈ 12 fm/c. The nuclei then begin to overlap, however, until

this time the two nuclei are completely separate entities. Since radius of the system

is defined relative to the center of mass of the colliding system, the radius (and in

turn Er) does not reflect an expansion or compression of the residue during the initial

stage of the reaction, but rather the motion of the two nuclei toward each other. At

≈ 20 fm/c, the nuclei now overlap, compression occurs, and the average density starts

to increase. After the initial compression, the compound nucleus expands, particles

begin to leave the residue, and Ares decreases slowly. At some point the nuclear

attraction takes over, and the residue begins to compress again. This is analogous

to the situation discussed in chapter 2 where, for sufficiently low temperatures, the

pressure remains negative and thus the system holds together and cools by radiating

particles. In fact, for the stiff EoS, several oscillations are seen during the first several

100 fm/c.
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Figure 4.1: Mass, density and radial kinetic energy per particle of the residue in
50 MeV/A 129Xe + 51V. The solid curves represent calculations done using the BUU
code with a stiff equation of state. The dotdashed curves represent the soft equation
of state results.
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Another interesting feature of this figure is the change in the calculated mass

and density of the residue. When the stiff equation of state is used, the magnitudes

and variations of these quantities are approximately the same as those using the soft

equation of state, except that they occur on a slightly faster time scale. However, the

radial kinetic energy is much greater for the soft equation of state than for the stiff

equation of state. This can be understood in the following way: the nuclei initially

compress to a maximum density of ≈ 1.1 times normal density as the kinetic energy of

the projectile gets randomized and transferred to target nucleons through individual

nucleon-nucleon collisions. At this point, the short-range repulsive force stops the

compression (Erad = 0), and the residue begins to expand again. As the system

expands, the mean density falls below the nuclear mater saturation value, and the

intermediate-range attractive force tries to hold the residue together. In the stiff EoS

parameterization, this attractive force is stronger than in the soft EoS, so the radial

expansion slows down more quickly. Thus, the soft EoS system oscillates more slowly

than the stiff, and also has larger radial kinetic energy maxima.

In figures 4.2 and 4.3, the same quantities are plotted for four different targets. In

Figure 4.2, the stiff equation of state is used for central collisions of 50 MeV/A 129Xe

on 27Al, 51V, 89Y and 197Au. In Figure 4.3 a soft EoS is used for the same systems.

For both equations of state, a systematic increase in the time at which maximum

compression occurs with the size of the target is seen. In addition, for the three

lightest targets, a similar systematic trend in maximum radial kinetic energy is seen.

However, for the gold system, the radial kinetic energy curve appears to be shifted

≈ 5 fm/c to the right of the other curves and does not reach a higher maximum than

the yttrium target. This is the only system in which the target is larger than the

projectile. In this system, the kinetic energy of the projectile gets randomized and

shared with more than twice as many nucleons as in the lighter system, thus less
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Figure 4.2: The mass, density and radial kinetic energy per particle of the residue in
50 MeV/A 129Xe + 27Al, 51V, 89Y and 197Au, predicted by the BUU code using a stiff
EoS.



28

Figure 4.3: The mass, density and radial kinetic energy per particle of the residue in
50 MeV/A 129Xe + 27Al, 51V, 89Y and 197Au, predicted by the BUU code using a stiff
EoS.
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energy (per nucleon) is available for radial expansion.

Another point to notice in Figure 4.3 is that the radial kinetic energy of the

heavier systems (in particular the 89Y and 197Au systems) never returns to zero after

the initial expansion begins. In these systems, the nuclear force for a soft EoS is

not sufficiently strong to completely stop the expansion and hold the residual nucleus

together. This will be shown more clearly in Figure 4.5.

While these figures provide insight into the behavior of the reaction zone, they do

not provide the exact quantities needed in the EES calculations. The EES model as-

sumes a uniform density distribution at normal nuclear matter density for the residue.

However, the density distributions predicted by the BUU vary as a function of time.

In order to best match the conditions assumed in the EES model, a time must be cho-

sen when the BUU density distribution most resembles the assumptions of the EES

model. This time is determined as the point when the central density of the BUU

density distributions most resembles a uniform distribution with a central density

equal to normal nuclear matter. From figures 4.1, 4.2 and 4.3, it appears that this

instant in time will occur between the first maximum and minimum in the density of

the residue.

To determine the transition point between the two models more precisely, the

density profiles (ρ(R)) of the BUU calculation were plotted as a function of time. Two

of these plots are shown in figures 4.4 and 4.5. A dashed line representing a constant

density equal to normal nuclear matter density is drawn for reference. As seen in

Figure 4.4, for the stiff equation of state, the nuclei are compressed at t ≈ 30 fm/c

to about 15% above normal nuclear matter density. However, as time progresses, the

central region becomes more uniform, and at t = 45 fm/c, the central density is a

uniform distribution at normal nuclear matter density. Another interesting feature
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Figure 4.4: Density profile of residual nucleus from the BUU calculation for a stiff
EoS for 50 MeV/A 129Xe + 27Al.
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Figure 4.5: Density profile of residual nucleus from the BUU calculation for a soft
EoS for 50 MeV/A 129Xe + 89Y.
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is that, for this particular system (129Xe + 27Al), after expanding for an additional

≈ 40 fm/c, the attractive part of the nuclear force overcomes the expansion energy

and the residue begins to recompress. In fact, by t ≈ 120 fm/c, the system is once

again a uniform distribution at normal nuclear matter density.

In Figure 4.5, an example of a system with a soft EoS that does not overcome the

expansion energy is shown. In this 129Xe + 89Y system, the initial compression at

t ≈ 30 fm/c gives a central density almost 30% greater than that of normal nuclear

matter. By t ≈ 55 fm/c, the central density is as close to a uniform nuclear matter

density distribution as possible. As time progress, the system continues to expand,

and the nuclear force is never able to overcome the expansion energy.

As these figures show, the BUU density distributions never have a sharp surface.

In fact, for the system shown in Figure 4.5, the distribution falls from nuclear matter

density to zero over ≈ 5 fm. Some of the particles at these large radii may in fact

be unbound, even though the local density can be greater than 1
8
ρ◦. These particles

are at larger radius, which may have outward velocities high enough for them to be

unbound, and should not be considered part of the residual nucleus. To determine the

radius of the BUU residue to consider as Ares in the EES model, the average binding

energy per nucleon as a function of radius is calculated. This is shown in Figure 4.6

along with the density profile at the transition time. In this calculation a soft EoS

is used. A line has been drawn at Ebind = 0 to guide the eye. In the gold system,

on average, the particles inside 8 fm have negative total energy and are considered

bound. For the aluminum case, the cutoff radius is 6 fm. The arrows indicate the

cutoff radii chosen for the two cases.
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Figure 4.6: Binding energy and density profile of residual nucleus in the BUU calcu-
lation for a soft EoS for 50 MeV/A 129Xe + 27Al, 197Au. The calculations were done
with a soft equation of state.
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4.3 Comparison with Experiment

All of the necessary information now exists for combining the two model calculations.

Both stiff and soft equations of state will be used in the BUU calculations to see how

the EoS affects the final results. Table 4.1 shows the input values determined by BUU

to be used in the statistical evaporation code EES for all of the experimental systems

studied. In addition, the cutoff radius is not well defined. For this reason, the value

described in the previous section is used as well as a cutoff radius 1 fm larger.

In addition to these four possible input sets from BUU for each reaction, there is

one adjustable parameter (KEES) in the EES model. The EES model is run for each

parameter set in Table 4.1, with several values of KEES. Figure 4.7 shows the data for

four target-projectile combinations, each at a bombarding energy of E/A = 50 MeV.

The enclosed regions with single-hatched lines are the unfiltered results of the hybrid

model for various cutoff radii and compressibilities. The enclosed regions with double-

hatched lines are the results filtered for geometrical acceptance of the detector. The

two different regions on each plot are the result of increasing the radius cut by 1 fm.

This has the effect of increasing the mass and excitation energy of the residue, thus

increasing the number of IMFs produced in the EES model. The results are seen

to be very sensitive to this radius parameter choice. Varying the compressibility

parameter in the BUU calculation, creates the horizontal widths of the regions (the

lower compressibility corresponds to the left side of the region), while the vertical

spread is a result of changing the compressibility parameter in the EES code (the

lower compressibility corresponds to the top of the region). The sensitivity of the

model calculations to the various radius cutoffs and compressibilities will not allow

precise determination of these parameters. However, the fact that the EES model

is able to produce enough IMFs with reasonable input variables as determined by



35

Table 4.1: Input parameters for EES model predicted by BUU calculations.

Target EoS t Rcut Z A E∗/A T Erad

(fm/c) (fm) (MeV) (MeV) (MeV)

27Al stiff 45 6 54 127 2.5 5.7 62
45 7 63 147 3.5 6.9 89

soft 45 6 54 129 2.4 5.6 54
45 7 63 148 3.1 6.5 80

51V stiff 45 6 56 137 5.0 8.4 110
45 7 69 165 5.8 9.2 180

soft 50 6 54 130 3.2 6.6 130
50 7 67 159 4.2 7.6 230

89Y stiff 50 7 75 180 6.1 9.5 290
50 8 84 200 6.8 10.2 390

soft 55 7 70 170 4.4 7.9 380
55 8 82 196 5.2 8.6 510

197Au stiff 55 8 108 271 6.2 9.6 390
55 9 120 300 6.9 10.2 510

soft 60 8 103 260 4.7 8.1 490
60 9 118 293 5.3 8.7 660
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Figure 4.7: Charged particle multiplicities vs. mean number of IMFs for 50 MeV/A
129Xe + 27Al, 51V, 89Y and 197Au. The points represent the data. The boxed regions
represent model predictions for various radius cuts and compressibilities. In each
plot, the right set of boxes are unfiltered results and the left set are filtered with
experimental efficiency cuts [Bow92].
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the BUU model, suggests that expansion of the residue is necessary to explain the

observed IMF multiplicities.



Chapter 5

Evolution of the Reaction Zone

Through microscopic models, such as BUU, direct study of the evolution of the reac-

tion zone is possible. By observing the single-particle phase space distribution as a

function of time, features such as expansion, particle production and emission can be

theoretically studied. However, experimentally measured single-particle observables,

such as proton and pion spectra, probe only the final state momentum of the single-

particle phase space distribution. Neither the mechanism which led to the final state

nor any spatial information is directly studied, and information on how the system

evolved is lost. However, certain two-particle observables, such as two-proton corre-

lation functions, retain the space-time information on the evolution of the reaction

zone. By comparing experimentally measured two-particle observables with results

from microscopic models, more stringent restrictions can be placed on the models and

better insight into the space-time evolution of heavy-ion reactions can be obtained.

5.1 Intensity Interferometry: HBT

The use of two-particle observables to study the size of the emitting source began a

century ago. In 1890, A. A. Michelson proposed to measure the angular size of dis-

tant stellar objects using amplitude interferometry. His first measurements involved

38
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observing the interference pattern from light emitted from the moons of Jupiter.

Michelson performed a Young’s double slit experiment by observing the light emitted

from stellar objects after placing slits at the front of a telescope. By varying the slit

separation the fringes of the interference pattern varied. By measuring the separation

of the slits when the fringes disappeared, he was able to determine the angular sizes

of these objects within 1 second of arc. Using mirrors to extend the acceptance of

the telescope, he was able to extend this method to objects subtending even smaller

angles, and in 1920 was able to determine the size of Arcturus. Increasing the sepa-

ration of the mirrors to 121 in, Michelson was able to measure the size of Betelgeuse

(determined to be 0.047 seconds of arc) and combined with distance measurements,

determine a radius of more than 270 times that of the sun [Mic27].

The limitation of amplitude interferometer is that the separation of the mirrors

is inversely related to the angular size of the object. In order to measure stellar

objects with smaller angular sizes, the mirror separation must increase and accurate

placement of the mirrors over long baselines is difficult. In addition, the measurement

of first-order interference patterns assumes that light of both paths experienced the

same distortions as they travelled to the detector. It is impossible to verify that at-

mospheric distortions were identical for both paths. These problems can be overcome

by looking at second-order interference patterns using intensity interferometry.

In 1956, R. Hanbury-Brown and R. Q. Twiss proposed to use intensity interfer-

ometry to study stellar objects [Han54, Han56a, Han56b]. The use of intensity in-

terferometry is often referred to as the Hanbury-Brown−Twiss (HBT) method. The

principle is similar to that of the Michelson interferometer: light from a single stellar

object which follows two different paths is observed on earth. However, instead of

recombining the paths at the telescope and studying the interference patterns, the

intensity of the photons from each path is recorded simultaneously. Any fluctuation
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in the intensity which is due to the source will be present in both signals. Thus,

observing the fluctuations in the signal relative to the constant background provides

information on the size of the emitting source. Using this method they were able to

measure the angular size of Sirius to be 0.0069 seconds of arc [Han56b]. New corre-

lation interferometers are more than 10 times more sensitive than the original HBT

interferometer.

The measured intensity fluctuations can be caused by many things. For instance,

the effect of Bose-Einstein statistics is to enhance the number of photons with the

same momentum emitted from the same source. The actual astronomical measure-

ment consisted of measuring the coincidence yield photons emitted by the stars. The

correlation function was defined as:

R(~k1, ~k2) =
Π12(~k1, ~k2)

Π1(~k1)Π1(~k2)
− 1, (5.1)

where Π12 is the probability of observing two photons, one with momentum ~k1 and

the other with momentum ~k2, and Π1 is the probability of measuring a single photon

with momentum ~ki. With this definition, the correlation function would to go to

unity for photon pairs with identical momentum.

The methods developed by Hanbury-Brown and Twiss can be applied to all

type of particles. Particle physicists realized that similar measurements can be

performed for pion sources and in 1959, Goldhaber et. al. showed that the Bose-

Einstein enhancement of pion production in pp̄ annihilation experiments was observ-

able [Gol59, Gol60]. Since then, a large number of pion correlation experiments have

been done [Bau92, Bau93].

In 1977, Koonin suggested that this method could also be applied to fermionic

systems [Koo77]. Unlike the enhancement seen in bosonic systems due to their Bose-

Einstein statistics, identical fermions should show a decreased correlation due to
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the Pauli exclusion principle. In addition, other types of interactions, such as the

Coulomb interaction for charged particles, will also affect the correlation function. In

the case of protons, the most striking features of the correlation function are due to

the nuclear and Coulomb interaction of the protons.

Since that time, two-particle intensity interferometry has been successfully used

to study the evolution of the hot reaction zone formed in heavy-ion collisions [Bau92,

Bau93]. In particular, two-proton interferometry measurements at small relative an-

gles have been able to give information on the size of the emitting source by compar-

ing the measured correlation functions with calculations using zero-lifetime Gaussian

sources. However, this is only a parameterization of an average source size and pro-

vides limited information on the space-time evolution of the collision zone.

More detailed calculations using the BUU hadronic transport model are in good

agreement not only with single-particle observables, such as proton energy spectra,

but also the two-particle correlation functions [Gon91, Bau93]. However, these mea-

surements are impact parameter averaged, so while detailed information on the reac-

tion zone can be extracted from model calculations as a function of impact parameter,

experimental observation of these effects did not exist. More recently, measurements

were performed with a 4π detection device allowing centrality selected single-particle

and two-particle observables to be determined. The proton transverse energy spec-

tra predicted by BUU were already shown to be in good agreement with the data

in Figure 3.1. In section 5.3, comparison of measured correlation functions with

the theoretical calculations will be made. First, however, the Koonin formalism for

calculation of the correlation function and the role of BUU will be described.
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5.2 The Correlation Function

What is commonly referred to as the two-particle correlation function is related to

the quantity measured by Hanbury-Brown and Twiss R(~k1, ~k2) through:

C(~P , ~q) = R(~P , ~q) + 1 =
Π12(~p1, ~p2)

Π1(~p1)Π1(~p2)
, (5.2)

where ~P = ~p1 + ~p2 and ~q = 1
2
(~p1 − ~p2).

Just as in the HBT analysis, the correlation function is defined as the ratio of

the probability of observing a pair of particles (Π12), one with momentum ~p1 and the

other with momentum ~p2, relative to the probability of observing two single particles

(Πi) with momentum ~pi, where i = 1, 2. Early comparisons with data assumed the

correlation function could be expressed as:

C(~P , ~q) =
∫
d3rF~P (~r)|φ(~q, ~r1−~r2+

~P (t2 − t1)

2m
)|2, (5.3)

where F~P (~r) is a source function which describes the size and lifetime of the source

and φ(~q, ~r1 − ~r2 +
~P (t2−t1)

2m
) is the relative wave function of the particles. The relative

wave function for two protons at a relative angle of 60◦ between ~q and ~r is shown in

Figure 5.1. The wave function vanishes at r = 0 due to the Coulomb repulsion of

the protons. The strong peak at q ≈ 20 MeV/c is often referred to as the 2He reso-

nance and is due to the strong nuclear interaction between the protons. By assuming

Gaussian parameterizations of the source, it was shown that this 2He resonance in the

relative wave function showed up as a strong enhancement in the correlation function

at q ≈ 20 MeV/c. In addition, this enhancement was stronger for sources of smaller

spatial and temporal extent. The reason for this is shown schematically in Figure 5.2.

If two protons are emitted close together in space and time (5.2(a)), they will interact

very strongly. However, if they are emitted from either a long-lived source (5.2(b)),

or a large source (5.2(c)), they will interact less strongly.
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Figure 5.1: The relative wave function, |φ(q, r, cos(θ))|2, for fixed angle θ = 60◦ as a
function of relative position and momentum [Bau92a].
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Figure 5.2: Schematic representation of two particles emitted from a source. In (a)
the two particles are emitted from a small, short-lived source. In (b) the particles
are emitted from a small, long-lived source. In (c), the particles are emitted from a
large, short-lived source.
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The original formalism proposed by Koonin suggested that the source function

could be calculated in a microscopic model, for example in BUU. By assuming that

final-state interactions between the particles and their source are negligible and that

the two-particle interactions dominate, detailed calculation of the correlation function

was possible[Gon91]. Under these conditions, the correlation function can be written

in terms of the relative wave function and the single particle emission probability

(g(1
2
~P , x2)):

C(~P , ~q) =

∫
d4x1d

4x2g(1
2
~P , x1)g(1

2
~P , x2)|φ(~q, ~r1−~r2+ ~p1(t2−t1)

2m
)|2

∫
d4x1g(1

2
~P , x1)

∫
d4x2g(1

2
~P , x2)

, (5.4)

where xi is the space-time emission point of the particles.

This can be reduced to the form given in equation 5.3 by defining the source

function in terms of the probability of emission:

F~P (~r) =

∫
d3Rf(

~P
2
, ~R+ ~r

2
, t>)f(

~P
2
, ~R− ~r

2
, t>)

|
∫
d3r′f(

~P
2
, ~r′, t>)|2

, (5.5)

where ~R = 1
2
(~r1 + ~r2) is the center of mass coordinate of the two particles and t>

is some time after both particles are emitted. The single-particle phase distribution,

f(~p,~r, t), predicted by the BUU transport model is related to the emission probability

through:

f(~p,~r, t>) =
∫ t>

−∞
dtg(~p,~r − ~p(t> − t)/m, t). (5.6)

Although equations 5.3 and 5.4 express the correlation function in terms of six

variables, no experiment has sufficient statistics or detector resolution to measure the

full 6-dimensional correlation function. Thus, 4-dimensions are usually integrated
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over, and the correlation function is plotted as a function of | ~P | and |~q|. In Figure 5.3

the calculated two-proton correlation function is shown for 75 MeV/A 14N + 27Al

at 〈θlab〉 = 25◦ for P = 500 MeV/c [Gon91]. The dominant feature of the proton

correlation function is a strong peak at q ≈ 20 MeV/c, just as expected from the 2He

resonance of the relative wave function. In addition, the correlation function goes to

zero as q → 0, due to the Coulomb repulsion of the proton pair. For large q, where

correlations between proton pairs are expected to be unimportant, the correlation

function is ≈ 1.

In these calculations, the in-medium nucleon-nucleon cross section was varied

between 0 and the free value (σnn). It might be possible that σnn is modified in nuclear

matter, and as the figure shows, the height of the correlation function peak is sensitive

to this effect as it increases for higher values of σnn. This is because increasing σnn

increases the number of nucleon-nucleon collisions and since rescattering after hard

collisions can only serve to increase the effective size of the system, the peak at

q ≈ 20 MeV/c decreases.

In addition, for σnn equal to the free value, the correlation functions for two

different equations of state are shown in Figure 5.3. While there is only a small

difference between the two curves, the soft EoS result has a slightly lower peak value.

It is not surprising that the difference between using a soft and a stiff nuclear equation

of state is much less pronounced. For the beam energy and system size considered

here, the maximum densities reached are not much above nuclear matter density, and

compressional effects should play only a minor role.
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Figure 5.3: Correlation functions calculated for 75 MeV/A 14N + 27Al at 〈θlab〉 = 25◦

for P = 500 MeV/c. The different lines represent BUU predictions using different
values of σnn and nuclear EoS [Gon91].
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5.3 Comparison with Experiment

To compare the results of the BUU calculations to the data, both σnn and the EoS

are varied to find the best agreement. Figure 5.4 shows a comparison of the exper-

imentally measured correlation functions with the results of the BUU calculations.

The reaction is the same as in Figure 5.3, 75 MeV/A 14N + 27Al at 〈θlab〉 = 25◦. The

calculations shown are done with the in-medium σnn set to the free value and a stiff

EoS, and are in good agreement with the data. As the figure shows, the peak height

of the correlation function increases with the total momentum of the proton pairs. In

terms of source sizes, this means the fastest pairs of protons are being emitted from a

smaller source (or closer in time) than the slowest pairs of protons. Since the reaction

zone is continuously evolving, the different momentum bins are representative of the

different stages of this evolution. In particular, the fastest pairs are being emitted in

the early stages of the collision, when the compression is the largest. As the source

expands and cools, the emitted protons are less energetic and thus the slower pairs

are emitted during the later stage of the reaction.

While this appears to be a logical explanation of the observed results, the correla-

tion functions discussed here are the result of impact-parameter-averaged calculations.

The reaction zone formed during peripheral events is expected to be much different

than the source formed in a more central event. For example, in figures 5.5 and 5.6 the

emission points of protons from 80 MeV/A 36Ar + 45Sc collisions at impact param-

eters of 2.5 fm and 6 fm, respectively, are shown as a function of time. The emission

points for protons emitted in the reaction plane are shown for time bins of 10 fm/c

width. To do this, the x and z emission points for all protons with y-coordinates

given by -1 fm < y < 1 fm are plotted. The upper left panel of both figures shows

the protons which are emitted before 30 fm/c. The bottom right panel shows all
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Figure 5.4: Correlation functions for 75 MeV/A 14N + 27Al at 〈θlab〉 = 25◦. Data are
given by solid symbols. BUU calculation results are given by the curves [Gon91].
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Figure 5.5: Proton emission points in the reaction plane for 80 MeV/A 36Ar + 45Sc
at b = 2.5 fm. The 12 panels show the emission points of protons emitted in 10 fm/c
time steps. The upper left panel shows emission points of protons emitted during the
earliest time step (t < 30 fm/c) while the lower left panel shows the emission points
of protons emitted during the latest time step (130 fm/c < t).
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Figure 5.6: Proton emission points in the reaction plane for 80 MeV/A 36Ar + 45Sc
at b = 6 fm. The 12 panels show the emission points of protons emitted in 10 fm/c
time steps. The upper left panel shows emission points of protons emitted during the
earliest time step (t < 30 fm/c) while the lower left panel shows the emission points
of protons emitted during the latest time step (130 fm/c < t).
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protons emitted after 130 fm/c. These calculations are performed in the laboratory

frame with the scandium nucleus initially at rest with its center at (x, z) = (1.25 fm,

-19 fm) for the b = 2.5 fm case and and (3 fm, -19 fm) for the b = 6 fm case. The

argon nucleus is moving at a speed of approximately 0.38 c in the positive z-direction,

with its center at x = -1.25 fm for the first figure and -3 fm for the second.

As the nuclei begin to touch around ≈ 10 fm/c, the nuclei compress. Around

≈25 fm/c the nuclei overlap is nearly complete in the central region and protons are

emitted from this hot reaction zone. As the reaction proceeds, the reaction zone

expands and moves in the beam direction while protons are emitted from the surface.

Since these are non-central collisions, the reaction zone begins to stretch: the nucleons

on the negative x plane continue in the positive z direction, while the nucleons on

the positive x plane, although they have gained some of the beam momentum, move

much more slowly in the positive z direction. For the more central collision, the source

becomes very elongated in the z direction and at the latest time steps begins to show

3 separate emission zones: the projectile-like and target-like remnants as well as a

central fireball region. The peripheral reaction never develops a third region.

Central collisions are expected to reach higher densities and temperatures than

peripheral collisions. This is due to the larger number of participant nucleons in the

overlap region for central events. Initially, protons are emitted from this compressed

overlap region, which is larger for the central collisions. Then, as the reaction pro-

gresses, protons are emitted from the expanding source and cooling should occur.

Also, since the reaction zone formed in a peripheral collision is not as hot as in a

central event, fewer protons should be emitted.

Can these differences in source evolution be observed? In order to answer this

question, another experiment was performed where gating on centrality was possible.
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In the second experiment, 80 MeV/A 36Ar + 45Sc collisions were studied at a lab angle

of 〈θlab〉 = 38◦. In Figure 3.1, the proton transverse energy spectra were shown for

both the experimental results and the BUU calculations. In Figure 5.7, the correlation

functions for central and peripheral collisions are shown. Once again, the agreement is

good, although the peak heights are slightly underpredicted for the peripheral gates.

The proton transverse energy spectrum also showed a similar underprediction by the

BUU results. In Figure 5.8 the peak height at q ≈ 20 MeV/c as a function of total

momentum for both central and peripheral collisions is presented. On the right axis,

the apparent source size for a zero-lifetime Gaussian source which gives a peak height

corresponding to the left axis is shown. In both theory and experiment, the source

for the peripheral events is smaller than the source for the central events for the slow

momentum pairs (P ≤ 700 MeV/c). For the high momentum pairs, experimentally,

the central source is of comparable size, while the central events are smaller than the

peripheral events for the BUU predictions. In the theoretical calculations, the high

momentum protons are produced in the early, compressed stage of the collisions. The

central collisions reach higher central densities, and thus a smaller, more compact

source is formed than in the peripheral events.

In both central and peripheral events, the BUU predictions reproduce the trend

of the data: the peak height increases with increasing total momentum. However,

the BUU results slightly underpredict the peak height, especially for the peripheral

events. This underprediction corresponds to a difference in source radii of about 0.5 fm

between theory and experiment. The correlation functions for peripheral collisions

are most sensitive to the exact definition of centrality and the differences between the

experimental and theoretical curves shown in figures 5.7 and 5.8 could be due to the

difference in the range of impact parameters chosen in the theoretical calculations as

compared to the experimental impact parameter averages.
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Figure 5.7: Correlation functions calculated for 80 MeV/A 36Ar + 45Sc at 〈θlab〉 = 38◦.
The solid points represent the experimentally measured correlation functions while
the histograms represent correlation functions predicted by BUU [Lis93].
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Figure 5.8: Average peak height of the two-proton correlation function as a function
of total momentum for 80 MeV/A 36Ar + 45Sc at 〈θlab〉 = 38◦. The scale on the
right axis is the Gaussian source radius. The solid points represent the experimental
correlation functions, open points represent the predictions of BUU [Lis93].
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Once again, it must be emphasized that the BUU results are only a description

of the average properties of single-particle observables. Fragment production is not

considered in the calculations and exact agreement is not to be expected. However,

the good agreement obtained between the experimental results and the theoretical

calculations implies that fragment production does not significantly affect the two-

proton correlation function. This could be due to two reasons. First, the fast protons

are emitted early in the collisions, before heavier fragments are expected to be formed.

At this stage in the collision, most of the emitted particles should have charge less

than two, and thus, the high momentum pairs should not be affected greatly. Second,

experimental studies have shown that most fragment spectra are forward peaked.

Thus, fragments are emitted in the direction of the beam. If a coalescence-type model

for fragment production is assumed, then the protons “close” in phase space with low

transverse momentum would be removed from the sample of free protons and bound

into fragments. However, the detector for the correlation function measurement is

located at 45◦, thus these protons are not being considered in the correlation function

calculation, anyway.

The current studies have shown that using the single-particle phase space pre-

dicted by BUU in the Koonin formalism to calculate two-particle correlation functions

provides insight into the space-time evolution of the reaction zone. Further studies

at higher beam energies would be useful to confirm the assumption that fragment

production does not significantly affect the correlation function at 45◦. As the beam

energy increases, the system expands much more quickly and fragment production

decreases. Thus comparable agreement at higher beam energies would serve as a

confirmation of the conclusions of this work.

In addition, as beam energies increase to around 1 GeV/nucleon, the compression

reached in the early stages of the reaction should be several times greater than those
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reached in the current studies. Thus, the compressibility of nuclear matter should

play a more active part in these comparisons. Perhaps the compressiblity constant of

the nuclear matter EoS can be “pinned” down at relativistic beam energies more so

than at the current beam energies.



Chapter 6

Nuclear Shadowing

All of the previous chapters have dealt with a mean-field approach to studying the

nuclear interaction. However, the derivation of the correct form of the mean field from

nuclear forces is difficult, at best. At a fundamental level, it is known that quarks and

gluons are the building blocks of nucleons. Thus, QCD should be used as a basis for

deriving the nuclear forces. However, QCD is only tractable at high energies, where

perturbative calculations are possible. At the energies considered here, perturbation

theory is not valid. One other possibility is to derive the nuclear force from field

theory. In this picture, nuclear forces are mediated by particles, just as the photon

mediates the electric force in QED, and similar formalisms can be used.

It has been proposed that the long- and short-range parts of the nuclear force can

be described by several mediating particles or fields. Figure 6.1 shows a schematic

of the nuclear potential and the possible mediating particles [Mac86]. The one-pion-

exchange model (OPE) was proposed to describe the nuclear interaction for separa-

tions above a few fermi [Tak51]. The early success of this model was demonstrated

by its ability to reproduce measured results between 1958-1965 [Bre60, Czi59, Gle62,

Iwa56, Iwa56a, Won59].

The observation of the ω particle in 1961 provided a possible mediator for the

58
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Figure 6.1: Schematic diagram of the nuclear potential with the possible mediating
mesons shown in their region of dominance [Mac86].
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short-range repulsive force. This particle is a 3-π resonant state with a mass of

783 MeV. It is also a spin one (vector) boson, and it can be shown from field theoretical

calculations that vector bosons lead to a strong repulsive central force as well as a

spin-orbit force [Mac86]. Thus, two observed particles can “fit the bill” for mediating

the shortest- and longest-range parts of the nuclear force. However, the intermediate-

range force is still a mystery.

Several models, including the two-pion-exchange model (TPE) [Tak51], the one-

boson-exchange model (OBE) [Hos61, Gre67] and the σ model [Sch57, Pol58, Pol58,

Gel60], were proposed in the 1950’s and 1960’s, to explain the intermediate-range

attractive force. All of these models rely on a two-pion exchange, however the latter

two assume it is a scalar meson, 2-π−S-wave resonance rather than two uncorrelated

pions. This mediating particle was called the σ, and it was assumed to have a mass

between 400 and 800 MeV. It was hoped that the ε resonance, which was observed in

this mass range, was the σ particle. However, although the ε was listed in the particle

data tables until 1976 [PDG74, PDG76], its width was too large (several hundred

MeV) to consider it an elementary particle, and so it was removed from the tables.

The confirmation of the existence of the σ particle has not yet been found from results

of elementary reactions. Perhaps heavy-ion reactions can provide more information

on the existence of the σ particle.

It has been suggested that the pion dispersion relation is modified in nuclear

matter [Ber87, Cha91, Her92, Sch88]. This modification leads to a change in the

effective mass of the pion and possibly other mesons as well. Thus, by measuring

pions produced in nuclear reactions, where this medium effect may be observable,

the existence of the σ particle can be studied from a new direction. Since the ef-

fect is dependent upon the density of the nuclear matter in which the σ is formed,

a comparison between light and heavy nuclear systems should show the effects of
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the effective mass modifications. The observable which shows greatest promise for

detecting the σ particle is the π+π− correlation function. Since this proposed scalar

meson is expected to be a 2-π−S-wave resonance, if it exists, it should show up as

an enhancement in the 2-pion correlation function, just as the 2He resonance does

in the 2-proton correlation function. The experimental search for this particle using

nuclei must be performed at relativistic beam energies, since single-pion production

is possible only if a nucleon-nucleon collision has at least 130 MeV available in the

center of mass.

To study this possibility, the DIOGENE collaboration measured the 2-pion cor-

relation function for 1.6 GeV p + C and 1.6 GeV p + Pb collisions [Plu92]. They

constructed the π+π− invariant-mass correlation function as:

Rπ+π−(Minv) =
Π2(π+π−)

Π1(π+)Π1(π−)
, (6.1)

where Π2 is the probability of observing a pair of pions in a single event, and Π1

is the probability of observing a single pion. They observed an enhancement in the

correlation function at Minv(π
+π−)) ≈ 2Mπ in p + Pb collisions, however for the

carbon target, there is no observed enhancement. Did they observe the σ particle, at

last?

When studying the evolution of the reaction zone, experimental measurements are

forced to look at average properties of reaction zone, since there is no microscopic way

to determine the exact impact parameter and reaction-plane orientation. In proton

observables, such as the correlation function, this uncertainty in determination of

impact parameter and source size leads to difficulties in describing the source of the

protons (see Section 5.3). In the case of pion observables, the uncertainties involved

with reaction-plane orientation and impact-parameter determination are even more

confounding. Since pions can be absorbed and rescattered once they are produced,
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the pions which are finally observed by the detection systems are not necessarily the

particles which are produced in the earliest stages of the reaction. However, two-pion

correlation functions can provide a great deal of insight into these effects.

The BUU hadronic transport model described in chapter 3 can be used to to

study the one- and two-particle observables in these relativistic heavy-ion collisions.

While pion production is included in the model, the σ particle is not. Thus, if this

enhancement of the 2-pion correlation function can be reproduced by the BUU model,

it is most likely due to some less exotic mechanism than the production of σ particles

in nuclear matter.

6.1 Pion Production

Previous studies have shown that the predictions for single-particle observables, such

as pion kinetic energy spectra and flow, agree reasonably well with the experimental

data [Li91a, Li91b]. For example, in studying pion collective flow, it was shown that

absorption and re-scattering of pions in asymmetric nucleus-nucleus collisions at E/A

≈ 1 GeV can account for the observed collective pion flow [Li91a, Li93]. The pion

production and absorption processes included in BUU are:

N +N ↔ N + ∆↔ N +N + π. (6.2)

Through this process, pions are absorbed and rescattered in the spectator matter and,

in non-central collisions they are focussed into one hemisphere. In Figure 6.2 this effect

is demonstrated by showing a superposition of 50 non-central p + Pb collisions. The

trajectories of pions (thin dots) and resonances (thick dots) are projected onto the

reaction plane. For those tracks which scatter toward the center of the target nucleus,

most of these pions and resonances rescatter. Eventually all of the resonances decay

and most of the pions are absorbed. However, the pions and resonances which scatter
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Figure 6.2: Superposition of pion and delta-resonance trajectories (thin-dots and
thick-dots respectively) projected onto the reaction plane for 50 1.6 GeV p + Pb
events at b = 5fm.
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away from the center of the target eventually escape, and thus the majority of pions

are emitted away from the center of the nucleus. Similar scenarios have been proposed

by the WA-80 collaboration to explain observed angular correlations of pion pairs for

p + Au collisions at beam energies of 4.9, 60 and 200 GeV [Sch92].

Production of pion pairs with opposite signs is not an easy task for a proton-

nucleus collision. Figure 6.3, shows the number of charged pions per event as a

function of impact parameter predicted by BUU for two targets. Even for the most

central collisions, fewer than 50% of the events produce any charged pions, and much

fewer produce a pair of pions. This is due to several conditions. First, since a large

amount of energy is needed to produce pions and there is only one incoming nucleon,

two hard collisions with enough energy to produce pions is unusual. In addition, these

two pions must then try to escape the cold spectator matter around them as they

traverse the nucleus without being reabsorbed.

In addition, for both the light and heavy targets, there are many more positive

pions than negative. This is due to the isospin of the projectile. Since the projectile is

a proton, there will be more energetic proton-nucleon collisions than neutron-neutron

collisions. From isospin considerations, there will be more positive pions produced

than negative. This can be understood by looking at the pion production mechanisms.

The following reactions are all possible:

p + n→





∆+ + n→ n + n + π+

∆+ + n→ n + n + π◦

∆◦ + p→ n + n + π+

∆◦ + p→ n + p + π◦

∆◦ + p→ p + p + π−

(6.3)

p + p→





∆++ + n→ p + n + π+

∆+ + p→ n + p + π+

∆+ + p→ p + p + π◦
(6.4)
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Figure 6.3: Average number of charged pions per event for 1.6 GeV p + C & Pb
collisions. The diamonds represent positive pions, the circles, negative pions and the
line represents the total number of charged pions.
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While the total cross section for π+ production in the np channel is equal that for

π−[Wol90], the additional pp channels allows for more positive pions to be produced.

Thus, not only are there very few negative pion events (less than 10% for the carbon

target and 25% for the lead), there are even fewer π+π− events. At the beam energy

of 1.6 GeV, the BUU model predictions indicate that two pions are produced in less

than 5% of the events, and fewer still produce π+π− pairs.

6.2 Calculation of the Correlation Function

As in the identical particle correlation functions discussed in chapter 5, the measured

correlation function for π+π− pairs is simply the ratio of the number of oppositely-

charged pion pairs produced in the same event to the number of oppositely-charged

pairs produced in different events. Due to the limited number of π+π− pairs produced

in the proton-induced reactions studied, the calculations were performed by taking

the ratio of pion pairs produced in events with the same reaction plane and impact

parameter to pion pairs produced in events with different reaction planes and impact

parameters. This is possible in the theoretical calculations due to the ability to know

precisely both the impact parameter and the reaction plane.

In addition, one other physical constraint must be taken into account. In two-pion

events, the pions emitted first (π1) have more kinetic energy available than the pions

which are produced second (π2). Pion kinetic energy spectra for three different classes

of pions are shown in Figure 6.4. As seen in the figure, the kinetic energy spectrum

for pions from single-pion events (represented by the histogram) extends to energies

above 800 MeV. Also, the kinetic energy spectrum for pions which are emitted first

in two-pion events (represented by diamonds) extends to higher energies than the

spectrum for those which are produced second (represented by circles). Thus, in
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Figure 6.4: Pion kinetic energy spectra for pions emitted in 1.6 GeV p + Pb collisions
with impact parameter b=5fm predicted using the transport model. The solid line
represents pions produced in single pion events, the symbols represent pions produced
in multi-pion events (diamonds for pions emitted first and circles for second).
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order to increase statistics in the numerator, but retain the kinematic constraints

while mixing over all events, all possible π±1 π
∓
2 pairs (N(Minv)) are constructed from

pions created in two-pion events with the same impact parameter and reaction plane.

6.3 Comparison with Experiment

In order to generate background events in a manner corresponding to the experimen-

tally observed background, all possible π+π− pairs (N(Minv,φ)) are constructed with

random reaction plane orientation and from any impact parameter. The correlation

function is then given by:

Rπ+π−(Minv) =

∫
dbw(b)N(Minv, b)∫

db1db2w(b1, b2)N(Minv,φ, b1, b2)
, (6.5)

where the weighting functions (w(b), w(b1, b2)) take into account the number of real

pairs relative to the number of pairs used in the calculations. In Figure 6.5, the cal-

culated correlation functions for the reactions 1.6 GeV p + C and 1.6 GeV p + Pb

are shown together with the experimental results. The theoretical curves have been

normalized such that Rπ+π−(0.5 GeV ) = 1.0, and the pions used in the calculation

have been filtered to account for geometrical and energy cuts of the DIOGENE de-

tector. For both targets, the theoretical results reproduce the trends of the measured

results. No enhancement is seen in the carbon system. However, for the lead system

there is an enhancement at Minv(π
+π−) = 2Mπ, which is also predicted by the BUU

calculations, however, the measured enhancement is slightly higher than the calcu-

lated result. The different shapes for the carbon and lead target is due primarily to

the mean absorption length of a pion, which is much shorter than the size of the lead

nucleus but comparable to the size of the carbon nucleus. This leads to a focussing of

the emitted pions to one side of the reaction plane for a heavy nucleus, as can be seen

in figure 6.1. This focussing effect creates more true pairs with low invariant-mass,
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Figure 6.5: Two pion correlation function for 1.6 GeV p + C and Pb as a function
of the invariant-mass of the π+π− pair. The squares represent the experimental data
[Plu92] and the histograms represent the BUU transport model calculations.
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while the background pairs (due to randomization of the reaction plane) show no such

focussing effect and therefore have no bias toward low mass pairs.

To show how this focussing affects the correlation function, the calculated corre-

lation function for impact parameters of 2, 4 and 6 fm are shown for the lead target,

and impact parameters of 1, 2 and 3 fm are shown for the carbon target in Figure 6.6.

Both the filtered and unfiltered results are shown. For the most central case, the un-

filtered lead and carbon results look similar: both are flat, because the focussing is

insignificant at this impact parameter. As the impact parameter increases, the lead

results begin to develop a slightly negative slope while the carbon results remain flat.

The filtered results are even more dramatic. This is mainly due the high-momentum

cuts. Experimentally, positive pions with momenta above 500 MeV/c cannot be dis-

tinguished from protons, therefore a similar momentum cut for both positive and

negative pions was employed. This serves only to enhance the effect of the focussing

by not counting pairs where one pion is very energetic, thus reducing the number of

detected high invariant-mass pairs.

Similar effects due to nuclear shadowing are also observed in the identical particle

correlation function. The identical-pion correlation function calculated using the

Koonin formalism described in chapter 5 has also been calculated using event mixing

as in the π+π− correlation function study described above. The relative wave function

for two like signed pions, φππ, is the symmetrized Coulomb wave function, φc, given

by [Bau93]:

|φππ(~q, ~r)|2 =
1

2
|φc(~q, ~r) + φc(~q,−~r)|2, (6.6)
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Figure 6.6: Two pion correlation function for 1.6 GeV p + C (left) and Pb (right) as
a function of the invariant-mass of the π+π− pair for specific impact parameters. The
top row contains results for the most central cases while the bottom row contains
results the most peripheral. The solid histograms represent the predictions of the
BUU model while the dashed histograms represent the predictions of the BUU model
after applying a filter to simulate the geometric and kinematic acceptance of the
DIOGENE detector.
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where the Coulomb scattering wave function is defined in terms of the confluent

hypergeometric series (1F1):

φc(~q, ~r) = exp(−1

2
πη)Γ(1 + iη)exp(iqz)1F1(−iη|1|iq(r − z)), (6.7)

and η = αZ1Z2mr/q. This wave function is shown in Figure 6.7 for a relative angle

between ~q and ~r of 60◦. Unlike the proton wave function, the symmetrized Coulomb

wave function has no resonance structure, however, the Coulomb repulsion still causes

the wave function to be zero for q = r = 0.

The π+π+ correlation functions for both the carbon and lead targets calculated

using the BUU phase-space distributions are shown in Figure 6.8. In this case, the

correlation function is expressed in terms of the invariant mass (as was the π+π−

correlation function). The invariant mass can be related to q through:

M2
inv = 4m2

π + 4q2. (6.8)

Also, for historical reasons, the Gamow corrected correlation function is shown. This

formalism was introduced to facilitate comparison of measured pion correlation func-

tions with Gaussian source parameterizations. In the case of pion correlations, Gyu-

lassy, et al [Gyu79] showed that the relative wave function could be factorized into a

symmetrized plane-wave (φplane) times the Gamow penetration factor, thus reducing

equation 5.3 to:

C(~P , ~q) = |φππ(~q, 0)|2
∫
d3rF~P (~r)|φplane~q, ~r)|2. (6.9)

This factorization is valid when the Bohr radius is much larger than the size of the

emitting source. For pions the Bohr radius is ≈ 390 fm which is much larger than

any source which would be created in these proton incuded reactions. The Gamow-

corrected correlation function (CG(~P , ~q)) is then just the full correlation function
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Figure 6.7: The two-pion relative wave function, |φ(q, r, cos(θ))|2, for fixed angle
θ = 60◦ as a function of relative position and momentum [Bau93].
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Figure 6.8: The π+π+ correlation functions for 1.6 GeV p + C (left), and 1.6 GeV
p + Pb (right). The symbols represent the calculations using the Koonin formalism
with phase space predictions of BUU. The lines represent fits using Gaussian source
parameterizations with radius parameters 1.5 fm (solid) and 0.5 fm (dashed).
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divided by the Gamow factor. In this form, the dominant feature of the correlation

function is an enhancement at q = 0 due to the bosonic nature of the pions, as shown

in the figure.

As in the π+π− correlation function, the π+π+ correlation function also has a non-

zero slope for high invariant mass for proton on lead collisions, while the results for

proton on carbon collisions is flat for high invariant mass. The solid lines in Figure 6.8

represent fits to the calculated correlation functions using the zero-lifetime Gaussian

source parameterization:

CG(q) = 1 + λexp

(
−q2R2

2

)
. (6.10)

The correlation function for the carbon target can be well fit by a single Gaussian

source with λ ≈ 0.5 and R ≈ 1.5 fm (solid lines). This radius reflects the size of

the cylinderical cut through the carbon target by the proton. In the lead system, a

similar parameterization, λ ≈ 0.4 and R ≈ 1.5 fm, provides reasonable agreement

with the correlation function for Minv ≤ 400 GeV, where the value of the correlation

function is greater than one. This is shown in the figure as a solid line. However,

for Minv > 400 GeV, the nuclear shadowing effects begin to dominate. Thus, no

simple fit will work due to the continuously decreasing correlation function for high

invariant-mass. If a Gaussian source fit is used to describe the high invariant mass

part of the correlation function (the dashed line in Figure 6.8), values of λ ≈ 0.6

and R ≈ 0.5 fm are obtained, with an overall normalization factor of 0.73 for the

Gaussian source parameterization. This fit, however, does not reproduce the low

invariant-mass part of the correlation function. The small source size, as well as the

fact that the value of correlation function is less than one indicates that the simple

Gaussian parameterizations are not valid in this case.
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Direct comparison with experimental observations is not possible at the present

time due to the lack of data in this energy region for proton-nucleus collisions. How-

ever, the WA-80 Collaboration has observed a similar results in collisions of 200 GeV

protons on various targets [Kam92]. Since these beam energies are beyond the scope

of the current transport model calculation, additional experimental measurements

with ≈ 1 GeV protons are necessary for direct comparison. However, this study does

show that pion correlation functions calculated using the single-particle phase space

predictions of BUU, can be used to study pion production in heavy-ion collisions.

Valuable information on the behavior of pions in nuclear matter and the effects of

pion rescattering and reabsorption on the correlation function have been obtained. In

addition, detector cuts are shown to play an important part in the shape of the corre-

lation function. However, the current correlation calculations show that the observed

signal does not confirm the existence of the σ particle.

Future experiments plan to use correlation techniques to search for the formation

of the quark-gluon plasma in ultra-relativistic heavy-ion collisions. However, if these

studies are to provide useful information, continued work at relativistic energies is

necessary to better understand the behavior of hadronic matter formed during heavy-

ion collisions. While waiting for the new ultra-relativistic heavy-ion colliders to come

on line, much more work can proceed in currently accessible energy regimes.



Chapter 7

Conclusions

The behavior of nuclear systems under extreme conditions has been studied using the

BUU hadronic transport model. This single-particle model for heavy-ion collisions has

been shown to be in agreement with single-particle observables, such as kinetic energy

spectra of protons, photons and pions. In Part I, it has also been shown to provide

useful information which is necessary to study fragment production in intermediate-

energy heavy-ion collisions. The formation of intermediate mass fragments cannot be

studied directly in the current BUU formalism. However, the hybrid model presented

in Chapter 4 does provide useful information on possible mechanisms for the evolution

of the reaction zone. Previous studies assuming the surface or volume emission of

fragments from spherical sources at normal nuclear matter density failed to reproduce

experimental observations. The current study shows that more information on the

dynamics of the system (for example, expansion) must be included.

However, this formalism is qualitative at best. It can only be used to show that

the global properties, such as total number of intermediate mass fragments produced

in a collision, are in the correct range when compared to experiment. A complete

model which takes into account the full dynamics of the collision as well as the for-

mation of composite particles does not yet exist. This next generation of models
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will also be needed to anlalyze more complicated variables which can be experimen-

tally observed at intermediate bombarding energies, for example, fragment-fragment

correlation functions.

Additional evidence concerning the expansion and evolution of the reaction zone

formed in heavy-ion collisions is obtained from the two-proton correlation function.

Using the Koonin-formalism, the single-particle phase space distributions predicted

by BUU can be used to calculate the two-proton correlation function for heavy-ion

reactions. Previous work has shown that this method does provide useful information

on the evolution of the reaction zone. The current study has shown that impact-

parameter-selected events are also in agreement with calculated correlation functions.

The correlation function is sensitive to the in-medium nucleon-nucleon cross section

and previous studies have shown best agreement is obtained with values close to the

free value. However, the correlation function is not sensitive to the equation of state

of nuclear matter at these beam energies. Studies are already underway to study

two-proton correlation functions at beam energies around 1 GeV/nucleon, where the

compressional effects of the nuclear equation of state should be observable through

correlation measurements.

At these relativistic energies, pion production introduces one more class of observ-

ables that can be used to study the reaction zone. Since these particles are created

during the collision, they should reflect the collision process itself, and not any resid-

ual memory of the incoming particles. However, their behavior in the nuclear matter

they must traverse in order to be observed must be understood as well. Due to their

reabsorption and rescattering during the heavy-ion collision, the impact-parameter-

averaged correlation function may show unexpected results. Since hadron correlation

functions are expected to play a significant role in studying the possible formation

of a quark-gluon plasma in ultrarelativistic heavy-ion collisions, these medium effects
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must be understood before definitive statements can be made at higher energies.

Thus, a systematic study of pion correlations function at relativistic energies for a

variety of heavy-ion systems should be made. The experimental measurements have

already been performed. Data should be available in the next year for comparison

with detailed transport-model calculations, such as those discussed in this work.



Part II

Equilibrium Model of Heavy Ion
Collisions
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Chapter 8

Introduction

As discussed in Part I, it is possible to study the nuclear equation of state using

heavy-ion collisions by observing the effects of compression, expansion and cooling

on the nuclear system formed during the collision. However, in relativistic heavy-

ion collisions (RHIC) at energies around 15 GeV/nucleon, the energy and matter

densities reached during the initial compression stage are expected to be many times

greater than that of normal nuclear matter. If this occurs, it may be possible to

observe a new type of phase transition, from a phase where quarks and gluons are

confined to baryons and mesons to a phase where they are free to move at large spatial

separations. This deconfined phase is referred to as a quark-gluon plasma (qgp).

The qgp has been discussed for many years. However, the only particles which

can be experimentally observed are the conventional color-singlet bound states of

quarks and gluons, or the hadrons which are actually formed after the qgp converts

to a hadronic phase. How the formation of a qgp in the early stages of the reaction

might affect the final observed particles has been predicted by several groups. The

goal of these studies has been to determine the differences in the observed particle

production in a hadronic versus qgp scenario. One proposed signal of the qgp is an

increase in strange particle production [Raf82, Egg91, Han91]. This enhancement
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is due to the fact that less energy is needed to produce strange quark pairs in a

quark-gluon plasma than strange hadrons in a hadronic gas. In the plasma stage, the

minimum center-of-mass energy,
√
S needed to create an ss pair is just the rest mass

of the strange quarks (
√
Sss ≈ 2Ms ≈ 300 MeV). In a hadronic environment

√
Smin

for a collision of two particles to result in the production of strange particles is in the

ΛK channel where ≈ 0.7 GeV is necessary to produce the strange meson and baryon.

In the purely mesonic channel, ≈ 1 GeV is necessary to produce a KK pair.

Since strange particle production is energetically more favorable in a qgp than

a hadronic gas, it was suggested that the ratio of strange particle production to

non-strange particle production (or K/π ratio) would provide insight into whether a

plasma had been formed in the early stages of a nuclear collision [Koc86, Mat86a,

Mat86b, Bar88]. The predictions were that this ratio would be larger if a qgp was

formed in the early phases of a collision than if the reaction proceeded via purely

hadronic mechanisms.

Experimentally, a similar comparison was sought. However, there is no direct

method by which to look at two systems with identical initial conditions and just “turn

off” or “turn on” the qgp phase of the reaction, as is possible in model simulations.

Instead, what is measured is the K/π ratio for various systems. By comparing the

ratio for p + A collisions, where it is unlikely that the energy density reached in

the collision is sufficient to from a qgp, with the results from A + A′ collisions, an

increase in the ratio would be seen as a signal of plasma formation. Experiments have,

in fact, measured pion and kaon spectra in central 14.6 A GeV Si + Au collisions

at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory

(BNL). The E802 collaboration observed that the K/π ratios at mid-rapidity are

substantially greater than those measured in p+A reactions [Mia90, Tan88].
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However, this enhancement may not be due to the formation of a quark-gluon

plasma. Detailed studies of hadronic gases need to be done. Perhaps this increase

could be due to differences in the systematics of p+A and A+A′ collisions. To study

this possibility, several thermal models of hadronic gases were introduced, including

fireball models [Lee88, Cle90], expanding fireball models [Bro91, Ko90, Ko91, Xia89,

Ko89, Ko88, Fri89], multi-component firestreak models [Cha91] and Landau fireball

models [Sta90, Sta89]. Several hadronic transport model calculations have also been

applied to the problem of strangeness production in high-energy heavy-ion collisions

[Mat89, Cha90, Gyu90, Ame91]. These transport models are quite successful in repro-

ducing the experimental data [Mat89, Wer89a, Wer89b, Sor89], but have to rely on

elementary interaction cross sections between the constituents (baryons and mesons

or partons or quarks and gluons) of their models, which are unknown in some cases.

Rather than relying on model calculations to provide input to a transport model, a

thermal model is used here. In particular, the nuclear firestreak model (NFS) [Gos78,

Mye78]. While the original model calculations successfully predicted the shape of

pion, nucleon and light fragment spectra for relativistic heavy-ion collisions with

beam energies between 0.4 - 2.1 A GeV, it over predicted the absolute normalization

of the pions. However, once partial transparency of the target nucleus was taken into

account, this over-prediction was accounted for [Dan81].

At beam energies around 2.1 A GeV, strange particle production is possible. This

has been addressed in the firestreak model by Gudima and Toneev [Gud85]. By

taking into account the associative nature of strange particle production, prediction

of pion, nucleon and light fragment spectra was possible. Once again, the absolute

normalization of the pions was over predicted. These calculations did not include the

possibility of the target nucleus being partially transparent to the projectile nucleus.

A complete treatment of transparency would have reduced the absolute normalization.
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Table 8.1: Baryons and mesons used in the nuclear firestreak model.

Baryons Mesons
Non-strange Strange Non-strange Strange

p Λ π φ(1020) K
n Σ η h1(1170) K?(892)
∆ Ξ ρ(770) b1(1235) K1(1270)

ω(783) a1(1260)
η′(958) f2(1270)
f◦(975) f1(1285)
a◦(980) η(1295)

Experimental data collected at AGS indicate close to full stopping of the heavy

ions in 15 A GeV heavy-ion collisions [Abb87, Bra88, Tan88]. Thus, the assumption

of thermal equilibration needed for the model is not unreasonable at these energies.

At the beam energies available at the AGS, a firestreak model which includes effects

of incomplete stopping and particle production is necessary. In fact, it is necessary to

include the possible production of all mesons and strange baryons with masses below

1.3 GeV. In the following chapters, a modified nuclear firestreak model which takes

into account incomplete stopping, and includes all particles listed in Table 8.1, will

be described.



Chapter 9

The Model

The major assumption of the nuclear firestreak model [Gos78, Mye78] is that chemical

and thermal equilibrium is attained in the reaction zone of a heavy-ion collision. In

fact, these assumptions are also true in the nuclear fireball model [Wes76, Gos77,

Kap77, Mek77]. The difference between the two models is that the collision zone

is divided into parallel streaks containing a mixture of light fragments, mesons and

baryons in the firestreak model (see Figure 9.1). Each streak is then treated as

a gas using a multicomponent grand canonical ensemble formalism, and thus the

temperature and chemical potentials of the various types of particles are introduced.

These are determined iteratively by conserving the average energy, charge, baryon

number and strangeness of the streak.

9.1 Conserved Quantities in the Streaks

By assuming the reaction zone initially consists of nucleons uniformly distributed

over the spheres representing the target and projectile, the initial values of the en-

ergy, charge, baryon number and strangeness of the streak can be determined using

geometrical considerations. Given that only the overlap region is of interest, only

streaks that contain nucleons from both the projectile and target are used. Thus, the
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Figure 9.1: Schematic drawing of a collision in the firestreak model in the center of
mass frame. The top shows the orientation of nucleus A approaching nucleus B. The
bottom figure shows the streaks in the reaction zone as well as the remnants of the
original nuclei.
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projectile fraction,

η =
Np

Np +Nt
, (9.1)

where Np and Nt are the number of projectile and target nucleons in the streak, must

lie between 0 and 1. N is determined geometrically. For example, the number of

nucleons in a streak containing the center of the nucleus is given by:

N = ρ(2Rση) = 0.378A1/3σηfm
2, (9.2)

where the radius of the nucleus is given by R = 1.12A1/3 fm, ρ is the density of the

nucleus and ση is the cross sectional area of the streak.

The conserved quantity which is most easily determined is the strangeness of the

streak. Since the streaks are initially composed of nucleons, the strangeness (S) of

each streak must be zero. The baryon number is found by:

B = Np +Nt, (9.3)

using equation 9.2. In a similar manner, the charge of the streak can be determined

from:

Q

B
= Zp

Np

Ap
+ Zt

Nt

At
= η

Zp
Ap

+ (1− η)
Zt
At
, (9.4)

where A and Z are the atomic number and charge of the respective nuclei.

If complete stopping is assumed, similar methods can be used to determine the

energy of the streak. All of the the kinetic energy of the streak is converted to

thermal energy through successive nucleon-nucleon collisions, if complete stopping

occurs. However, some nucleons are not completely stopped in the center of mass

frame and thus they retain some of their kinetic energy. In order to determine the
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thermal energy of the streak, the fraction of momentum retained by a nucleon (the

transparency) is needed.

When a nucleon experiences two-body collisions, most of its kinetic energy is

converted into thermal energy. The average number of nucleon-nucleon collisions a

projectile nucleon experiences while traversing the target nucleus is [Bau88]:

N(b) = 2λPσNN

∫
O dxdy

∫
dz1dz2ρp(x, y + b, z1)ρt(x, y, z2)∫

O dxdy
∫
dz (ρp(x, y + b, z) + ρt(x, y, z))

, (9.5)

where σNN is the energy-averaged total nucleon-nucleon cross section. In practice,

the value of σNN = 40mb was used for the calculations at E = 15 A GeV. The xy

integration extends over the geometrical overlap O of the two nuclei perpendicular to

the beam direction. The factor λP is due to Pauli blocking in the final-state phase

space of the scattered nucleons. By approximating the initial momentum distributions

as Fermi spheres and assuming isotropic angular distribution of the scattering cross

section, the fraction of the phase space into which scattering is allowed is:

λP =

(
1− 2p3

f − 1
2
k2(3pf − k)

(pf + pb)3

)2

, (9.6)

where pf is the Fermi momentum of normal nuclear matter, pb is the beam momentum

per nucleon and

k = (pf − pb)θ(pf − pb). (9.7)

For the energies considered here, k is always zero and equation 9.6 reduces to:

λP =

(
1− 2p3

f

(pf + pb)3

)2

. (9.8)

Using Poisson statistics, probability that a nucleon from one nucleus will traverse the

other nucleus without suffering any collisions is:

T (b) = exp(−N(b)). (9.9)
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Thus, in the center of mass frame, the fraction of the momentum which is not available

for thermalization is:

pi = ±NiT (b)pcm. (9.10)

The projectile and target streaks each retain this center of mass momentum which,

when is converted to a lab momentum, so that a lab kinetic energy for the center

of mass of each streak can be determined. The remainder of the initial lab kinetic

energy is assumed to be converted to thermal energy and divided equally among the

nucleons in the streak.

9.2 Restrictions of Chemical Equilibrium

Since the model assumes each streak is in chemical equilibrium, the chemical poten-

tials can all be related to a linear combination of three chemical potentials. When a

streak is in chemical equilibrium, reactions such as:

p + n→ p + p + π−, (9.11)

are as likely to occur as their reverse processes. Then

µp + µπ− = µn. (9.12)

For neutral pions, one equilibrium reaction is

n + p↔ π◦ + n + p, (9.13)

therefore,

µπ◦ = 0. (9.14)
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In fact, for all nonstrange meson types, M, similar equilibrium conditions apply,

yielding:

µp ± µM∓ = µn (9.15)

and

µM◦ = 0. (9.16)

The strange mesons and baryons are dealt with in a similar way. The kaons, for

example, must be in equilibrium in the following reactions:

p + p↔ K◦ + K+ + p + n (9.17)

and

p + n↔ K
◦

+ K◦ + p + n. (9.18)

These lead to

µK◦ = −µK
◦ (9.19)

and

µK± = ±(µp − µn + µK
◦). (9.20)

In this manner, all chemical potentials can be expressed in terms of the neutron,

proton and K
◦

chemical potentials.
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9.3 Boundary Conditions

In the rest frame of the streak, the initial charge, strangeness, baryon number and en-

ergy determined from geometrical considerations must be conserved when the system

is in thermal and chemical equilibrium. In a grand canonical ensemble, the momen-

tum distribution for particles with spin Sj, energy Ej and chemical potential µj, in a

streak of volume V and temperature Ts is:

fj(~p, η, b) = Ej
d3Nj

dp3
= Ej

(2Sj + 1)V

(2π)3

1

exp
(
Ej−µj
Ts

)
(±) 1

, (9.21)

where the +/− signs stand for fermions/bosons, respectively. Integrating this yields:

Nj =
(2Sj + 1)V m2

jTs

2π2

∞∑

n=1

(∓)n+1

n
exp

(
nµj
Ts

)
K2

(
nmj

Ts

)
(9.22)

and

NjEj =
(2Sj + 1)Vm3

jTs

2π2

∞∑

n=1

(∓)n+1

n
exp

(
nµj
Ts

)

×
(
K1

(
nmj

Ts

)
+

(
3Ts
nmj

)
K2

(
nmj

Ts

))
, (9.23)

in the rest frame of the streak, where Ki, (i = 1, 2) is the ith-order modified Bessel

function of the second kind. In the thermal model, the energy, charge, strangeness

and baryon number densities of the streak are then:

e =
∑

i

NiEi
V

,

q =
∑

i

NiQi

V
, (9.24)

s =
∑

i

NiSi
V

,

b =
∑

i

NiBi

V
.
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These are related to the quantities defined in section 9.1 through:

e = E/V,

q = Q/V, (9.25)

b = B/V,

s = 0.

These equations, when combined with the chemical potential relations determined

in the previous section, reduce the number of unknown thermal quantities to five:

neutron, proton and K
◦

chemical potentials, temperature, and streak volume. Con-

servation of energy, charge, strangeness and baryon number will fix four of these

values. By adding the constraint that the hadron density must equal the freezeout

density, which is the density at which equilibrium ceases, the last quantity is fixed

through:

h =
∑

i

NiHi

V
= ρc. (9.26)

The quantities Ts, µp, µn, µK
◦ and V are found by minimizing the function:

χ(Ts, µp, µn, µK◦) =

(
h

ρc
− 1

)2

+

(
e/b

E/B
− 1

)2

+

(
q/b

Q/B
− 1

)2

+
(
s

b

)2

. (9.27)

Once a thermodynamic description for the streak is known, the invariant cross

section for the emitted particles is given by:

Fj(~p) =
1∑

η=0

∫
2πbdbY (b, η)Jp′→p(β(η))fj(~p, η, b), (9.28)

where Jp′→p(β(η)) is the Jacobian which transforms from the rest frame of the fire-

streak with center of mass velocity β, to the frame of interest. The value of the

projectile fraction will range from 0 (β(η) = βt), where there are only target nucleons
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in the streak, to 1 (β(η) = βp), where there are only projectile nucleons in the streak.

fj is the invariant momentum distribution of a particle of type j and momentum ~p,

produced in a streak with energy E, and projectile fraction η. For particles produced

in the streak, fj is given by equation 9.22. For particles which are products of the

decay of resonances created in the streak,

fj(~p, η, b) =
∑

R

WD(2SR + 1)VmRT
2
s

(2π)3ppD

[
µR
Ts

ln
(

1 + ex−

1 + ex+

)

+
∞∑

n=1

(∓)n+1

n2

(
e−nx−(nx− + 1)− e−nx+(nx+ + 1)

)]
, (9.29)

where

x± =
mR

m2
jTs

(EED ± ppD)− µR
Ts
. (9.30)

WD is the branching ratio for the decay of a resonance of type R into a particle of

type j. The energy and momentum of the decay product in the rest frame of the

resonance are ED and pD, respectively. The yield function Y (b, η) is given by:

Y (b, η) =
∫ η+ 1

2
δη′

η− 1
2
δη′

dη′
∫
dxdydzδ(η′ − ηb(x, y))[ρp(x, y + b, z) + ρt(x, y, z)], (9.31)

where ρ(r) is the diffuse radial density distribution [Mye78]

ρ(r) =





ρ◦
[
1−

(
1 + R

a

)
exp(−R

a
) sinh(r/a)

r/a

]
, r ≤ R

ρ◦
[
R
a

cosh
(
R
a

)
− sinh(R

a
)
]

exp(−(r/a))
r/a

r ≥ R

(9.32)

with R and a given by 1.2A1/3 and
√

1
2
, respectively.

In the original model fj was independent of b, allowing equation 9.29 to be rewrit-

ten as:

Fj(~p)|orig =
1∑

η=0

YηJp′→p(β(η))fj(~p, η), (9.33)
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where Yη is the impact parameter integrated yield function

Yη =
∫

2πbdbY (b, η). (9.34)

In the present model, equation 9.29 is solved numerically, using equations 9.22, 9.30

and 9.31. The temperature, volume, and chemical potentials are found by minimizing

equation 9.27. The result is the prediction of the triple-differential invariant cross

sections for the particle species considered.

9.4 Particle Production in the Model

Experimental measurements have shown the K/π ratios increase with the mass of the

colliding system [Abb91]. In addition, the ratio of positive mesons is always higher

than the ratio of negative mesons. While the first observation may be explained

within the framework of a quark-gluon plasma, it may be possible to explain both

trends by looking into the production of particles in the NFS model.

In models that assume chemical equilibrium, the chemical potential of a particle

is equal and opposite to the chemical potential of its anti-particle. In addition, the

yield of particles with positive chemical potentials is larger than for negative chemical

potential particles. In practice, the NFS model predicts that positive kaons will always

have positive chemical potentials. For this reason, the K− (which is the anti-particle

of the K+) will always have a negative chemical potential, and thus a lower yield than

the K+. Why is this?

The non-zero chemical potential is due to the different production mechanisms

for particles and anti-particles. If strange mesons were only produced in pairs (eg.

K+K−, K+K
◦
, K◦K

◦
), then µK+ = 0. However, there are also associative production

processes. For the mesons with strangeness +1 (for example positive kaons), there
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are processes involving hyperons of strangeness −1 and −2. For example:

p + p↔





K+ + Λ + p
K◦ + Σ+ + p
K+ + K+ + Ξ− + p

. (9.35)

Because the energy required for strangeness production through the KΛ channel is less

than that required for KK (
√
S ≈ 0.7 GeV and 1 GeV, respectively) the associative

process for positive kaons occurs more frequently than the pair production process. In

addition, associative production of mesons of strangeness −1 involves anti-baryons.

For the negative kaon,

p + n↔ K− + Λ + n (9.36)

is a possible process. However, this reaction has a threshold of
√
S ≈ 2.5 GeV, thus

it occurs much less frequently than the previously-mentioned process. In fact, since

the chemical potential of a nucleon is on the order of the mass of a nucleon, the

chemical potential of its anti-particle is ≈ -1 GeV. This leads to a suppression in the

anti-baryon cross sections of about 2 orders of magnitude, so particles with positive

strangeness are more abundant than their anti-particles and µK+ > 0.

If full stopping is assumed, the temperature and chemical potentials in the streaks

depend only on the N/Z of the system, and the beam energy per nucleon. For N=Z

nuclei, in central 14.6 A GeV symmetric collisions, Ts = 127.4 MeV, µπ+ = −0.3 MeV

and µK+ = 46.5 MeV. The pion chemical potential is non-zero due to the difference in

the neutron and proton masses. If N > Z, as in Au + Au collisions, the temperature is

unchanged, however, µπ+ and µK+ both decrease. This leads to π+/π− < 1. Similarly,

in p+p reactions, N < Z, thus µπ+ > 0 and π+/π− > 1. While the assumption of

equilibrium in such a small system is unrealistic, the comparison is made to show the

isospin effect. Direct comparison to data would be unwise.
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As in the case of kaon production, this can be explained by looking at the possible

reaction channels available for pion production through both n+n and p+p colli-

sions. The contributions of the following reactions are the most significant in pion

production:

n + n↔





π− + n + p
π◦ + n + n
π− + ∆◦ + p
π− + ∆+ + n
π◦ + ∆◦ + n
π◦ + ∆− + p
π+ + ∆− + n

p + p↔





π+ + n + p
π◦ + p + p
π+ + ∆◦ + p
π+ + ∆+ + n
π◦ + ∆+ + p
π◦ + ∆++ + n
π− + ∆++ + n

(9.37)

There are three times as many direct production mechanisms for π− as π+ in neutron

collisions. The opposite is true for proton reactions. In Table 9.1, the yields of charged

kaons and pions are shown for several central 14.6 A GeV symmetric collisions. For

all of these reactions, ≈ 60% of the pions are produced in direct reactions and in fact,

π∓/π± > 3 in neutron and proton systems, respectively, where in larger systems,

π+/π− ≈ 1. The ∆ resonances in the reactions listed above subsequently decay

into pions and nucleons. Their contribution is also listed in Table 9.1. There are

heavier mesons which can also be produced through similar reactions. Many of these

mesons also decay into pions. It should be stressed at this point that the p + p and

n + n reactions in Table 9.1 do not deliver results for the K/π ratios which could

be compared to experimental data. This is because these very small systems with

baryon number = 2 are very far from chemical equilibrium which is assumed in a

fireball model. They are only included here to illustrate the isospin effect.

When transparency is taken into consideration, the temperature and chemical

potential are no longer independent of A. For light nuclei, like helium, the nucleons

retain 20% of their center of mass momentum. While the transparency has little

effect on the pion chemical potential, it does affect both the temperature and kaon
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Table 9.1: Probability per nucleon in a streak for producing charged pions and kaons
in central A+A (η = 0.5) collisions at 14.6 A GeV/c. The % yields for direct and
decay production are also included.

n+n p+p He+He Au+Au
K+ .112 .145 .151 .158

% thermal 87.20 90.77 88.44 87.87
% K res 9.38 6.59 8.19 8.55
% φ 3.42 2.64 3.37 3.58

K− .063 .049 .072 .082
% thermal 87.50 83.20 85.06 85.32
% K res 6.37 8.96 7.89 7.79
% φ 6.13 7.84 7.05 6.89

π+ .493 .868 .769 .787
% thermal 63.03 68.36 66.08 65.78
% ∆ 12.67 15.04 12.26 11.32
% ρ 14.36 10.96 13.55 14.20
% other 9.94 5.64 8.12 8.69

π− .872 .494 .772 .866
% thermal 68.39 63.08 66.12 66.84
% ∆ 15.06 12.69 12.27 11.69
% ρ 10.94 14.33 13.53 13.58
% other 5.62 9.90 8.08 7.90

K+/K− 1.79 2.96 2.09 1.93
π+/π− .565 1.76 .996 .908
K+/π+ (%) 22.7 16.7 19.6 20.1
K−/π− (%) 7.17 9.89 9.36 9.46
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chemical potential. While the temperature increases by 0.9% from d + d reactions to

Si + Si, the kaon chemical potential decreases by 9.4%, as can be seen in Figure 9.2.
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Figure 9.2: Chemical potential for K+ in MeV for central A + A collisions at 14.6
A GeV/c. The crosses represent the values calculated using the NFS model. The
dotted line is the value obtained by the program when complete stopping is assumed.



Chapter 10

Comparison With Experiment

Data from experiments at AGS are available for Si projectiles on Al and Au targets

at beam energies of 14.6 A GeV. In these data, central collisions were selected. In

the calculations presented here, collisions with impact parameters less than 2 fm are

considered central. The data are presented in two forms, the invariant cross section

in the lab frame as a function of transverse mass and the rapidity distribution.

In Figure 10.1 and Figure 10.2, the invariant cross sections of p, π and K at mid-

rapidity calculated by the firestreak model are compared to those measured by the

E-802 collaboration [Mos91, Cos90]. A nucleon-nucleon cross section of 40 mb was

used for the transparency calculation. In the Si+Au system, this resulted in complete

stopping of the projectile. In the lighter Si+Al system, the projectile was completely

stopped for exactly central collisions, but only partially stopped for b 6= 0.

The pion spectra agree reasonably well with the data. A slight overprediction is

observed in this model (the spectra are renormalized by a global factor of 0.5). A

similar effect is also observed in other model calculations [Ko]. A freezeout density

equal to that of normal nuclear matter has been used in these calculations. Decreasing

the density below this value has the effect of increasing the slope of the spectra

slightly. The model predicts the transverse mass distributions of the kaons and pions

100
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Figure 10.1: Invariant cross sections of p, π± and K± from 14.6 A GeV Si+Au
collisions for 1.2 ≤ y ≤ 1.4. The data are taken from reference [Mos91]. The
lines represent the results of the calculations with the modified firestreak model for
p(dashed), π(solid) and K(dot-dashed).
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Figure 10.2: Invariant cross section of p, π± and K± from 14.6 A GeV Si+Al collisions
for y = 1.5. The data are taken from reference [Cos90]. The lines represent the
results of the calculations with the modified firestreak model for p(dashed), π(solid)
and K(dot-dashed).
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to have almost the same slope. This model cannot reproduce the slope of the proton

spectra. While increasing the freezeout density would decrease the slope of the various

spectra, the slope of the pion spectrum never exceeds that of the proton as it does

experimentally. This disagreement could be attributed to the possible occurrence to

collective baryon flow, which is not an ingredient of the model.

The kaon yield is also seen to consistently overpredict the data. This overpredic-

tion is because the assumption of chemical equilibrium is only partially fulfilled. The

amount by which the data is overpredicted is a measure for how far the heavy-ion

collisions actually are from chemical equilibrium. One can, of course, obtain much

better agreement with the data by introducing a kaon freeze-out density which is

independent of the pion freeze-out density. In this way the relative normalization of

kaon and pion spectra can be adjusted. This additional fit parameter was not intro-

duced because it is not the main purpose of this work to fit data, but to work out

systematic effects in the K/π ratios as a function of the mass of the projectile and

target.

By integrating the invariant cross sections over transverse mass, the rapidity dis-

tributions

dN

dy
=

1

σ◦

dσ

dy
(10.1)

are found. In Figure 10.3, these are compared to rapidity distributions extracted from

experimental data where an exponential fit to the transverse mass spectra is assumed

and then integrated [Abb91]. For the model results,

σ◦ = Apσtrig = 28
(
πb2

max

)
. (10.2)

The K/π ratios at central rapidity are summarized in Table 10.1 for p+A and Si+Au

collisions. Both the experimental and model calculations produce K+/π+ ratios which
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Figure 10.3: Rapidity distributions per projectile nucleon (28) for π± and K± pro-
duced in central 14.6 A GeV Si+Au collisions. The data are taken from reference
[Mia90]. The lines represent the results of the calculations with the modified firestreak
model for π(solid) and K(dashed).
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Table 10.1: K/π ratios for central A on B collisions at 14.6 A GeV/c.

central
p+Be p+Au Si+Au

K+/π+ NFS 14.7 12.5 26.3
expt 7.8 12.5 18.2

K−/π− NFS 6.7 3.9 12.5
expt 2.0 2.8 3.2

exceed the K−/π− ratios as expected from the isospin considerations mentioned in

section 9.4. However, the model predictions exceed the experimental values by as

much as a factor of 3.9 at this rapidity for the negative mesons.



Chapter 11

Conclusions

The NFS model has been modified to calculate the production cross section of strange

mesons and baryons. This is done by inclusion of all strange and nonstrange mesons

and baryons with masses of up to 1.3 GeV into the formalism. A formalism to

calculate geometric transparency and partial stopping has also been provided in this

framework.

This model can be used to predict available pion spectra at AGS energies (E ≈ 15

A GeV). Complete stopping is predicted for Si projectiles and heavy targets, such as

Au, but for light targets, such as Al, complete stopping occurs only for very central

collisions.

Since this model is purely thermal, it predicts the same temperature for all emitted

particles, and is of course not able to reproduce the experimental observation that

the apparent temperatures of emitted pions, kaons and protons are different.

In this model, more that half (60− 80%) of the produced pions and kaons are of

thermal origin, and only a small contribution is due to resonance decays.

The kaon yields are systematically overpredicted for all reactions considered. This

is a good indication that kaons are not in chemical equilibrium in the experiments

performed at AGS, as also suggested in reference [Ber89]. This can be attributed to

106
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the relatively small interaction cross sections of strange mesons in hadronic matter

which cause long mean free paths for kaons and make approaches based on chemical

equilibrium somewhat questionable.

However, this model is able to reproduce the experimental findings that the K/π

ratio is systematically higher (up to a factor of 5 in the experimental data) for the

positively charged mesons than for the negatively charged ones. The systematic

increase of the K/π ratios from p+A to A+A systems, which is found in experiment

is also reproduced. In this model, however, this dependence of the K/π ratio on the

mass (baryon number) of the system is basically due to the fact that more energy

per nucleon is available in the fireball generated in the collision of a symmetric (or

almost symmetric) heavy-ion system than in a proton-induced reaction at the same

beam energy per nucleon. In addition, a small isospin effect is found: n+n collisions

have a higher K+/π+ ratio than p+p collisions, and in heavier systems n+n collisions

become increasingly more probable.

It is therefore possible to conclude that an increase in the K+/π+ ratio with the

total mass of the heavy-ion system can be caused by purely hadronic effects. An

interpretation of the high K+/π+ ratio as a possible signal for the creation of a

quark-gluon plasma then appears to be questionable.
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Kolb, H. Löhner, I. Lund, F. E. Obershain, A. Oskarsson, I. Otterlund,
T. Peitzmann, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, B.
Roters, S. Saini, R. Santo, H.R. Schmidt, S. P. Sørenson, K. Steffens,
P. Steinhaeuser, E. Stenlund, D. Stüken, and G. R. Young (WA-80
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