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ABSTRACT

TRANSPORT PHENOMENA IN HEAVY-ION REACTIONS

By

LIJUN SHI

This thesis is devoted to various aspects of transport in heavy-ion reactions. In the

beginning, I give a brief introduction of heavy-ion reactions, transport theory for the

reactions and transport simulations. The subsequent discussions are devoted to

different issues. First, a phenomenological phase-transition model for nuclear matter

is introduced in order to understand the neutron enrichment in the midrapidity

source in a heavy-ion reaction. The effect of cluster formation process on the

neutron enrichment is discussed by considering droplet formation in the gas phase.

The variational nature of the results in the phenomenological model is utilized to

understand isospin transport process during a heavy-ion reaction. Moreover,

microscopic transport theory, for uses in heavy-ion reaction transport simulations, is

introduced relying on Landau theory. As one of the key ingredients of microscopic

transport theory, the mean field interaction is introduced into the theory through

the energy-density functional. The functional provides the nuclear equation of state

(EOS), and both the momentum independent and momentum dependent mean

fields are discussed. Given the recent interest in systems with varying isospin

content, I also discuss isospin dependence of the EOS within the functional method.

The symmetry potential, which measures the difference in optical potentials

between the proton and neutron, is parameterized in either momentum independent

or momentum dependent form. I also discuss some practical issues for transport

simulations, like the initialization of a simulation and the numerical methods for

integrating the Boltzmann equations. Besides the mean fields within transport, I

discuss the in-medium cross section. Next, the transport coefficients are derived
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from a systematic expansion of the Boltzmann equations. The isospin diffusivity,

shear viscosity and heat conductivity are calculated using free N-N cross section.

Finally, transport theory is used to simulate heavy-ion reactions. Within transport

simulations, I discuss the spectator-participant interaction, and the effects of such

interaction on the development of elliptic flow, as well as on the dynamics of the

spectators. The changes of the spectator properties after a collision are linked to the

nuclear equation of state. Spectator acceleration by the reaction is observed in the

simulations of a heavy system at low impact parameter. Transport simulations are

also employed to understand isospin diffusion process in a heavy-ion reaction. It is

found that isospin dependence of the mean field and isospin diffusion process are

closely linked. The results from the simulation are compared with that from an

experiment, and the experimental results favor an isospin stiff type of nuclear EOS.
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ẽ0 Energy density per unit volume of Eq. (3.23), excluding isospin-dependent

interaction energy.
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Chapter 1: Introduction

Much research has been recently done on the properties of matter at extremely

high density, which is many orders of magnitude higher than the ordinary matter we

encounter everyday. The typical baryon density of nuclear matter is of the order of

ρ0 = 0.16 fm−3, which, when converted into mass density, is about 1027 g/cm3. For

comparison, the density of water is ρ(water) = 1 g/cm3, and even the density of the

most dense metal is only ρ(Os) = 22.5 g/cm3.

When the high density is generated in reactions, the temperature of the matter

is also often high. The typical temperatures of our interest here are in the range of a

few MeV to a few hundred MeV. If we convert the scale of MeV to regular

temperature scale, 1 MeV is equivalent to about 10 billion degrees Kelvin. Room

temperature is about 300 K and even the surface temperature of the Sun is only

6000 K.

High temperature and density matter, or hot dense matter, has some specific

established and/or speculated properties. Fig. 1.1 is a schematic phase diagram of

dense matter. The horizontal axis is density in units of normal density, and the

vertical axis is temperature. Normal nuclear matter at (ρ = ρ0, T ∼ 0) represents

the liquid phase. The liquid-gas phase (LGP) transition region at the lower left

corner of the figure is characterized by temperatures less than ∼ 15 MeV and

densities below normal density (ρ/ρ0 < 1). The quark-gluon plasma (QGP) phase is

likely characterized by temperatures of more than 170 MeV at low densities, and it

might exist at lower temperatures if the densities are high. The hadron gas (HG)

phase exists at intermediate temperature and density. The neutron star (NS)

density region extends from low densities up to more than 10 times normal nuclear

matter density. The typical temperatures are less than 10 MeV for newly born

neutron stars and less than 0.001 MeV for cold neutron stars. The line that
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separates the QGP phase from the HG phase is the phase coexistence and/or

transition region. One of the theories predicts a cross-over phase-transition at lower

density, a first order phase transition at higher density and a critical point (the solid

square symbol) that separates the two phase transitions, cf. Fig. 1.1. The chemical

freeze-out points reached at SPS and RHIC experiments are plotted here as open

symbols. The compression reached in heavy-ion collisions (HIC) is indicated by the

solid line and the expansion of nuclear matter right after the maximum compression

is indicated by the dashed lines.

In the study of the hot dense matter, heavy-ion reactions offer advantages over

other methods. Though the dense matter exists in neutron stars, only indirect

information may be extracted from the astronomical observations. The

Quark-Gluon Plasma phase and dense hadron gas phases, likely existed in the early

stage of the Universe (about 15 billion years ago) but are quite inaccessible today.

Nuclear structure studies have provided us much information about nuclear matter

properties, but only at around normal density and at low temperature. Heavy-ion

reactions, during which the matter goes through a compression and an expansion

stage, are a true testing ground for the hot dense matter. The maximum

compression in a heavy-ion reaction could reach a few times normal nuclear matter

density in a head-on collision, and could possibly produce a QGP phase at the

highest reaction energies. The expansion of nuclear matter after the compression

stage usually leads to a freeze-out for interactions at subnormal densities (ρ < ρ0).

The freeze-out temperature and density could be in the phase transition regions

(QGP to HG phase transition , or LGP), or in the hadron gas phase.

The specific regions of the phase diagram and the type of the strong-interaction

physics that dominates the reactions depends on the incident energy. Thus, the

highest energy reaction experiments at relativistic heavy-ion collider (RHIC) and

future large hadron collider (LHC) explore the most dense matter, where quarks and

2



Figure 1.1: Schematic phase diagram for the hot dense matter. The shaded region
at the lower left corner is the liquid-gas phase (LGP) transition region for symmetric
nuclear matter (adapted from [1]). The shaded region at low temperature but with
densities ranging from subnormal density all the way up to several times normal
nuclear matter density, refers to matter that occurs in neutron stars(NS). The hadron
gas (HG) region lies at intermediate temperature and density region. The very high
density and temperature region corresponds to the quark-gluon-plasma phase (QGP).
The two lines that separate the hadron gas phase from the quark-gluon-plasma phase
represent the phase transition region converted from the two lattice predictions [2]
and [3]) with excluded volume corrections from [4]. The solid square is the critical
point that separates a cross over phase transition from a first order phase transition
[2]. The open symbols represent the chemical freeze-out points from SPS and RHIC
experiments [4]. The head-on heavy-ion collision will likely follow the arrows on the
solid line, starting at cold normal nuclear matter (ρ = ρ0, T = 0 MeV) ([5]). The
maximum density and temperature achieved are determined by the incident energy.
After the compression to maximum density, the reaction system expands and cools
as indicated by the dashed lines. Some low energy reaction systems will dive into the
liquid-gas phase transition region. The high energy reaction systems could enter a
QGP phase.
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gluons become the elementary degrees of freedom and quantum chromodynamics

(QCD) is the basic theory. There are many interesting issues in the highest energy

reactions, including the possible occurrence of the QGP phase, the degree of

thermalization, the production of exotic particles and collective flow. Reactions at

lower energies, often termed as intermediate energies, are violent enough to excite

the system to very high temperature, but not enough to break the internal structure

of the hadrons. The description of the interactions with only hadrons and mesons is

sufficient for the intermediate reactions. The direct application of QCD theory at

the low energies is somewhat difficult due to confinement; instead, effective nuclear

interactions are often employed in the theoretical studies. My Ph.D. research has

mostly concentrated on the heavy-ion reactions at intermediate energies.

The research at intermediate energies involves many topics of interest,

including the nuclear equation of state (EOS), collective flow, the possible liquid-gas

phase transition, and recently also isospin physics. The nuclear equation of state

describe the energy-density relations in nuclear matter. The flow phenomena are

results of the compression of nuclear matter during heavy-ion reactions, and is a

primary tool for the studies of EOS. The liquid-gas phase transition has been

predicted long ago, but its actual impact on a heavy-ion reaction is still under

debate. Isospin physics is relatively new, and is mostly spurred by the development

in rare isotope facilities and by the success in the nuclear structure research. Here I

will give a brief introduction to these topics at intermediate energies.

Compared to the phase transitions common in everyday life, the liquid-gas

phase transition in heavy-ion reactions occur in an environment complicated by

small size of the reacting system, the strong nature of the nuclear forces and the

nonequilibrium aspects of the reaction. The multifragmentation process in

heavy-ion reactions, as a critical phenomena, is often thought to be closely related

to the LGP transition. The multifragmentation process refers to the process where
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large number of particles were produced in the energetic heavy-ion reactions; and

the produced particles include free nucleons, deuterons, tritons, alpha particles, and

all the way to very heavy clusters. Studies of multifragmentation processes reveals

its universal behavior, and critical exponents are determined from experiment

[13, 14, 15]. Some recent work has concentrated on the caloric curve extracted from

heavy-ion reactions, even though the use of isotopic temperature is still questioned.

One of the experimental caloric curves is shown in Fig. 1.2, and the appearance of a

plateau in the isotope temperature as a function of excitation energy is attributed

to the latent heat in the phase transition. The liquid-gas phase transition and phase

coexistence, if present in heavy-ion reactions, could bring in new phenomena, which

are often explored on a phenomenological basic. One example of such exploration

for the liquid-gas coexistence region will be shown in Chapter 2.

The research on the nuclear equation of state combines both experimental and

theoretical effort. The development of collective flow is closely related to the

pressure build-up during the compression stage of reactions, and gives us

information about the pressure and particle density relation (that is, the EOS). But

such information is hard to extract directly because of the complex evolution of the

reaction system. The particles measured in the experiments are produced through

out the emitting process from the beginning of compression stage till the end of the

expansion stage, and it is difficult to know when the particles are produced.

However, microscopic transport theory could simulate the dynamic reaction,

reproduce the particle emission process, and link the observed flow to the nuclear

EOS. Transport simulation has become an important tool for understanding the

dynamics of the heavy-ion reactions.

As an example of the research on nuclear equation of state, Fig. 1.3 shows one

of the flow signals F measured in experiments as well as simulation results for the

flow signal. The flow F measures the magnitude of the sideward flow, which
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Figure 1.2: Experimental caloric curve of nuclear matter. The symbols represent the
isotope temperature THeLi as a function of the excitation energy per nucleon. The
dashed lines for T =

√
10 < E0 > / < A0 > and T = 2/3(< E0 > / < A0 > −2MeV)

are interpreted as the caloric curve of the liquid and the gas phase respectively, and
the plateau region in between the two curves is believed to be related to the liquid-gas
phase transition. (from [6]).

represents the collective deflection of particles away from the beam direction in the

reaction plane. At different beam energy, the compression and pressure build up in

the reaction region will be different, thus causing different deflection of particles.

The different lines in the plot represent the simulation results with different EOS
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and are labeled by the corresponding compressibility value for that particular EOS.

Systematic studies of the sideward flow from experiment and theory were able to

greatly constraint the uncertainties of the nuclear equation of state, eliminating

some of the very stiff or very soft type of EOS (see [16] for a more comprehensive

review on this subject).
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Figure 1.3: The flow parameter F as a function of energy. The symbols represent the
experimental result for sideward flow at different energies. The lines are theory pre-
diction for the flow, and different equation of states are labelled by their corresponding
compressibility value. (from [7]).

In microscopic transport simulations, the nuclear equation of state often enters

through a parameterized form for practical reasons. The nuclear EOS obtained from

various microscopic theories are often quite complicated, and the results based on

different assumption for the nuclear force often differ considerably. On the other

hand, as transport simulations are already quite involved, a simplified form of the

EOS can simplify transport simulations. The validity of the adopted EOS form is

7



checked when comparing results from simulations and experiments. As the

guidelines for the parameterization of the EOS, the parameterized form should be

simple enough to be easily incorporated into transport simulations and also be

versatile enough to accommodate the different features of the microscopic

predictions. I will introduce the parameterization method in Chapter 3, and the

parameterized mean field will then be used in the simulations in Chapter 5.

In microscopic transport theory, the mean field is often used in either a

momentum independent (MI) or a momentum dependent (MD) form. The MI form,

with only density dependence, was used to explain the systematics of the sideward

flow and was quite successful. But pure density dependence is not enough to explain

the more detailed experimental results, especially the momentum dependence of the

elliptic flow signals. Elliptic flow is a measure of the squeeze-out of nuclear matter

and has been successfully used for determining the momentum dependence of the

mean field. The momentum dependence of the mean field can be seen in Fig. 1.4,

where the optical potential is plotted as a function of both density ρ and

momentum k. The implementation of the momentum dependence is more difficult,

and will be also shown in Chapter 3.

The recent progress in rare isotope facilities has also raised interest in the

isospin degree of freedom at high densities. The term isospin refers to the pair of

similar particles, the proton and the neutron, which are almost identical in nuclear

matter when the electric charge difference is ignored. In many transport

simulations, the nuclear interaction differences between protons and neutrons are

simply ignored, or in other words, these simulations only explore the reactions in

the symmetric nuclear matter limit. Such a simplification is used because of the

limited beam and target combinations, but needs to be refined in view of the rare

isotope beam reactions offered by the future facilities. The isospin dependence of

the nuclear equation of state is often expressed in terms of symmetry energy. An
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Figure 1.4: An illustration of the momentum dependence of the mean field. The op-
tical potential U is not only a function of density ρ, but also a function of momentum
k. The different lines represent different results from different microscopic theories.
(from [8]).

elementary illustration of the concept of symmetry energy is shown in Fig. 1.5.

Symmetric matter is represented by the lower line, while pure neutron matter is

represented by the upper line. The difference between the two lines is the symmetry

energy, which expresses the effect of the isospin on nuclear matter energy density.
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As with the case of the symmetric matter, the nuclear equation of state based on

isospin dependent mean fields (IEOS) could also be put into either a MI form or a

MD form. Specific parameterizations of IEOS are shown in Chapter 3.
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Figure 1.5: The concept of symmetry energy. The top line is the energy density for
pure neutron matter and the lower line is that for symmetric nuclear matter. The
difference of the two line is the symmetry energy. (from [9]).

In the simulation of heavy-ion reactions, microscopic transport theory has a

close relation to the hydrodynamic theory. In fact, microscopic transport theory

could reproduce the hydrodynamic equations for high density matter. Such a close

relation makes it possible to use certain concepts in both theories. If the

hydrodynamic limit is valid for heavy-ion reactions, then the nuclear EOS would

exclusively determine the dynamics of the reaction. Microscopic transport theory,

which does not make such an approximation, still shows the importance of the

nuclear EOS on the evolution of the reaction system. In hydrodynamic theory, the

elementary transport properties of matter are often characterized by transport

coefficients. Even though a direct application of the transport coefficients is not

easy because of the complex nature of the reactions, the transport coefficients still
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could be used in the understanding of the basic transport process in the reactions

and serve as bridge to the transport process in the infinite nuclear matter limit. The

transport coefficients could be calculated analytically from transport theory in the

small perturbation limit. As an example, the isospin diffusion coefficient is

calculated in Chapter 4. The calculated isospin diffusion coefficient is then used in

Chapter 5 to gain an understanding of the isospin transport process in heavy-ion

reactions. The analytic solutions, such as that for the transport coefficients, are

limited to a few cases where transport equations could be solved exactly. For

heavy-ion reactions, the transport equations with complicated initial conditions are

difficult to solve, and we often resort to simulations.

Transport simulations not only reproduce the particle emission patterns, but

also provide a model space for understanding the dynamics of the reactions. There

are many factors that affect the simulation results, and we can vary each individual

factor separately in the model to find the most relevant factors. We can find not

only what happens after the reaction, but also what happens during the reaction

through a simulation. Such information about the intermediate steps gives us

additional help in the understanding of the heavy-ion reactions. I will present two

examples of transport simulations in Chapter 5.

In the first example of transport simulations, I try to understand the

interaction of the spectator with the participant region during a heavy-ion reaction.

The concept of the spectator and the participant regions is illustrated in Fig. 1.6.

The participant region refers to the strongly interacting hot zone in the middle,

where the opposite moving nuclear matter collide with each other; while the

spectator regions refer to the forward and backward moving zone that do not

directly interact with the opposite moving matter.

The interaction between the participant and the spectators has two important

effects. First, the interaction strongly affects the development of collective motion in
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Figure 1.6: The concept of participant and spectators in a heavy-ion reaction. The
regions initially labelled A and B collide with each other, go through a violent process
and form a single hot emitting source, which is called the participant region. The
regions labelled A’ and B’, on the other hand, are only moderately excited and do
not actively participate the reaction. They are called the spectator regions. (from
[10]).

the participant region and thus links collective flow to the nuclear EOS. Second, the

interaction also affects spectator motion. The link between the participant matter

motion and the nuclear EOS has been explored extensively, but less is known about

the spectator motion after a heavy-ion reaction. To gain a more complete

understanding of the reaction dynamics, I will explain the spectator-participant

interaction and the impact on the spectators in Chapter 5.

In the second example of transport simulations, I will try to understand isospin

diffusion process during a heavy-ion reaction. The basic idea of isospin diffusion is

illustrated in Fig. 1.7. In the initial system, the projectile and the target have
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different isospin concentration, and are shown with different colors. During the

reaction, the projectile-target could interchange isospin content. After the reaction,

the projectile (or the target) picks up or loses isospin. The change of isospin

concentration in the projectile (or the target) region could be measured

experimentally and thus provides a measure of isospin diffusion process in a

heavy-ion reaction. It is interesting to know that isospin diffusion process is

governed by a single isospin diffusion coefficient in the quasi equilibrium limit and is

thus connected to the isospin diffusion coefficient I calculated in Chapter 4.

(a)

(b)

(c)

 

Figure 1.7: The concept of isospin diffusion in a heavy-ion reaction. Initial projectile
and target have different isospin concentration, and are shown with different colors
in (a). During the reaction, the projectile and target could exchange isospin content,
as shown in (b). After the collision, both the projectile and the target isospin con-
centrations have changed, as shown in (c). The change of isospin concentration in
the projectile (or the target) region measures isospin diffusion process in a heavy-ion
reaction.
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Chapter 2: Isospin Asymmetry and

Cluster Formation in the

Liquid-Gas Phase Transition

Region

As mentioned before, the nuclear Liquid-Gas phase (LGP) transition has

attracted much attention in the field of heavy-ion reactions. Here I will introduce a

simple model for the LGP transition in isospin asymmetric nuclear matter. This

phase transition model is then used to explore phase equilibrium conditions in

isospin asymmetric matter and the effect of cluster formation on those conditions.

The imbalance of isospin asymmetry in the phase transition region is described in

terms of an isospin asymmetry amplification ratio R. The ratio is used to explain

the neutron enrichment in the low density source as compared to the high density

source in reactions.

A brief introduction of the physical background, and a simple statistical phase

space argument for the features of isospin asymmetry in the phase transition region,

are given in section 2.1. A formula for the free energy of isospin asymmetric nuclear

matter is given in section 2.2. The isospin equilibrium condition in the liquid-gas

phase transition region, and the effects of the cluster formation in the gas phase, are

discussed in section 2.3. The isospin asymmetry amplification factor R is also

defined in section 2.3. Results from the current phenomenological model analysis are

compared in section 2.4 to the experimental results from analyzing the midrapidity

source. A discussion about the complexity of the isospin flow in realistic heavy-ion

reactions is given in section 2.5. The effects of isospin asymmetry and cluster
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formation in the LGP transition region in this model are summarized in section 2.6.

2.1 Introduction to the Liquid-Gas Phase

Transition

Physical Background

The liquid-gas phase transition in nuclear matter is an analog of that in

ordinary matter. Such a phase transition is often explained by the Van der Waals

type of interaction between molecules in ordinary matter, like water. The

interaction between nucleons exhibit similar characteristics as the Van der Waals

force: repulsion at short distance and attraction at long distance. Based on this

similarity, the liquid-gas phase for nuclear matter was proposed more than two

decades ago (see the review on this subject in [17] and [18]). Many theoretical

models were proposed for the LGP transition in nuclear matter

[19, 20, 21, 17, 22, 23]. Search for such a phase transition has always been the focus

of interest, and some evidence has been proposed for the critical behavior within the

phase transition region [13, 24]. Moreover, the recent experimental studies on the

caloric curve for nuclear matter [6] have been an indication of a transition and have

inspired many related studies [25, 26, 27, 1, 28, 29, 18].

The nuclear liquid-gas phase transition in isospin asymmetric matter is

generally different from that in symmetric matter. The theoretical models were

often based on symmetric nuclear matter, but experimental studies mostly

concerned the asymmetric matter. As pointed by Müller and Serot, the additional

isospin degree of freedom relaxes the system and changes the phase transition from

first-order to second-order [1]. Additionally, the recent experimental temperature

measurements in [6] are intimately related to the isospin asymmetry of the system.
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So it is important to learn more about the isospin effects on the nuclear liquid-gas

phase transition. Some recent data analysis also tried to explore isospin observables

and to relate them to a possible occurrence of the phase transition [30].

One possible occurrence of the liquid-gas phase transition is in the midrapidity

region formed in heavy-ion collisions [30, 31, 32]. In simulations of semiperipheral

collisions, formation of a low-density neck region between the nuclei is observed that

likely contributes to the midrapidity emission [33]. The low-density region in

contact with high-density regions (the projectile and target) opens up the possibility

for a liquid-gas phase coexistence and phase conversion. In a dynamical simulation

with the Boltzmann-Uehling-Uhlenbeck equation, Sobotka et al. [33] observed

neutron enrichment in the low-density neck region. However, a high n/p ratio (much

higher than in the composite system) was found when counting only free nucleons in

the neck region, i.e. excluding nucleons in clusters. The paper argued that the

symmetric clusters (deuterons and alphas) contributed much to the enrichment of

neutron in the neck region. Specific results were, however, purely numerical.

In this chapter, I shall discuss the isospin asymmetry in the phase transition

region in a heavy-ion collision and the effect of clusters on that asymmetry. I will

first follow crude statistical phase space arguments, to gain a general

understandings of the physics involved. Thereafter, I will construct a model for the

asymmetric nuclear matter, and used the phase equilibrium condition to reach more

concrete results illustrating the general ideas.

Qualitative Discussion

In the general discussion, I will consider the isospin effect on the liquid-gas

phase transition region without complications from cluster formation in the gas

phase. For a given temperature and density, a large isospin asymmetry will increase

the total energy, which is unfavorable. The extra energy needed for maintaining the
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same asymmetry will be much larger in a dense phase than in a dilute phase. Thus,

if a dilute phase is in isospin equilibrium with a dense phase, the asymmetry in the

dilute phase will be larger.

This argument, when applied to the heavy-ion reactions, could explain the

neutron enrichment in the neck region. The initial nuclei are in the liquid phase,

while the low density neck formed during the reaction could be viewed as in gas

phase. For the scenario of a neck region (gas phase) neighbored by a dense region

(liquid phase), the isospin asymmetry in the liquid phase is close to that of the

whole system, while asymmetry in the neck region could be much larger than in the

composite system. In a neutron-rich reaction system, as often the case in heavy-ion

reactions, the result is neutron enrichment of the neck region.

Next, I will consider letting the clusters be formed in the gas phase. Then the

available phase space for liquid does not change while the phase space for the gas

phase increases. The added phase space, which corresponds to clusters, has an

overall n/p mean value lower than the old phase space for gas. From a statistical

equal-partition point of view, partition into the new liquid and gas phase space will

make the whole gas phase more symmetric. If the percentage of clusters is small,

however, then there is essentially not much change in the phase space distribution,

and asymmetry in the gas phase excluding clusters should not change much. This

idea also applies to the neck region and points to a reduced neutron enrichment as a

result of cluster formation.

2.2 Free-Energy Formula

The free energy for the isospin asymmetric nuclear matter can be expanded in

powers of the isospin asymmetry parameter δ = (N − Z)/(N + Z):

f = F/A = f0 + fy = f0 + Cδ2 , (2.1)
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where f0 and C are functions of both temperature and density. The second term on

the r.h.s. of Eq. (2.1) is due to isospin asymmetry and may be called the

asymmetric free energy. Since nuclear interaction is symmetric with respect to

proton-neutron interchange, the expansion of the free energy contains no odd

powers of δ. Only the lowest two terms in the power expansion are retained in

Eq. (2.1), and numerical analysis indicates that a quadratic form in δ is adequate up

to almost δ = 1 (similar conclusions have been reached in [34, 35]).

Isospin asymmetric nuclear matter can be viewed as a two component

interacting Fermi gas of neutrons and protons, and the mean field interaction can be

represented by an energy density consistent with the empirical nuclear equation of

state (EOS). For simplicity I assume no temperature dependence for the interaction

energy, and the Coulomb interaction is not considered here. The total free energy of

the system is then a sum of the free energies of two non-interacting Fermi gases and

of a density-dependent nuclear potential energy. For a single phase at temperature

T = 0 and density ρ, the free energy per nucleon may be written out explicitly:

f = F/A = a1 (ρ/ρ0)
2/3 + a2 (ρ/ρ0) + a3 (ρ/ρ0)

σ−1

+
(
a4 (ρ/ρ0)

2/3 + a5 (ρ/ρ0)
)

δ2 , (2.2)

where ρ0 = 0.16fm−3 is the normal density. The (ρ/ρ0)
2/3 terms come from the

non-interacting Fermi gas. The terms a2 (ρ/ρ0) + a3 (ρ/ρ0)
σ−1 are associated with a

simple parameterization of the nuclear EOS [10, 36, 37]. As I am only concerned

with the isospin asymmetry in the liquid-gas phase transition, details of the

parameterization do not affect the later discussion (though the exact numerical

results may change). Given that the interaction generally contributes to the

asymmetry energy [38] , I adopt a simple parameterization in Eq. (2.2) for that

contribution, of the form a5 (ρ/ρ0) δ2. At T > 0, the free energy could not be
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written in a simple analytic form, but one can still expand the free energy per

nucleon about δ = 0. The forms for f0 and C will be more complicated at non-zero

temperatures and will not be shown here.

In the numerical calculation, I use ρ0 = 0.16 fm−3, σ = 2.1612,

a2 = −183.05 MeV, a3 = 144.95 MeV, a5 = 11.72 MeV, and at T = 0,

a1 = 22.10 MeV, and a4 = 12.28 MeV The total symmetry energy a4 + a5 ' 25 MeV

could be obtained from optical potential analysis [39] or from the mass formula [40].

This value is a little low in view of a more recent analysis of the symmetry energy

[41].

Figure 2.1: The asymmetry coefficient C in the phase transition model as a function of
density and temperature. The lines, from bottom to top, correspond to temperatures
of 0, 2, 4, 6, 8, 10 and 12 MeV, respectively.

Figure 2.1 shows the calculated the asymmetry coefficient C in the current

model as a function of density and temperature in the Fermi gas. The general trend

is that C increases with increasing density and temperature. Therefore, at a given

temperature, a dense phase will need more extra energy for maintaining a given
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asymmetry than a dilute phase.
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2.3 Phase Equilibrium and Clusterization in the

Gas Phase

Phase Equilibrium Condition

Now I will consider a system that has two phases of liquid and gas, respectively,

in contact with each other. The general conditions for phase equilibrium require the

pressure, temperature and chemical potentials to be the same in the two phases. If

the isospin equilibrium is the only concern, it is more convenient to use the isospin

chemical potential defined by ∆µ = ∂f/∂δ, and the equilibrium condition is:

∆µl = ∆µg . (2.3)

Here ∆µl and ∆µg denote the isospin chemical potential in the liquid phase and in

the gas phase respectively. Specifically for the phase transition model presented in

the last section, the isospin chemical potential is just ∆µ = 2Cδ, and the

equilibrium condition is now:

Cl δl = Cg δg , (2.4)

At a given temperature, the liquid phase is denser than the gas phase, and the

coefficient C is a monotonically increasing function of density, Cl > Cg. Thus, the

asymmetry in the gas phase δg is always larger than that in the liquid phase δl. To

characterize the relative asymmetry of the two phases, one may define the isospin

asymmetry amplification ratio:

R = Cl/Cg = δg/δl (2.5)

Figure 2.2 displays R vs. temperature for the phases in equilibrium. For my
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Figure 2.2: The amplification factor R for the liquid-gas phase transition, as a function
of temperature.

model calculation, the ratio R stays always larger than 1, which means that the gas

phase will always have a higher neutron content than the liquid phase. Notably the

amplification ratio is independent of the net isospin asymmetry of the whole system.

The ratio R decreases as temperature increases, so that a large overall n/p ratio in

the gas phase is more easily reached at low temperature.

In the case of a nonequilibrium process, Eq. (2.3) is still of a use due to a

variational origin of the equation. If a local equilibrium assumption is met, i.e., if

statistical variables are still valid locally, then Eq. (2.3) tells us the direction of

development for the system. The gradient of chemical potential could result in a net

flow of isospin asymmetry, which tries to restore the isospin equilibrium condition

Eq. (2.3). The flow direction is to the steepest decrease of isospin chemical potential

∆µ. If there is a gradient of ∆µ in a nonequilibrium system, then there could be a

flow of isospin asymmetry in the system, with the direction to the lower isospin

chemical potential region. Isospin diffusion process will be discussed in some detail
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in Chapter 4.

Effect of Cluster Formation in the Gas Phase

One knows that, if the nucleon density is not too low, the mean field

description is quite good. But when the density is low, particle-particle correlations

become important, and the validity of a mean field description worsens. One way to

incorporate particle correlations is to allow for the formation of clusters in the

system (as is done in the BUU calculations [42]). Since clusters are in practice only

important for the gas phase, I will only allow clusters there and no clusters in the

liquid phase at all. To further simplify the discussion, I shall adopt a droplet model

for the clusters (as used by Goodman [27] and many others). I will assume that

droplets have the same properties as the liquid phase, that is the same density and

asymmetric coefficient; for the present discussion I shall ignore the surface energy

term. Suppose the average size of droplets is A, and asymmetry in terms of average

proton and neutron numbers in droplets is δd. The density of nucleons in clusters

may be represented as ρd = αρ and of free nucleons as ρf = (1− α)ρ, where ρ is the

density of the gas phase. The asymmetric free energy of the new (free nucleons +

droplets) gas phase is:

fy = (1− α) Cf δ2
f + α Cd δ2

d . (2.6)

Here, the subscripts f and d refer to free nucleons and droplets, respectively. To get

the isospin equilibrium condition, I can carry out a similar variation of asymmetry

parameters in the liquid, free-nucleon gas, and in droplets, as before, obtaining:

δd = δl, and δf/δl = Cl/Cf . (2.7)

As the density of the gas phase is low, one may use the ideal gas EOS p = ρT for
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clusters in a calculation. And adding clusters will necessarily decrease ρf in order to

satisfy the mechanical equilibrium condition. However, in Fig. 2.1 one can see that

C decreases only slightly as density decreases. To first order, one can take Cf'Cg,

so that δf is nearly the same as the in old gas phase. Overall, the asymmetry of the

new gas phase is:

δ = α δd + (1− α) δf . (2.8)

This may be compared to the asymmetry for the old gas phase, δg ≈ δf , which is

much larger than δd = δl. It is clear that the more droplets are added to the gas

phase, the more it looks like the liquid phase. The amplification ratio now is:

R = δ/δl = α + (1− α) Cl/Cf ≈ α + (1− α) R0 . (2.9)

where R0 = Cl/Cg À 1. The case of α = 0 corresponds to no cluster formation in

the reaction, and the isospin amplification ratio reaches then the maximum R0. The

gas phase acquires then the largest possible net asymmetry at a given temperature.

On the other hand, α = 1.0 corresponds to the gas phase with only clusters and the

same net asymmetry as for the liquid phase.

Figure 2.3 shows the decrease of the amplification factor R as a function of the

cluster concentration α. As one adds more clusters, the low-density gas phase will

need more energy for the same isospin asymmetry, comparable with that of the

liquid phase. As a result, the density and asymmetry in clustered gas will both

approach those in the liquid phase.

2.4 Data Analysis

Short of simple tools to estimate typical relative numbers of free neutrons, free

protons and clusters in the gas phase in a reaction, one may seek help from
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Figure 2.3: The amplification factor R as a function of cluster concentration α. The
lines from top to bottom are for temperatures of 5, 6, 7, 8, 9, and 10 MeV, respectively.

experiments. Different regions of velocity space are generally believed to reveal

characteristics of different sources, with the midrapidity particle region revealing the

low-density neck region. Several intermediate-energy experiments pointed out to a

neutron-rich midrapidity source in peripheral heavy-ion collisions [30, 32, 43].

Sobotka et al. [44] measured neutron and 4He emission from a midrapidity source

formed in mid-central 129Xe +120 Sn collisions at 40 MeV/nucleon. They compared

their results with results of the INDRA collaboration for the same system [43, 45]

and gave a quantitative description of the midrapidity source. About half of the

charged particles from this source are 4He and only 10% are free protons. Similiar

results have been obtained in other papers [32, 43, 45, 30]. The number of neutrons

is approximately the same as the number of charged particles, or 10 times the

number of protons in this source [44]. If one takes the average cluster size in the

midrapidity as about 5 [46], then the percentage of nucleons inside clusters will be

α∼80%. The N/Z ratio for the midrapidity source is found to be higher than for

25



the full system [44]. Thus the midrapidity source has (N/Z)mid ∼ 1.65 or

δmid ∼ 0.25 while the system has (N/Z)sys ∼ 1.39 or δsys ∼ 0.16. The asymmetry

amplification ratio is then R ∼ 1.5. For a mid-rapidity source formed in peripheral

heavy-ion collision at similiar energy, a fully consistent comparision of different

experiments is not easy. Neverthless, comparison of the peripheral data from

[30, 32, 47] also suggests a high cluster concentration and a high n/p ratio for free

neutrons and protons.

In the current model calculation, Fig. 2.3 shows that for the cluster

concentration α as high as 80%, the asymmetry amplification ratio R will decrease

by more than a half when compared with the nonclustered gas phase. This large

decrease of R will largely limit the isospin asymmetry in the gas phase when the

asymmetry in the liquid phase is fixed. Sobotka et al. [44] extracted temperature

for the midrapidity source as 6 ∼ 7 MeV. For this temperature and the cluster

concentration α ∼ 80%, one can read off from Fig. 2.3 the corresponding equilibrium

value as R ∼ (1.9 ∼ 2.1). This value is higher than the extracted R ∼ 1.5 in the

experiment, which means that the system only achieved a partial isospin equilibrium

and the asymmetry amplification in the gas phase did not reach its full value.

As another interesting test case, I will consider the isospin equilibrium

condition between the free nucleons (as gas phase) and the clusters (as liquid phase)

produced in central collisions. The isospin asymmetry of the free nucleon gas could

be extracted from the isotope yield ratios, and a value of 0.429 is obtained from a

fitting in the 112Sn +112 Sn system at beam energy of 50MeV/nucleon [48]. The

total liquid phase should have about the same asymmetry as the original system,

which is 0.107 for the 112Sn +112 Sn system. And thus the amplification ratio is

R = 4.0. Similar argument for the 124Sn +124 Sn system gives R = 3.6. Tracing

back these values in Fig. 2.2, I find the temperature is in the range of 9 ∼ 9.6 MeV.

This temperature is in agreement with the thermal temperature obtained from the
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central collisions of similar reaction system at this energy [49].

2.5 Isospin Flow in Heavy-Ion Collisions

While equilibrium consideration provide general indications for the role of

asymmetry in liquid-gas phase-transition region, the asymmetry evolves in a

reaction in a process that is principally a nonequilibrium one. As such, the

asymmetry may deserve more thorough investigations than can be comprised in the

simple analysis, possibly requiring simulations. For now, I will only give a general

discussion of the possible isospin asymmetry development in the system.

Because of the transient nature of heavy-ion collision, the development of

isospin equilibrium depends on two time scales. One time scale is for the separation

of the midrapidity source from the remaining sources in the reaction, and the other

is for isospin equilibration. At high enough energy, the three sources separate

quickly before isospin equilibration could set in between sources. The isospin

asymmetry is then determined by the reaction geometry and the isospin content of

the target and projectile. Isospin equilibration and cluster formation operate only as

post-reorganization processes, changing only isospin asymmetry for free nucleons

and clusters within individual sources. The large isospin asymmetry for free

nucleons could be the result of clusterization in the low-density phase, with clusters

taking over the role of the liquid phase, consistently with the arguments by Sobotka

et al. [33]. From the previous discussion, the R ratio in Fig. 2.2 sets an upper limit

to the asymmetry of free nucleons in the midrapidity source.

On the other hand, if the energy is low enough, partial isospin equilibrium will

set in before different sources separate from each other, and the reaction scenario

becomes more complex. As the two heavy ions collide against each other, initial

compression of the participants produces a dense phase in the center, while the two
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spectators remain less dense. As the asymmetry coefficient for the dense phase is

larger than for the less dense phase (cf. Fig. 2.1) at the interfaces between the two

spectator regions and participant region, there could be a local density gradient

from the center out to the two spectators. The isospin asymmetries of the

participant and the spectator regions are almost the same in the early stage of

reaction because of the short time scale of compression, and gradient of isospin

asymmetry could be ignored until later in the expansion stage. From the arguments

following Eq. (2.3) and (2.4), the net effect of compression is to produce a gradient

of isospin chemical potential. There then could appear an isospin asymmetry flow,

and it would be out to the two spectators. As the compression stage ends, the

center region begins to expand, and the density drops, the asymmetry coefficient

also drops as a result. When the gradient of the asymmetry coefficient changes

direction, so does the isospin chemical potential, and so should the flow of isospin

asymmetry. Cluster formation in the center region counteracts the decrease of the

asymmetry coefficient, and thus delays the change of flow direction. Further

development of the system separates the three sources, and net isospin asymmetries

for different sources do not change after the separation. But clusterization still plays

a role changing the isospin asymmetry of free nucleons within individual sources.

Since dynamical simulations suggest a much longer expansion time than the

compression time, one could expect that the isospin asymmetry flow to the

midrapidity region dominates. This could give rise to an enhanced asymmetry in

the midrapidity region. The experiments also suggest a neutron-rich midrapidity

source, which is consistent with the present picture.
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2.6 Summary

In conclusion, I have investigated the isospin asymmetry in the nuclear

liquid-gas phase-transition region. In the framework of the two-component

Fermi-gas with a parameterized interaction, under the assumption of isospin

equilibrium, I found that a neutron enrichment in the gas phase is due to the

density-dependent part of the asymmetry energy. Meeting the isospin equilibrium

condition, Eq. (2.3) and (2.4), drives extra neutrons out to the low-density phase.

The formation of clusters, which have average asymmetry smaller than the gas

phase, will make the gas phase more liquid-like, and counteract neutron enrichment

in the gas phase. The 4He clusters will be the most important due to their

predominance in the neck region [32, 30]. Considering the gradient of local isospin

chemical potential, the flow of isospin asymmetry was suggested to establish the

global isospin-equilibrium requirement. Since the midrapidity undergoes

compression and expansion, I also suggested a possible change of the direction of

the isospin asymmetry flow during the evolution of the system. The flow of isospin

asymmetry will be discussed in some detail in Chapter 4.
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Chapter 3: Transport Theory

In this chapter, I will formally introduce microscopic transport theory for

heavy-ion reaction simulations. A brief introduction of the physical background for

transport theory is given in section 3.1. The Landau-Fermi Liquid theory for

nuclear matter, and the concept of quasiparticle excitations for heavy-ion reactions

are presented in section 3.2. The Boltzmann equation set for heavy-ion reactions is

introduced in section 3.3. The nuclear equation of state is discussed in section 3.4,

where both the momentum independent and momentum dependent interactions are

considered. The recent advances in rare isotope facilities have stimulated much

interest in the nuclear reaction community to investigate isospin effects, and I will

introduce the isospin related physics, and especially the isospin dependence of the

nuclear equation of state in section 3.5. For transport simulations of reactions, the

reaction system needs to be properly initiated. The set of Boltzmann equations

needs to be properly integrated. The quasiparticle collision cross sections will

determine the pace of the thermalization process and the production of most

energetic particles. All these details contribute to the interpretation of the results

from the simulations, and will be discussed in section 3.6.

3.1 Introduction

The applicability of the semiclassical transport theory to the heavy-ion

collisions generally improves as the bombarding energy increases. Thus, in the

ground-state, the characteristic de Broglie wave length is λ = ~/p & ~/pF ∼ 1 fm.

However, at an incident energy of 1 GeV/nucleon, the incident momentum is

p = 1.7 GeV/c. This yields λ = ~/p = 0.12 fm, which is much smaller than either

the characteristic mean-free path λmfp ' 1/(σNN n0) ' 2.1 fm, or the characteristic
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size of nuclei: R ' 1.2A1/3 ' 5.6 fm for A = 100.

Early on in the research of heavy-ion reactions, the cascade model and the

classical hydrodynamic model had been used for reaction simulations. The cascade

model, which includes collisions between elementary classical particles, is able to

explain the inclusive proton energy spectrum in heavy-ion reactions at intermediate

and high energies. The classical fluid hydrodynamical model, which includes the

mean field interactions, had success in predicting qualitative features of the

collective motions for nuclear matter.

Semi-classical transport models, which combine the inter-particle collisions with

a semiclassical movement in the mean field, have been quite successful in describing

a variety of data. The Boltzmann type of transport models [10], often labelled as

BUU (for Boltzmann-Uheling-Ulenbeck), have become an important tool for the

studies of heavy-ion reaction dynamics [16, 50, 7]. The Boltzmann equation set is

appealing because it naturally reproduces the rare gas dynamics in the low density

limit and the hydrodynamic equations in the high density limit. The Boltzmann

type transport simulations are able to reproduce the inclusive proton spectrum from

inclusive experiments [10] at intermediate to high energies, and they allow the

linking of collective flows observed in exclusive experiments to the empirical nuclear

equation of state (EOS) [51, 36, 12, 52, 53]. The efforts carried both from the sides

of simulations and experiments allowed extraction of the nuclear EOS at densities

from normal density up to neutron star densities (see [16] and reference therein).

Nuclear stopping power, the development of a shock wave in nuclear collision, the

spectator-participant interactions could be explained within the transport models

(see [7] for a review of the success of transport models in heavy-ion reactions). Such

transport models were also combined with the statistical multifragmentation model

(SMM) or coalescence models to calculated the production of heavier fragment

produced in reactions.
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The Boltzmann equation of utility for nuclear reactions may be derived from

the Kadanoff-Baym equation [54] in non-equilibrium field theory by following

different approximations, including the weak gradient expansion [55], and/or small

scattering amplitude approximation [55, 56, 57]. Numerical solution of the

Kadanoff-Baym equation turns out to be very difficult [58], and only limited success

has been achieved in extremely simplified situation [59, 60, 61, 62]. While the

application of transport equations has been very successful, a number of

improvements are continuously being added to the understanding of the basic

approach. The Boltzmann equation for quasi-particle interactions was first used by

Bertsch et al. [10], the inclusion of three particle interaction for cluster formation

was introduced by Danielewicz and Bertsch [42] and relativistic covariant transport

equations have been introduced by Blattel et al. [63, 64]. The relativistic structure

for the single particle potential has been introduced by Danielewicz and Pan [51]

and Weber et al. [65]. Finally, the fully self-consistent energy functional method for

the parameterization of the mean field was introduced by Danielewicz [12].

Moreover, momentum dependence of the mean field was investigated [66, 67, 68],

and the relation to elliptic flow was established [12, 53]. The effects of off-shell

transport [69, 70, 71, 72], and non-local collisions [55] have also been investigated.

Originally, the Boltzmann equation was derived for a classical dilute gas with

predominantly binary collisions. Its extension to quantum gas was postulated by

Uehling and Uhlenbeck [73, 74]. A systematic expansion of the Boltzmann equation

in density gradients give rise to hydrodynamic equations [75]. In the zeroth order,

one obtains the Euler equations [75, 76]. In the first order, one finds the equations

of dissipative hydrodynamics with coefficients given through the linearized

Boltzmann equations [75, 76, 74]. Successive expansion of the Boltzmann equation

in density and velocity gradients will give higher order corrections for the

hydrodynamical equations [76, 75].
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While the semi-classical method for QED plasmas has long been established

[77, 78], the most recent progress has been in the development of the semiclassical

transport equations for the hot QCD plasmas produced in ultra-relativistic

heavy-ion collisions. In the non-equilibrium dense quark matter, the soft quantum

fields are well approximated by soft classical field and the weakly coupled hard

excitations behave like quasiparticles [79], the transport equations were derived on

resuming the hard thermal loops [80, 81, 79, 82, 83]. The resulting non-Abelian

transport equations, which contain nonlinear color field coupling, have been used to

simulate the production of the Quark-Gluon-Plasmas in ultra-relativistic heavy-ion

reactions [84, 85].

Another important type of transport models in the simulations of the

relativistic heavy-ion reactions are the Quantum Molecular Dynamics (QMD) [86]

and closely related antisymmetrized molecular dynamics (AMD) [87, 88]. Though

nominally theoretically less rigorous, the QMD equations are similar to the

Boltzmann transport equations. Rather than sampling over the quasiparticle

distribution and follow the time evolution of the ensemble, the QMD method follows

each initial random condition on an event-by-event basis, and the ensemble average

is taken at the end [86, 87, 88]. The QMD approach naturally incorporates particle

correlations into dynamical simulations and provides insight into the cluster

formation process in an energetic heavy-ion reaction. AMD uses antisymmetrized

wave function for the reaction system, and can nicely reproduce the ground state

properties of composite particles [87, 88].

3.2 Landau Theory

Standard descriptions of heavy-ion reactions rely on the Wigner distributions

for the particles in the reactions. The natural framework for the description of
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systems exclusively in terms of Wigner functions is the Landau quasiparticle theory

[10]. In this section, I will give a brief introduction to the Landau theory, to the

nuclear equation of state within that theory, and the relativistic transformations for

quasiparticle motions that are relevant to relativistic reaction simulations.

Energy Density and Quasiparticle Excitation

Quasiparticles in Landau theory are excitations of the strongly interacting

system (in this case, nuclear matter), and, for a normal Fermi system, they have a

one-to-one correspondence to the particles in the system. In other word, each

quasiparticle has the same quantum number as the corresponding particle, including

baryon number, charge, spin, isospin and possibly other quantum numbers [89]. The

energy εX and momentum pX of the quasiparticle are, however, related differently

than for a free particle. The occupation of these quasiparticle states are described

by the quasiparticle distribution function fX(p, r, t) [89].

The total energy of the system in the theory is the sum of two terms: the

quasiparticle energy from summing over the quasiparicle distribution function and

the additional term from quasiparticle interactions; the total momentum of the

system is a sum of momenta for the quasiparticles.

E =

∫
dr ẽ =

∫
dr (ẽkin + ẽint)

=

∫
dr

∫
dp

(2π)3
εX(p)fX(p, r) +

∫
dr ẽint , (3.1a)

P =

∫
dr

∫
dp

(2π)3
p fX(p, r) . (3.1b)

In Eq. (3.1a), the energy density ẽ is divided into a kinetic energy density ẽkin and a

potential energy density ẽint to be further discussed. If the system contains multiple

components, then there is an additional summation over all particle species in the

above expressions. The degeneracy factor for spin and isospin, which could also be
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viewed as a special type of summation over particle species, is also omitted for

simplicity.

The particle number, total charge and other additive quantum numbers could

be easily obtained following the correspondence between the quasiparticles and the

particles:

A =

∫
dr

∫
dp

(2π)3
AX fX(p, r) , (3.2)

where AX is the baryon number (or other quantum numbers) of the quasiparticles,

and A is the total baryon number (or total number of other summational quantum

number) in the system. The scalar baryon density is defined by:

ρs =

∫
dp

(2π)3γ
AX fX(p, r) , (3.3)

where the factor γ is the lorentz contraction factor.

Once the total energy of the interacting system is known, the quasiparticle

energy and momentum (εX ,pX) are easily derived:

εX =
δE

δfX

, (3.4a)

pX =
δP

δfX

. (3.4b)

The relation between the quasiparticle energy and momentum reflects the

dynamical behavior of the excitation, and is called the dispersion relation. In free

space, the dispersion relation is just εX(p) =
√

m2
X + p2. In the strongly interacting

system, the relation generally gets modified due to interaction, and the optical

potential Uopt is often used to characterize the change:

Uopt = εX(p)− εfree
X (p) . (3.5)
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From the dispersion relation, one can also get the Euler equations for quasiparticle

motions under the mean field interactions:

v =
dr

dt
=

∂ε

∂p
, (3.6a)

F =
dp

dt
= −∂ε

∂r
. (3.6b)

The dynamics of the quasiparticle motions should also include the collisions between

quasiparticles. Collisions are described by Boltzmann equations and are discussed in

section 3.3.

Nuclear Equation of State

The energy-density relation for nuclear matter, often simply referred to as the

nuclear equation of state (EOS), determines the motion of quasiparticles under the

influence of the mean field through quasiparticle energy ε in Eq. (3.6). Since

quasiparticle energy could be derived from either Eq. (3.4a) or (3.5), so the nuclear

EOS could be uniquely specified by providing the form of the energy density ẽ, or

equivalently in the form of the optical potential Uopt. The nuclear EOS is often

discussed in terms of energy per particle e(ρ), defined by e = ẽ/ρ. The nuclear EOS

has been the subject of intense investigation in heavy-ion reactions in the context of

transport simulations.

As mentioned in Chapter 1, the nuclear EOS in simulations could be classified

into two types, the momentum independent (MI) or momentum dependent (MD)

EOS, depending on whether the momentum dependence of the optical potential is

ignored or not. Since the quasiparticle energy ε in Eq. (3.4a) generally depends on

the distribution function, so does the optical potential Uopt, and the most simple

implementation of this dependence is realized through the density dependence of the

optical potential (this is the case of momentum independent EOS). To characterize
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the density dependence of the nuclear EOS, the compressibility is often defined:

K = 9
∂P

∂ρ
, (3.7)

where the pressure P is defined by:

P = −∂E

∂V
= ρ2 ∂e

∂ρ
, (3.8)

The compressibility of nuclear matter at normal density is often used to label

different density dependencies of the EOS. In the more general momentum

dependent case, the optical potential in Eq. (3.5) is also a function of momentum,

Uopt = Uopt(ρ,p). The effective mass for the quasiparticle is often used to signify the

momentum dependence of the nuclear EOS:

m∗ =
p

v
, (3.9)

where p = |p|, and v = |v|. The velocity vector v for the quasiparticle is defined as:

v =
∂ε

∂p
. (3.10)

The effective mass at the Fermi surface is often used to label the different MD EOS.

As mentioned in Chapter 1, the nuclear equation of state is also isospin

dependent. The isospin dependence is related to the additional summation over

particle species in Eq. (3.1) (here, over protons and neutrons respectively). The

isospin dependence results in different dispersion relations and different optical

potentials for protons and neutrons, and thus different Euler equations for the

corresponding quasiparticles in nuclear matter. Isospin dependence has recently

raised some interest in nuclear reaction studies, and the relevant physical ideas and
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parameterization of the isospin dependence will be discussed in detail in section 3.5.

Relativistic Transformations

As microscopic transport theory will be frequently applied to heavy-ion

collisions at relativistic energies, the relativistic covariance transformations of the

quasiparticle motions becomes important. The relativistic transformations have

been derived by Baym and Chin [90], and I will only list the covariant formula that

are relevant to transport theory.

The total energy and momentum of the interacting system forms a relativistic

4-vector P µ = (E,P). From Eq. (3.4) and the scalar structure of the distribution

function fX(p, r) , we find that the quasiparticle energy and momentum also form a

covariant vector pµ = (ε,p). The covariant velocity is uµ = (γ, γv), where

γ = 1/
√

1− v2. In a moving frame, the particle density is multiplied by the boost

factor γ for the moving frame, but the scalar density ρs remains invariant.

In general, the energy-momentum tensor is:

T µν =

∫
dp

γ
pµuνf(p, r) + gµν ẽint . (3.11)

And the the energy-momentum conservation law is just ∂νT
µν = 0. The energy

density ẽ is a component of the energy-momentum tensor:

ẽ = T 00 =

∫
dpεf(p, r) + ẽint (3.12)

In view of Eq. (3.11), one could see that the first term and second term in Eq. (3.12)

have different Lorentz structure and transformation laws. The interaction term ẽint

is Lorentz invariant, while the kinetic term will be different in different reference

frame.

In terms of the energy-momentum tensor, the total energy and momentum
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could be written as:

E =

∫
drT 00,

Pi =

∫
drT 0i. (3.13)

The tensor structure of the energy-momentum tensor in the Eq.(3.11) is important

for accessing of the excitations of nuclear matter, and can be used to test energy

and momentum conservation in transport simulations.

3.3 Boltzmann Equation Set

As the basic equations in transport theory, the Boltzmann equations describe

the quasiparticle motions in the nuclear medium under the influence of mean field

interaction and inter-particle collisions. In this section, I will introduce the

Boltzmann equation set, and the covariant form of the collision integral.

In the quasiparticle approximation, the state of a system is completely specified

when the phase-space distributions fX ≡ fX(p, r, t) are given for all particle species.

The distribution function satisfies the Boltzmann equation:

∂fX

∂t
+

∂εX

∂p

∂fX

∂r
− ∂εX

∂r

∂fX

∂p
= K<

X (1∓ fX)−K>
X fX . (3.14)

The l.h.s. accounts for the motion of particles in the MF, while the r.h.s. accounts

for collisions. If the collision terms are ignored, one arrives at the Vlasov equations,

that is, the mean field dynamics for the quasiparticles. Factors K< and K> on the

r.h.s. of (3.14) are the feeding and removal rates. The factor (1∓ fX) is the

reduction or enhancement factor in the Fermi-Dirac or Bose-Einstein system. The

degrees of freedom in the Boltzmann equations are usually nucleons, pions, ∆ and

N∗ resonances. While most BUU models do not describe cluster formation, a
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description for the production of light (A ≤ 3) clusters, an option in the current

model, was developed by Danielewicz and Bertsch [42].

The combination of relativity and momentum dependence brings in some

peculiarities into the collision rates and cross sections, beyond what is encountered

in the non-relativistic dynamics. Thus, to be consistent with the Fermi Golden Rule

for transition rates and the requirements of covariance, the contribution of binary

collisions of particles X to the removal rate in (3.14) is written as:

K>
X(p1) =

gX

γ1

∫
dp2

(2π)3 γ2

∫
dp′1

(2π)3 γ′1

∫
dp′2

(2 π)3 γ′2

1

2
|M2X→2X′ |2

×(2π)3 δ(p1 + p2 − p′1 − p′2)

×2 π δ(ε1 + ε2 − ε′1 − ε′2) f2 (1− f ′1) (1− f ′2)

=
gX

γ1

∫
dp2

(2π)3 γ2

1

2

∫
dΩ∗′ p∗′ 2

4π2 γ∗1
′ γ∗2

′ v∗12
′ |M2X→2X′|2

×f2 (1− f ′1) (1− f ′2)

= gX

∫
dp2

(2π)3

1

2

∫
dΩ∗′ v12

dσ

dΩ∗′ f2 (1− f ′1) (1− f ′2) . (3.15)

In the above, |M|2 represents a squared invariant matrix element for the scattering,

averaged over initial and summed over final spin directions. The factors γ are

associated with the respective velocities and dp/γ is the invariant measure in the

momentum space. The starred quantities in Eq. (3.15) refer to the two-particle c.m.

quantities defined by the vanishing of the three-momentum in the entrance channel,

P = 0, where P µ = pµ
1 + pµ

2 is initial system 4-momentum. The cross section in

(3.15) is given by:

dσ

dΩ∗′ =
p∗′2

4π2 γ∗1 γ∗2 v∗12 γ∗1
′ γ∗2

′ v∗12
′ |M2X→2X′|2 . (3.16)

The relativistic relative velocity in Eq. (3.15) and (3.16) is defined through the
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invariant form:

γ1 γ2 v12 =

[
− [(P · u2) u1 − (P · u1) u2]

2

P 2

]1/2

. (3.17)

The above definitions ensure the standard form of the detailed balance relation, i.e.:

p∗2
dσ

dΩ∗′ = p∗′2
dσ

dΩ∗ . (3.18)

In the c.m. frame, the relative velocity reduces to the velocity difference. The

factor of 1/2 in front of the angular integrations in Eq. (3.15) accounts, in the

standard manner, for the double-counting of the final states in scattering for like

particles.

3.4 Nuclear Equation of State

As mentioned in Chapter 1, the nuclear equation of state plays an essential role

in the dynamics of the heavy-ion reaction, and transport simulations often employ

parameterized forms of the EOS. In this section and the next section, I will show

the parameterizations for the nuclear EOS. The parameterized EOS will be used in

transport simulations, and some examples of the simulations will be given in

Chapter 5.

While many of the mean field parameterizations start directly from the optical

potential U , I will introduce the energy density functional method. As seen in

Section 3.2, the optical potential U completely determines the mean field dynamics

for the quasiparticles through the Euler equations(3.6). So it is sufficient to

parameterize the optical potential for all transport simulations, the only pitfall is

that the formula for the total energy and the excitation energy may become quite

complicated. As will be apparent, the energy density functional method is superior:

the single particle energies are determined self-consistently through Eq.(3.4), the
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total energy and excitation are easily accessible, the relativistic transformations are

already derived in Section 3.2. The nuclear equation of state based on

momentum-independent mean fields (MI EOS) will be used in exploring the

compression effects in nuclear reactions; the nuclear equation of state based on

momentum-dependent mean fields (MD EOS) will be used for exploring the

additional effects of changed particle velocities. The energy density functional

method was first used as the starting point for the parameterization of the EOS in

[12].

3.4.1 Energy Density Functional

As already mentioned in section 3.2, the energy density functional in Eq.(3.1)

uniquely determines the quasiparticle energy and the optical potential, and thus

completely specifies the mean field dynamics. In this section, I will start from a

general functional form for the nuclear equation of state, and the next two

subsections will be devoted to the details of the momentum independent and the

momentum dependent mean field parameterizations.

With finite-range effects in the system energy, the energy density of the

reaction system could be written as:

ẽ = ẽNM + ẽgrad + ẽcoul . (3.19)

The last term in Eq. (3.19) is the Coulomb energy. When beam energy is not so

high, the radiation retardation effect can be ignored and the Coulomb interaction is

given in a static form:

ẽcoul =
1

2
ρch(r)Φ(r) . (3.20)

where Φ(r) is the Coulomb field produced by all other particles and ρch(r) is the

charge density at position r.
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The second term in Eq. (3.19) involves spatial gradients of the distribution

function. It allows us, primarily, to account for the effect of the finite range of

nuclear forces, which is similar to the lowest-order quantal effect of the curvature in

the wave functions. In a finite nuclear system, the energy density due to density

gradient corresponds to the additional energy required to form a surface (other than

the change of the volume energy at the surface region).

ẽgrad = − as

2ρ0

ρ(∇)2ρ, (3.21)

After partial integration, I find that the surface energy is positive definite if as is

positive.

Egrad =

∫
drẽgrad =

as

2ρ0

∫
dr (∇ρ)2 , (3.22)

This gradient term is important in the Thomas-Fermi (TF) initialization of the

nuclei [91, 92] for the reaction simulations. I take the coefficient in (3.21) equal to

as = 21.4 MeV fm2 for the density dependent MFs. For the momentum-dependent

fields, I take a bit lower as = 18.2 MeV fm2 from adjustments to ground-state data

on nuclear shapes. The initialization of the nuclei for the simulation is described in

the subsection 3.6.1.

The energy density for nuclear matter is often written as the sum of the energy

density term ẽ0 with no isospin interaction considered and an additional

contribution ẽI when isospin interaction is considered:

ẽNM = ẽ0 + ẽI . (3.23)

The term ẽ0 will also contain isospin dependence if the protons and neutrons are

treated differently, but is not sufficient to explain fully the total isospin dependence
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of the nuclear EOS. The additional isospin dependent part ẽI , which is usually

smaller in magnitude than the term ẽ0, will be discussed in detail in section 3.5.

The isospin independent strong-interaction field is chosen to act only on

baryons in the current calculations. Pions, which should also contribute to the mean

field interaction, are infrequent in the energy range I am interested in and are

ignored in the consideration of mean field, except in the case of isospin dependence,

in order to simplify the energy conservation. I should note that, when the vector

and scalar type MFs may be momentum dependent with no exclusive dependence

on the vector and scalar densities, there is neither a benefit nor a phenomenological

basis, in the absence of spin dynamics, for a separate consideration of these fields.

The parameterizations of the nuclear equation of state are constrained by

known physical properties of nuclear matter. Nuclear matter saturates at normal

density ρ0 = 0.16 fm−3 and the binding energy per particle at normal density is

about 16 MeV. Also at zero density, the strongly interacting system became a free

system and the quasiparticles became free particles. In a mathematical form, I

require the EOS to satisfy:

∂e

∂ρ
(ρ = ρ0) = 0 , (3.24a)

e(ρ = ρ0) = −16 MeV , (3.24b)

e(ρ = 0) = 0 . (3.24c)

These constraints are satisfied by many of the EOS used in transport simulations.

There are also other constraints for the isospin dependence of the EOS, and these

constraints will be discussed in later section.

44



3.4.2 Momentum Independent Mean Fields

Guided solely by calculational convenience, I choose the fields that could be

easily identified as either vector or scalar [52]. Thus, in the case of the mean field

with only density dependence in their nonrelativistic reduction, I choose the isospin

interaction independent part of the energy density to be of the form [93]:

ẽ0 =
∑
X

gX

∫
dp

(2π)3
fX(p)

√
p2 + m2

X(ρs) +

∫ ρs

0
dρs

′ U(ρ′s)− ρs U(ρs) , (3.25)

where mX(ρs) = mX + AX U(ρs), AX is baryon number, and the scalar density is

defined by:

ρs =
∑
X

gX AX

∫
dp

(2π)3

mX(ρs)√
p2 + m2

X(ρs)
fX(p) . (3.26)

This definition is equivalent to the definition in Eq. (3.3). The variational derivative

of the energy in Eq. (3.25) alone gives rise to single-particle energies:

ε̃X(p, ρs) =
δẽ0

δfX(p)
=

√
p2 + m2

X(ρs) . (3.27)

For the MF interaction, I take the form:

U(ξ) =
a ξ + b ξν

1 + (ξ/2.5)ν−1
, (3.28)

with ξ = ρs/ρ0 as the reduced density, and the parameters a, b, and ν adjusted to

produce average nuclear ground-state properties. The role of the denominator in

Eq. (3.28) is to prevent supraluminous behavior at high densities. The energy

functional in Eq. (3.25) does not incorporate the momentum dependence of the

scalar mean fields. The resulting equation of state will be referred to as MI EOS,

i.e., EOS based on momentum-independent MFs.

To the single-particle energy in Eq.(3.27), I add in the system frame the
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Coulomb, gradient, and isospin corrections. The coulomb and gradient term will

contribute to the forces but drop out from the collision integrals and velocities.

εX = ε̃X + ZX Φ + AX Ugrad + UX
iso , (3.29)

where Φ is the Coulomb potential,

Ugrad = δẽgrad/δfX = −as∇2(ρ/ρ0) , (3.30)

is the gradient term, and the isospin dependent potential

UX
iso = δẽI/δfX (3.31)

will be discussed later in section 3.5.

To determine a, b, and ν, I required the energy per nucleon to minimize in

nuclear matter at ρ = ρ0 at the value of B/A = e/ρ−mN ≈ −16.0 MeV for

incompressibility K = 210 MeV, and at −17.0 MeV for K = 380 MeV. For the

higher K, the energy cost for the surface is higher. That leads to difficulties, for the

TF theory, in reproducing the average dependence of nuclear binding energy on

mass number (especially in the low mass region), which one can partly compensate

for with the stronger binding in the infinite-volume limit. A more thorough

discussion can be found in [94]; adjustments of as in (3.21) cannot be done without

worsening the Thomas-Fermi description of measured rms radii. The parameter sets

from such adjustments are listed in table (3.1). Generally, reproducing the

binding-energy curve helps us to assess the excitation energy of matter formed in

low-energy or peripheral reactions.
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Table 3.1: Parameters for the momentum independent MFs.

a b ν K B/A
MeV MeV MeV MeV

-187.24 102.62 1.6339 210 -16.0
-121.26 52.10 2.4624 380 -17.0

3.4.3 Momentum Dependent Mean Fields

As mentioned in Chapter 1, the momentum dependence of the nuclear equation

of state, which is predicted by microscopic theories, is found to have a strong

influence on elliptic flow in heavy-ion reactions. I will next introduce the MD EOS

parameterizations for transport theory, and these parameterized forms will be use in

transport simulations in Chapter 5.

For the momentum dependent MF, I will parameterize the energy density in

the local frame where baryon flux vanishes [52, 93, 95],

J =
∑
X

gX AX

∫
dp

(2π)3
fX vX = 0, with

ẽ0 =
∑
X

gX

∫
dp

(2π)3
fX(p)

(
mX +

∫ p

0

dp′ v∗X(p′, ρ)

)
+

∫ ρ

0

dρ′ U(ρ′), (3.32)

where U is of the same form as expressed by Eq. (3.28), and ξ = ρ/ρ0. The local

particle velocity v∗X depends on (kinematic) momentum and density through:

v∗X(p, ξ) = p

/√√√√p2 + m2
X

/[
1 + c (

mN

mX

)
AX ξ

(1 + λ p2/m2
X)

2

]2

. (3.33)

The energy (3.32) alone yields the local single-particle energies

ε̃X(p, ρ) = mX +

∫ p

0

dp′ v∗X + AX [U v(ρ) + U(ρ)] , (3.34)

where the density dependence of the velocity gives rise to an additional potential of
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Table 3.2: Parameter values for the momentum-dependent mean fields. U∞
opt is the

asymptotic value of the potential at ρ0 as p →∞.

a b ν c λ m∗/m U∞
opt K set

(MeV) (MeV) (MeV) (MeV)
185.47 36.291 1.5391 0.83889 1.0890 0.65 55 210 S1
185.56 32.139 1.5706 0.96131 2.1376 0.65 23 210 S2
209.79 69.757 1.4623 0.64570 0.95460 0.70 40 210 S3
214.10 95.004 1.4733 0.37948 0.55394 0.79 25 210 S4
123.62 14.653 2.8906 0.83578 1.0739 0.65 56 380 H1
128.22 22.602 2.5873 0.64570 0.95460 0.70 39 380 H2

the form:

U v(ρ) =
∑
Y

gY

∫
dp1

(2π)3
fY (p1)

∫ p1

0
dp′

∂v∗Y
∂ρ

. (3.35)

In their nonrelativistic reduction, the energies (3.34) are similar to the energies

proposed for the nonrelativistic transport by Bertsch, Das Gupta et al. [10, 96].

Different sets of parameters for (3.32), which give different values for the group

effective mass [97] in normal matter at the Fermi surface (m∗ = pF /vF ) and for the

incompressibility, are exhibited in Table 3.2. The energy functional in Eq. (3.32)

incorporates additional momentum dependence of the mean fields. The resulting

equation of state will be referred to as MD EOS, i.e., EOS based on

momentum-dependent MFs.

3.5 Isospin Dependence of Nuclear EOS

3.5.1 Introduction to Isospin Physics

The proposed Rare Isotope Accelerator (RIA) and other radioactive beam

facilities have made it possible to explore heavy-ion physics along the isospin degree

of freedom toward the proton or neutron drip lines. In fact, recent nuclear structure

studies on nuclei with large neutron or proton excess have revealed new phenomena
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that are characteristically different from that in the stable isotopes. Especially

interesting results have been produced by the studies on very neutron rich isotopes,

where new shell structures, neutron skins and neutron halos have been found. It is

hoped that heavy-ion reactions studies with extremely neutron-rich or proton-rich

isotopes could also reveal new features of the reaction dynamics not encountered

before.

Signals related to isospin are also important tools for exploring heavy-ion

reaction dynamics. Isotope ratios have been used to differentiate equilibrated

reaction processes from non-equilibrated processes [98]. Large isospin asymmetric

system has been used as a probe for measuring nuclear stopping power [99]. The

non-equilibrium features of heavy-ion reactions with respect to isospin have been

suggested and used as tools to measure isospin diffusion process during a heavy-ion

reaction [100]. It is envisaged that extreme neutron excess could totally change the

reaction mechanism or even open possibilities for extrapolating to pure neutron

matter at varying densities and temperatures [9, 101]. The prospect of heavy-ion

reaction studies on rare isotopes has been reviewed nicely by Li et al. [9].

As mentioned in Chapters 1 and 2, the isospin asymmetry of a reaction system

impact, in a nontrivial manner, the possible nuclear Liquid-Gas Phase (LGP)

transition. The nuclear multifragmentation process, the isotope yield and the

isotope temperature, the specific heat also strongly depend on isospin. The

multifragmentation process and the related liquid gas phase phase transition have

been reviewed by Pochodzalla and Trautmann [102].

The theoretical studies on isospin physics in heavy-ion reactions have been a

considerable success, but many issues are still unresolved. The strong isospin

dependent nature of the multifragmentation process has been explored intensively,

and some qualitative results are quite interesting [103, 104, 29]. However, the

dynamics of cluster formation following particle correlation and the statistical phase
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space partition are both not well understood. The dynamical evolution of a reaction

system is significantly affected by isospin dependence of the nuclear equation of

state [9, 103, 101]. The studies on the nuclear equation of state based on isospin

dependent mean fields (IEOS) are an important extension of the studies on nuclear

EOS with stable isotopes. Not only the density dependence of the symmetry

potential is quite uncertain, but also the momentum dependence of the symmetry

potential has still to be explored. The nuclear equation of state based on momentum

independent mean fields sensitive to isospin asymmetry (MI IEOS) will be used for

exploring the effects of the density dependence of the symmetry energy; the nuclear

equation of state based on momentum dependent mean fields sensitive to isospin

asymmetry (MD IEOS) will be used for exploring the additional effects of velocities

changed differently for protons and neutrons. The isotope yields from heavy-ion

reactions are also affected by the IEOS. The IEOS studies are important for

understanding the explosion mechanism of supernovae as well as for the direct Urca

cooling process of neutron stars [105]. I shall come to this last point in section 3.5.4.

In this section, I will introduce a parameterization of the isospin dependence of

the nuclear equation of state. The isospin density dependence and momentum

dependence are parameterized in section 3.5.2 and 3.5.3. As with other EOS

studies, these parameterizations should be used to explore the possible physics in

simulations, and the success or failure of these forms will be tested when comparing

results from simulations and experiments. Some of these IEOS forms will be used

later in the simulations in Chapter 5, and the results for isospin diffusion processes

will be compared with the experimental results.

3.5.2 Density Dependence of Symmetry Potential

The isospin dependence of the nuclear EOS stems from the isospin dependence

of the nuclear force. Since the isospin asymmetry is often small in heavy-ion
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reactions, I can expand the energy density per particle as a power series in isospin

asymmetry β = (ρn − ρp)/ρ:

e(ρ, β) =
ẽ

ρ
= e(β = 0) + e(2)β2 + e(4)β4 + . . . . (3.36)

Note that, in the discussion of energy density functional for isospin dependent mean

fields, I will temporarily use β for isospin asymmetry in stead of the more standard

symbol δ, just to distinguish it from the symbol δ for variational derivative.

The odd powers of asymmetry parameter β in the expansion in Eq. (3.36)

vanishes because of charge symmetry for the nuclear force. Various microscopic

calculations suggest a parabolic approximation for the isospin dependence to be

quite good even up to pure neutron matter [106, 35], so that I can safely ignore

higher order terms in the expansion in Eq. (3.36). The e(2) term is often called the

symmetry energy of nuclear matter and is labelled esym.

esym =
1

2

∂2e

∂β2
. (3.37)

When the higher powers of isospin asymmetry β are ignored, I can also write the

symmetry energy in the difference form:

esym = e(β = 1)− e(β = 0) , (3.38)

which is the same as given in Chapter 1.

The isospin dependence of the nuclear EOS inevitably introduces isospin

dependence to the quasiparticle energies, and thus gives rise to the different optical

potential for the proton and the neutron. To characterize the isospin dependence of
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the optical potential, I can define the symmetry potential by:

Usym =
1

2

∂(Un − Up)

∂β

∣∣∣∣
β=0

' (Un − Up)

2β
. (3.39)

The last equality is valid because the higher order terms in β in the energy can be

ignored.

There is some knowledge on the magnitude of the symmetry energy at normal

nuclear matter density. The nuclear mass models that fit many or even most of the

known isotope data suggest the symmetry energy for normal nuclear matter is

around 27− 36 MeV [107], where the large uncertainty of the value reflect the fact

that the current nuclear data are mostly limited to nuclei close to the line of

stability. Many theoretical calculations give a similiar value for the symmetry

energy at normal density. Some of the recent results stem from the

phenomenological Skyrme Hartree-Fock calculations [108], Brueckner-Hartree–Fock

calculations [109, 35, 110, 111], Dirac-Brueckner-Hartree-Fock calculations

[112, 113], variational many-body theory [8], chiral perturbation calculations

[114, 115, 116] and relativistic mean field calculations [117, 118, 119].

However, the experimental results give little hint as to the density dependence

of the symmetry energy, and different theories give different density dependence.

The Skyrme interactions in use yield many different density dependencies for the

symmetry energy, ranging from extremely soft to extreme stiffly density dependence

[108]. Relativistic mean field interactions tend to produce stiff density dependencies

and Brueckner calculation results vary depending on the resummations and theory

cut-offs and on the inclusion of the three body-force [110, 113]. More recent

relativistic mean field calculation, with either explicit density dependence of

coupling constants [120] or with momentum dependence yield less stiff density

dependencies [119] as compared to the original nonlinear models.
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The isospin studies in nuclear reactions usually parameterize the density

dependence of symmetry energy, and compare simulations with data to arrive at the

best fit. Nuclear structure studies, including rare isotope experiments and high

precision measurements of stable isotopes, will explore the isospin dependence of the

nuclear effective interaction below normal density. Nuclear reaction studies will be

the key for determination of the high density behavior of the isospin dependent EOS.

Energy Functional

The density dependence of the symmetry energy in the nuclear EOS will be

specified in parameterized form. These forms will be used later in transport

simulations. The results from these simulations will be compared with the

experimental results, allowing to test the assumption on the density dependence of

symmetry energy. One such comparison will be given in Chapter 5.

In consistency with the energy density functional used in the MI EOS

parameterizations in section 3.4.2, the energy density of isospin asymmetric nuclear

matter will be first parameterized as:

ẽ =
∑
X

gX

∫
dp

(2π)3
fX(p)

√
p2 + m2

X(ρs, β)

+

∫ ρs

0
dρs

′ U(ρ′s)−
1

2
UT ρsβ

2 − ρs U(ρs)− as

2ρ0

ρ∇2ρ +
1

2
ρzΦ . (3.40)

The Lorentz mass above depends both on the scalar density and isospin asymmetry,

through the scalar optical potentials:

mX(ρs, β) = mX + AX U(ρs) + 2t3xUT (ρs)β . (3.41)

The energy functional in Eq. (3.40) does not incorporate momentum dependence in

the isospin part of the scalar potential. The resulting EOS will be referred to as MI

53



IEOS, i.e., EOS based on momentum-independent MFs with isospin sensitivity.

The single particle energy derived from Eq. (3.40) with inclusion of

finite-range and coulmb terms, is then:

εX(p) =
√

p2 + m2
X(ρs, β) +

1

2
UTCβ2 + AX Ugrad + ZXΦ. (3.42)

The first order term in β enters into the energy through the Lorentz mass

mX(ρs, β), while the self-consistent isospin dependent MF always introduces

additional potential of the order β2, through:

UTC = ρs
2∂(UT /ρs)

∂ρs

. (3.43)

In principle, there is an additional correction factor for UTC which comes from the

derivative of the scalar density with respect to distribution function. The correction

term is only on the order of 10−3UTC and will be neglected here. Note that the β2

term in eq. (3.42) is a second-order correction that arises from the self-consistency

requirement, and is very small for small asymmetries. The optical potential

calculated from Eq. (3.42) is approximately linear in isospin asymmetry:

Uopt ∼ U(ρs) + 2t3xUT (ρs)β +
1

2
UTCβ2 ,

∼ U(ρs) + 2t3xUT (ρs)β , (3.44)

and so is the difference between the proton and neutron potentials. With this, UT

may be viewed as the symmetry potential defined before, and can be compared to

the symmetry potential in [121].
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Symmetry Energy

For the isospin density dependent MF parameterization in Eq. (3.40), the

symmetry energy is of the form:

esym =
1

3

pF
2

2εF

+

(
4mX + 3UT

4εF

− 1

2

)
UT

+
9

4

m2
XU2

T

p3
F

[
log

(
mX

εF + pF

)
+

pF

εF

]
, (3.45)

where pF is Fermi momentum for the corresponding symmetric nuclear matter at a

given density in the local frame, and

εF =

√
(pF )2 + (mX(ρs, β = 0))2 , (3.46)

is the Fermi energy. The last term in Eq. (3.45) contributes to less than 5% of the

total symmetry energy at normal density, but became significant at higher densities

for the iso-stiff type of IEOS. The first term in Eq. (3.45) is associated with the

Fermi motion of the quasi-particles, and will be called the kinetic symmetry energy

ekin
sym. The last two terms in Eq. (3.45), with powers of the symmetry potential UT ,

could be called the interaction symmetry energy eint
sym.

esym = ekin
sym + eint

sym . (3.47)

At around normal densities in the non-relativistic reduction, if one uses

εF ∼ mX ∼ m and ignore higher powers of the symmetry potential UT than first

order, the symmetry energy in Eq. (3.45) reduces to:

esym ' 1

3

p2
F

2m
+

1

2
UT . (3.48)

At normal density ρ0 = 0.16 fm−3, I find the kinetic contribution to the symmetry
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energy is about 12 MeV for a free Fermi gas. The experimental data on binding

energy suggest a net symmetry energy value of 27− 36 MeV [107]. Thus, the

interaction part of the symmetry energy is about the same magnitude as the kinetic

part. The recent analysis of the binding energy of known isotopes, with separate fit

parameters for volume and surface asymmetry terms, suggested a value of around

27− 31 MeV [41]. Many theoretical models have been tuned to yield the symmetry

energy within the range of the previous values of 27− 36 MeV.

The Isospin Dependent Potential

The asymmetry part of the symmetry potential UT is often represented as a

simple power of density:

UT (ρs) = 2.0 Ai ξ
τ . (3.49)

where ξ = ρ/ρ0 is the reduced density, the normalizing constant Ai is the interaction

contribution to the symmetry energy at normal density and the exponent τ defines

the stiffness of the density dependence. Because the kinetic symmetry energy scales

as εF ∼ ρ2/3 in the non-relativistic limit, I will define the iso-stiff type as τ > 2/3

and iso-soft type otherwise. The isospin super stiff (iso-SH) case, τ = 2, gives a very

stiff density dependence similar to the dependence in some of the

Skyrme-Hartree-Fock models [108] or in the non-linear coupling model in relativistic

mean field theory; the isospin normal stiff (iso-NH) case, τ = 1, which has the most

naive form for density dependence, corresponds to the linear coupling model in

relativistic mean field theory and is close to some of the Skyrme model dependencies.

The normal isospin soft (iso-NS) case, τ = 1/3, mimics the results from the

Brueckner-Hartree-Fock calculations [35] and the density dependence from the

relativistic mean field calculations with density or momentum dependent couplings
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Table 3.3: Parameters for the nuclear equation of state based on momentum inde-
pendent mean fields sensitive to isospin asymmetry (MI IEOS), all MI IEOS have the
same symmetry energy at normal density esym = 30MeV .

MI IEOS Ai Bi Ci τ
MeV MeV

iso-SH 19.17 2.0
iso-NH 19.17 1.0
iso-NS 19.17 1/3

iso-SKM 38.34 -15.34 0.2

[120, 119]. Another type of utilized isospin soft EOS (iso-SKM) is of the form:

UT = 2.0
Aiξ + Biξ

2

1 + Ciξ2
. (3.50)

where the constants Ai, Bi are adjusted to reproduce the symmetry energy at

normal density, and the Ci term serves to limit the symmetry potential at high

densities. This type of symmetry energy density dependence has been suggested by

a special type of Skyrme interaction [101], and is similar to the dependence from

chiral perturbation theory [114] and from variational many-body theory [8]. The

symmetry potential from iso-SKM in [101] will generally fall below zero at high

densities if the constant Bi is negative. The negative total symmetry energy would

make the energy of pure neutron matter lower than nuclear matter with a finite

proton fraction. Thus, for this density dependence, a neutron star would contain no

protons at high densities.

The net symmetry energies for different IEOS are plotted as a function of

density in Fig. 3.1. The IEOS are named after the behavior of the symmetry energy

at densities higher than normal: the IEOS with the most stiff symmetry energy

density dependence is the iso-SH, followed by iso-NH, while the iso-NS and iso-SKM

are subsequently softer. The features of the symmetry energy are directly related to

the features of the optical potential experienced by the particles, as shown in
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Figure 3.1: Density dependence of the net symmetry energy for four different IEOS:
iso-SH, iso-NH, iso-NS, iso-SKM.

Fig. 3.2. Notice the optical potential lines for proton and neutron at β = 0.4 in

Fig. 3.2 are almost equal spaced on the two side of the optical potential at zero

asymmetry, this justifies the last approximation in Eq. (3.44).

A Non-Relativistic Reduction

In the past, a non-relativistic form of the isospin interaction was used for

simulations. To facilitate comparisons with the past results, I will give here the

optical potential formula in the non-relativistic limit.

If the isospin potential or the isospin asymmetry is small, the energy density

Eq. (3.40) will reduce to Eq. (3.25) plus an extra isospin dependent energy density

given by:

ẽI =
1

2
UT ρsβ

2 . (3.51)

The isospin dependent part of the optical potential derived from Eq. (3.51) will be:

UX
iso = 2t3XUT β +

1

2
AXUTCβ2 . (3.52)
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Figure 3.2: Optical potentials for four different IEOS: iso-SH, iso-NH, iso-NS and iso-
SKM, at asymmetries β = 0 and 0.4 for protons and neutrons. At zero asymmetry,
the optical potential are the same for protons and neutrons because of assumed exact
symmetry between proton and neutron.

The explicit expression for the power-law types in particular, is:

UX
iso = 4t3XAiξ

τβ + (τ − 1)Aiξ
τβ2 . (3.53)

The isospin dependent part of the optical potential for the iso-SKM type is slightly

more complicated:

UX
iso = 4t3X

Aiξ + Biξ
2

1 + Ciξ2
β +

Bi − 2AiCiξ −BiCiξ
2

(1 + Ciξ2)2
ξ2 β2 . (3.54)
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Figure 3.3: Symmetry potentials for particle of zero momentum are plotted as a
function of density. The four different isospin dependent nuclear EOS are iso-SH,
iso-NH, iso-NS and iso-SKM respectively.

The symmetry potential will then be:

Usym = UT =





Aiξ
τ , for power-law type;

(Aiξ + Biξ
2)/(1 + Ciξ

2), for iso-SKM type.
(3.55)

The non-relativistic formulation of isospin dependence is generally sufficient at

low energies, where the non-relativistic reduction works well. As many of the

experiments on isospin related heavy-ion reaction studies have concentrated on the

low energy side, the non-relativistic reductions introduced here will be useful due to

the simplicity of the formulas.
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3.5.3 Momentum Dependence of Symmetry Potential

The symmetry potential, which represents the optical potential difference for

protons and neutrons in isospin asymmetric nuclear matter, is not only density

dependent, but also momentum dependent. Such momentum dependence for IEOS

stems from isospin dependence of the non-local nuclear force as well as from

exchange interaction [118]. An analysis of the forward nucleon scattering data by

Grein [122] demonstrates a definite isospin momentum dependence of the scattering

amplitude that is proportional to the optical potential S in the impulse

approximation. Both the Bruecker-Hartree-Fock [123, 35] and the

Dirac-Bruecker-Hartree-Fock [113, 124] calculations, which use the G-matrix

generated from the various nuclear force, show a strong isospin momentum

dependence for the nuclear mean fields. The relativistic mean field theories with

explicit derivative coupling [119] or with exchange interaction [118, 117] and the

chiral perturbation theory [114] also result in a strong isospin momentum

dependence. In this section, I will present a general functional form for the IEOS,

which could incorporate the isospin momentum dependence seen in various

microscopic theories.

The common features of results from the microscopic calculations suggest the

general functional form for the energy density. Given that, under the assumption of

charge symmetry, the interaction between p-p and n-n should be the same, the

proton and neutron should have the same properties in the symmetric nuclear

matter. In neutron rich nuclear matter, the proton and neutron potentials and

single particle energies will in general be different and the momentum dependence is

seen to be different in the theoretical calculations. For low momentum particles, the

n-p interaction is more attractive than the corresponding p-p or n-n interaction,

resulting in a more attractive potential and a lower effective mass for the particles

at a lower concentration (that is, typically the protons). But at higher momentum,
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at around p ∼ 2 GeV/c, the interactions between nucleons are repulsive and the

optical potential becomes just the reverse of that at low momentum. Within a

T-matrix analysis for high momentum particle, to be presented, I find that the

proton optical potential is more repulsive in neutron rich matter than the neutron

potential. The different behavior of the optical potential at high and low

momentum suggests a cross-over that should occur at some intermediate momentum

for the asymmetric nuclear matter. Such a cross-over is also directly supported by

some theoretical results [123, 35, 121].

Optical Potential Within the T-matrix Approximation

As I have mentioned earlier, the optical potential for particles with a high

momentum could be obtained from an analysis of the forward elastic scattering data

within the T-matrix approximation (also called impulse approximation). In what

follows, I will present the T-matrix approximation and employ it to obtain the

optical potential for high-momentum particles in asymmetric matter, using

nucleon-nucleon scattering data. The resulting high momentum characteristics will

be used in the construction of the energy functional form in the present section.

Within the T-matrix approximation, valid for high-momentum particles, the

optical potential is related to the real part of the elementary forward scattering

amplitude.

Uopt = ρT = −4π

E
<(F) . (3.56)

Here, ρ is the density of the scatterers, T is T-matrix and F is the scattering

amplitude. The forward elastic scattering data have been analyzed by Grein [122].

This analysis, utilizing Coulomb-nuclear interference, produced ratio of the

real-to-imaginary forward scattering amplitude R = <(F)/=(F).

As the imaginary part of the scattering amplitude in the forward direction is
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related to the total cross section through the optical theorem,

σNN =
4π

p
=(F) . (3.57)

One can express the optical potential in terms of cross section and the amplitude

ratio R:

Uopt = −ρ
p

E
RσNN . (3.58)

In the two component system, the optical potential for a given particle is the

sum of optical potential contributions from each species:

Vp = − p

E
(ρp σppR

pp + ρn σpnR
pn),

Vn = − p

E
(ρp σpnR

pn + ρn σnnR
nn) . (3.59)

For the momenta p . 2 GeV/c, the ratios R are Rnp ' −0.59 and Rpp ' −0.28,

and the total cross sections are σpn ' σpp ' 4 fm2. At the normal density of

ρ = 0.16 fm−3 and β = 0.2, the optical potentials at p . 2 GeV/c, assuming charge

symmetry, are Vp ' 43.2 MeV and Vn ' 37.5 MeV. This kind of considerations give

guidance concerning the behavior of optical potentials at high momentum: the

difference Vp − Vn is small and positive and increases only linearly with increasing

density. This will help in constructing the energy functional for mean fields with

combined momentum and isospin dependencies.

The specific values of the optical potential should not be treated quite literally,

because of possible limitations of the impulse approximation and because of

uncertainties in measuring proton-neutron interactions. The Dirac phenomenological

analysis of the nucleon-nucleus scattering data yield e.g. Vp = 25.8 MeV for a

2 GeV/c momentum particle ([125] fit 1). Similar values for the optical potential

were also obtained in the relativistic mean field model [126]. Both results are not

63



very far away from the proton optical potentials estimated in this section.

Energy Functional

Extending the development of energy functional for isospin independent but

momentum dependent mean field in section 3.4.3, I parameterize the energy density

in the local rest frame as:

ẽ =
∑
X

gX

∫
dp

(2π)3
fX(p)

(
mX +

∫ p

0

dp′ v∗X(p′, ρ, β)

)

+

∫ ρ

0

dρ′ U(ρ′) +
1

2
UT ρ β2 − as

2ρ0

ρ∇2ρ +
1

2
ρzΦ. (3.60)

The essential difference here is the isospin dependence of the single particle velocity:

v∗X(p, ξ, β) = p

/√√√√p2 + m2
X

/(
1 + c

mN

mX

AX ξ(1.0− 2t3xaβ)

(1 + λ p2/m2
X)2

)2

. (3.61)

where the extra term (1.0− 2t3xaβ) is different for protons (t3x = −1/2) and

neutrons (t3x = 1/2), and gives rise to a different momentum dependence for those

particles. In the case of zero asymmetry, the dispersion relations are exactly the

same for protons and neutrons. The parameter a is within the range 0.0 ≤ a ≤ 1.0,

and it controls the isospin momentum dependence of the IEOS. Since the velocity is

just the slope of the quasiparticle energy as a function of momentum, the larger

values of a produce a bigger difference in the slope between protons and neutrons. I

will later introduce a model independent parameter that quantifies the sensitivity of

momentum dependence of the symmetry potential.

The energy density in Eq. (3.60) gives rise to the single particle energy in the
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local rest frame of the form:

εX(p, ρ) = mX +

∫ p

0

dp′v∗X(p, ξ, β) + AXU(ρ) + U v
X(ρ)

+ 2t3XUT β +
1

2
UTC β2 + AXUgrad + ZXΦ . (3.62)

As compared to Eq. (3.42), the additional isospin dependent potential U v
X stems

from the variation of the density dependent velocity and is given by:

U v
X(ρ) =

∑
Y

gY

∫
dp

(2π)3
fY (p)

(∫ p

0

dp′
∂v∗Y
∂ρX

)
. (3.63)

The energy functionals in Eqs. (3.61) and (3.62) incorporate additional momentum

dependence in the isospin part of the scalar potential. The resulting EOS will be

referred to as MD IEOS, i.e., EOS based on momentum-dependent MFs with

isospin sensitivity.

The isospin dependent potential term UT has the same form as for the

momentum-independent mean fields given by Eq. (3.49) and (3.50). Since they are

independent of momentum, these potentials do not change the velocity as a function

of momentum. Notably, the density dependence of the current IEOS

parameterizations is mostly determined by the potential term UT . The effects of

asymmetry on the optical potential at normal density and twice normal density are

displayed in Fig. 3.4 and Fig. 3.5. As may be apparent in Fig. 3.4 in asymmetric

nuclear matter at normal density, the optical potentials for protons and neutrons

cross at some intermediate momentum. As mentioned before, this cross-over is

consistent with the T-matrix analysis. The parameterizations generate the expected

behavior for the symmetry potential at low and high momenta for three of the IEOS.

However, different density dependencies of the isospin dependent optical potential

show up clearly at twice normal densities in Fig. 3.5. The symmetry energy in
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zero-temperature matter is both impacted by the symmetry potential UT (ρ) and by

the parameter a describing the sensitivity of particle velocities to asymmetry. The

symmetry potential as a function of momentum is plotted in Fig. 3.6. The density

dependence of the symmetry energy for a few MD IEOS is next plotted in Fig. 3.8.

Three of the MD IEOS have identical symmetry potential at normal nuclear matter

density, because the three power-law forms for UT in Eq. 3.49 yield identical values

at normal density. The symmetry potential for zero-momentum particles is also

plotted as a function of density in Fig. 3.7. The density dependencies of the

symmetry potential for both MI IEOS and MD IEOS stem from the potential of

UT (ρ) , which is exemplified by the similarities between Fig. 3.3 and Fig. 3.7.

For those parameters that already appeared in the isospin-independent

parameterization of velocity in section 3.4.3, I will take the parameters from set S3

in Table 3.2, which were tested in the previous BUU simulations [12] and were found

to agree well with the data on elliptic flow. The parameters for the MD IEOS are

listed in Table 3.4. Because of the sensitivity of momentum dependence to isospin,

the parameters Ai and Bi in the potential UT need to be adjusted so as to produce

the symmetry energy of nuclear matter at normal density of around 30 MeV.

For the iso-SKM type of density dependence, the above implementation of the

sensitivity to isospin results in some pathological behavior at higher densities.

Specifically, as the symmetry potential becomes negative at high densities, the

proton optical potential at zero momentum gets higher than the neutron optical

potential in neutron rich nuclear matter. If the momentum dependence is still

governed by Eq. 3.61, the proton and neutron optical potential difference is going to

increase with increasing momentum. Such behavior is not expected at high

momentum given the results from the T-matrix approximation and the forward NN

scattering data. To allow the optical potential difference between protons and

neutrons decrease as momentum increases at high density, I have to allow for a sign
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Figure 3.4: Optical potential for protons and neutrons at normal density, for four
of the MD IEOS: iso-SH, iso-NH, iso-NS and iso-SKM, in symmetric (β = 0) and
asymmetric (β = 0.4) nuclear matter, as a function of nucleon momentum p.
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Table 3.4: Parameters for the MD IEOS, where the parameters are adjusted so that
they have the same symmetry energy at normal density esym = 30 MeV.

MD IEOS Ai Bi Ci τ a b m∗
iso/m

MeV MeV
SH1 16.3417 2.0 0.2 0.10
SH2 21.2522 2.0 0.45 0.15
SH3 22.2405 2.0 0.5 0.16
SH4 28.2159 2.0 0.8 0.22
NH1 16.3417 1.0 0.2 0.10
NH2 21.2522 1.0 0.45 0.15
NH3 22.2405 1.0 0.5 0.16
NH4 28.2159 1.0 0.8 0.22
NS1 16.3417 1/3 0.2 0.10
NS2 21.2522 1/3 0.45 0.15
NS3 22.2405 1/3 0.5 0.16
NS4 28.2159 1/3 0.8 0.22

SKM1 28.4267 -11.3707 0.2 0.2 0.4 0.075
SKM2 33.28 -13.312 0.2 0.5 0.4 0.10
SKM3 38.3067 -15.3227 0.2 0.8 0.4 0.13

change for the isospin momentum dependence parameter at some intermediate

density. For the case of iso-SKM type of IEOS, this can be accomplished with:

v∗X = p/

√
p2 + m2

X/

(
1 + c

mN

mX

AX ξ[1.0− 2t3xaβ(1− bξ)/(1 + bξ)]

(1 + λ p2/m2
X)2

)2

. (3.64)

The additional parameter b controls the sign change of the isospin momentum

dependence. However, it should be cautioned that such a sign change is neither

based on any physical argument nor supported by any microscopic theory.

The Isospin Momentum Dependence

The sensitivity of momentum dependence to isospin asymmetry is characterized

by the parameter a (or a and b in the case of iso-SKM), while the sensitivity of

density dependence to asymmetry is characterized by the potential parameters Ai

and τ (or Ai, Bi, and Ci in the case of iso-SKM). The impact of the isospin
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momentum dependence parameter a is demonstrated in Figs. 3.10 and 3.11. Note

that the difference in effective masses has both contributions from the difference in

proton and neutron Fermi momenta and from the sensitivity of the optical potential

to isospin momentum dependence. To characterize the sensitivity of the momentum

dependence to isospin, in a model independent way, one can introduce the following

parameter to characterize the isospin dependence of the effective mass:

m∗
iso =

1

2

∂(m∗
n −m∗

p)

∂β

∣∣∣∣
β=0

. (3.65)
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3.5.4 Direct Urca Process in Neutron Stars

The isospin dependence of the nuclear equation of state has direct astrophysical

implications. I will discuss here the effect of IEOS on the direct Urca cooling

process in this section. The direct Urca process is an efficient cooling process in hot

neutron stars, and at high proton fraction, the direct Urca process will dominate

over the modified Urca process and lead to a fast cooling of neutron stars. The

direct Urca process in neutron stars is believed to be an important cooling process

in hot neutron stars [105]. Recent data from Chandra observatory demonstrates a

fast cooling of neutron stars [127], in support of the direct Urca process.

Within the direct Urca process, neutrinos are produced in a two step cycle:

neutrons decay into protons and emit antineutrinos, subsequently the protons

convert back into neutrons via electron capture and emit neutrinos. Thus, the cycle

is:

n → p + e− + νe ,

e− + p → n + νe. (3.66)

For the sequence to take place, momentum conservation requires:

pp
f + pe

f ≥ pn
f ≥| pp

f − pe
f | . (3.67)

Because of the ultra-relativistic nature of the electron, the energy constraints are

less stringent than the momentum constraints and could be ignored for most

densities and forms of IEOS. The charge neutral condition requires equal proton

and electron density ρp = ρe and consequently equal Fermi momentum,

pp
f = pe

f . (3.68)
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One also knows that Fermi momentum scales as pf ∼ ρ1/3, so that the above

condition gives the critical proton fraction:

ycr =
ρp

ρp + ρn

=
1

9
. (3.69)

I will show how the different IEOS will affect the onset of the direct Urca

process. Here I will only consider a cold neutron star, and examine the equilibrium

proton concentration in a neutron star. If the equilibrium proton concentration yeq

is larger than the critical proton fraction ycr for momentum conservation, then the

direct Urca process becomes a favorable cooling process for the corresponding hot

neutron star. A more thorough investigation would require calculation of a reaction

rate for the modified and direct Urca processes at non-zero temperatures in order to

determine the dominant process.

The electron gas is treated here as an ultra-relativistic ideal gas, where single

particle energies are ε =
√

p2 + m2
e ∼ p, and the energy density corresponds to the

sum of single particle energy up to the Fermi momentum. The variation of the total

energy with respect to the proton fraction gives the equilibrium condition:

µe = µn − µp , (3.70)

where the chemical potentials are the respective single particle energies at the Fermi

surface. From this condition, I find the equilibrium proton fraction y needs to

satisfy the relation:

4esym(1− 2y) = pF y1/3 . (3.71)

where pF is the Fermi momentum for the corresponding symmetric nuclear matter.

The equilibrium proton fraction in a neutron star depends sensitively on the ratio of

the nuclear-matter Fermi-momentum to the net symmetry energy for the given
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density. If the symmetry energy turns negative, the equilibrium proton fraction

vanishes, i.e., pure neutron matter becomes energetically favorable; if the symmetry

energy stays positive, then equilibrium proton fraction will be always non-zero. On

the other hand, if the symmetry energy is positive and large, the symmetric nuclear

matter may become favorable. Such a conclusion is independent of the density

dependence of the terms in the EOS or momentum dependence of the optical

potential.
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Figure 3.12: Equilibrium proton fraction for the different MI IEOS: iso-SH, iso-NH,
iso-NS, and iso-SKM, together with the critical proton fraction.

The proton equilibrium fraction in a neutron star and the critical proton

fraction for direct Urca process are plotted in Fig. 3.12 for four of the IEOS with no

momentum dependence in optical potentials. The iso-SH and iso-NH interactions

will give rise to high proton concentrations at high densities, and thus will enable

the direct Urca process and fast cooling in hot neutron star; while the equilibrium
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proton fractions for the other two types of EOS (iso-NS and iso-SKM) are always

below the critical proton fraction for the direct Urca process, and not allow for a

fast cooling in a neutron star. Since the momentum-independent iso-SKM case will

lead to a negative symmetry energy at high densities, the equilibrium proton

fraction vanishes at high densities, leading to pure neutron matter in the center of

neutron stars. The critical proton fraction of ycr = 1/9 is also plotted for reference.
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3.6 Aspects of Transport Simulations of

Heavy-ion Collisions

This section deals with details of transport theory implementations in

heavy-ion collisions. The self-consistent initialization of the nuclear ground state is

important for the description of the excitations during the reaction, and is given in

section 3.6.1. The quasi-particle ensemble method is used for integrating the

transport equations, and it is discussed in section 3.6.2. The lattice hamiltonian

method is used for achieving a high accuracy in the numerical integration, and it is

described in section 3.6.3. Both the in-medium cross section and free space NN

cross section are used in transport simulations, and a few of the common used

parameterizations of the in-medium cross section are discussed in section 3.6.4.

3.6.1 Initialization of a Reaction System

At the start of the reaction simulation the nuclei need to be initialized in their

ground states. The minimization of the energy functional for the ground state

nuclei, leads to the Thomas-Fermi (TF) equations for nuclear densities.

Specifically, to determine the ground state properties of a nucleus, I try to

minimize the total energy of a system under the condition of fixed total neutron and

proton numbers in the nuclear frame. The condition of fixed total N and Z are

imposed through the introduction of Lagrange multipliers. The condition of the

minimal energy subject to the constraints, under the variation of the distribution

function for protons and neutrons then yields:

0 = ε̃p

(
pF

p

)− as∇2

(
ρ

ρ0

)
+ Up

iso + Φ− µp , (3.72)
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0 = ε̃n

(
pF

n

)− as∇2

(
ρ

ρ0

)
+ Un

iso − µn , (3.73)

These are just the Thomas-Fermi equations in the local frame. In the above

equations, µp and µn are the Lagrange multipliers for the proton and neutron

numbers, respectively. The consistency for the nuclear density requires that ∇ρ = 0

at the edge of the density distribution.

The role of the derivative correction in (3.72), (3.73), and (3.29) is to reduce

the effect of the negative MF when the density distribution in the vicinity is

primarily concave and to enhance the effect of the field when the density is convex.

Such a result would be obtained for a finite-range effective two-body interaction

convoluted with density expanded in position to second order. Not surprisingly, the

derivative correction to single particle energy is small but it becomes important

when the energies balance, such as in Eqs. 3.72 and 3.73, permitting an adequate

description of the density in the ground state.

In finding the density profile, it is convenient to transform the TF equations

into:

1

r2

d

dr
r2 d

dr
ρ =

ρ0

2a1

[
ε̃F
p + Φ + ε̃F

n + Up
iso + Un

iso − µp − µn

]
, (3.74)

µp − µn = ε̃F
p + Φ− ε̃F

n + Up
iso − Un

iso . (3.75)

The net density profile ρ(r) may be obtained by starting Eq. (3.75) with some

density at r = 0. At any r, separate ρp and ρn may be found from (3.75) and Φ can

be obtained from Gauss’ Law. The acceptable starting ρ at r = 0 is the one for

which ρ = 0 is reached in the solution simultaneously with dρ/dr = 0 at the edge of

the density distribution. The Coulomb potential Φ is computed in the solution by

integrating the electric field from Gauss’ Law. The chemical potentials are adjusted

until the required proton and neutron numbers are obtained. At the end of the
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calculation, the obtained potential Φ and µp may be renormalized, so that Φ → 0 as

r →∞.

Figure 3.13 shows the calculated proton and neutron density profiles for a

moderate and for a large nucleus and for MFs corresponding to K = 210 MeV, with

and without momentum-dependence.

Figure 3.13: Nucleon density profiles from solving the TF equations for MFs cor-
responding to K = 210 MeV, together with the empirical charge density profiles
for 40Ca and 208Pb. The solid lines represent the empirical profiles from Ref. [11].
The long- and short-dashed lines represent the proton and neutron profiles, respec-
tively, for the momentum-independent field. The long- and short-dash-dotted lines
represent the proton and neutron profiles, respectively, for the momentum-dependent
field parameter set S3 in Table 3.2 that yields m∗ = 0.70 m. (From [12]).
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3.6.2 Integration of Transport Equations

In integrating the Boltzmann equations, I employ the ensemble test particle

method. Within that method, each quasi-particle is represented by a large number

of test particles, (usually N > 170). Each test particle represents a possible phase

space location for the quasi-particle. An average over all these possible phase space

configurations within some phase space volume gives the quasi-particle distribution

f(p, r),

g

(2π)3
f(p, r, t) =

1

N
∑

k

δ(p− pk(t)) δ(r− rk(t)) , (3.76)

where it is understood that both sides are to be averaged over the phase space

volumes. Without the collision in the Boltzmann equations, the quasiparticle

distribution follow Vlasov equations. For the distribution in Eq. (3.76), a Vlasov

equations yields:

−
∑

k

ṗkδ
′(p− pk(t)) δ(r− rk(t))

−
∑

k

ṙkδ(p− pk(t)) δ′(r− rk(t))

+
∂ε

∂p

∑

k

δ(p− pk(t)) δ′(r− rk(t))

− ∂ε

∂r

∑

k

δ′(p− pk(t)) δ(r− rk(t)) = 0 (3.77)

For this to hold, coefficients in front of the respective delta-functions must vanish,

which demonstrates that the test particles must follow Hamilton’s equations:

d rk

dt
=

d ε

dpk

,

dpk

dt
= − d ε

d rk

. (3.78)
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The quasi-particle energy ε, specified in terms of the MF, completely determines the

quasi-particle trajectory in the absence of inter-particle collisions.

The initial test particle distribution f(p, r) is Monte-Carlo generated according

to the density profiles for the initial reaction system. The particle collisions are

Monte Carlo sampled according to the collision integral on the r.h.s. of the

Boltzmann equations. The total particle density ρ, the total particle momentum P

and the energy density are calculated by averaging over the corresponding

quantities for the collection of test particles.

The realization of the test particle method is usually done on a spatial mesh so

as to reduce the computational cost. The spatial size of the mesh then also

determines the accuracy of the simulation. A coarser mesh size leads to faster

calculations but may miss details of the highly nonequilibrium dynamics of the

heavy-ion reaction. A too fine mesh, on the other hand, may lead to excessive

fluctuations in the distribution function and other variables. The mesh size also

determines the time step ∆t in a simulation. Typically one requires that a test

particle moves in each time step a distance short compared to the size of the mesh:

v∆t < ∆l.

A compromise must be reached between the need for more detailed reaction

description and the speed of a simulation. The accuracy of the test particle method

depends on the number of test particles used, and it will improve as
√N . But a

large number of test particles can also slow down the simulations and is also limited

by computer memory.

3.6.3 The Lattice Hamiltonian Method

The lattice Hamiltonian method is employed within transport theory to reach

better numerical accuracy. This method was first proposed by Lenk and

Pandharipande for momentum-independent fields [92], and it was later extended in
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[93] and [128]. Here, I will summarize the method briefly.

Within the computational region, I introduce a mesh with nodes at rα

separated by ∆li, i = 1, 2, 3, in three cartesian directions. Associated with each of

the nodes is a form factor 0 ≤ Sα ≤ 1, which is continuous and piecewise

differentiable within the computational region and concentrated around the node rα.

I require the form factors to satisfy two conditions: first, every test-particle within

the region is fully accounted for; second, every node gets its share of the volume.

Mathematically, the first requirement is equivalent to:

∑
α

Sα(r− rα) = 1 , (3.79)

for all r within the region. And the second is just

∫
drSα(r) = ∆V , (3.80)

where ∆V = ∆l1 ∆l2 ∆l3. The average Wigner function for a node, in terms of Sα, is

f(p, rα) =
1

N ∆V

∑

k

δ(p− pk) Sα(rk − rα) . (3.81)

This form is also used for the particle density ρ(rα), the charge density ρch(rα) and

the isospin density ρI(rα). The single particle potential U(rα), Coulomb potential

Φ(rα) and isospin potential U Iso(rα) are calculated in terms of those averaged

densities. The Coulomb potential Φ satisfies a discretized Poisson equation [129]

with ρch.

The approximate energy for the system (lattice Hamiltonian) in terms of the
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spatially averaged Wigner functions is then:

E = ∆V
∑

α

(
ẽ0{f(rα)}+ ẽI{f(rα)}+

1

2
ρch(rα) Φ(rα)

+
as

4ρ0

∑
i

1

(∆li)2
[(ρ(rα + ∆li ûi)− ρ(rα))2

+ (ρ(rα)− ρ(rα −∆li ûi))
2]

)
. (3.82)

The single-particle energy for a test-particle is the variation of total energy

with respect to the particle number, and turns out to be a weighted average of

single-particle energies associated with the neighboring nodes:

ε(p, r) =
∑

α

Sα(r− rα) ε(p, rα) , (3.83)

with

εX(p, rα) = ε̃X(p, {f(rα)}) + AX U surf (rα) + U
X

Iso(rα) + ZX Φ(rα) , (3.84)

where,

U surf (rα) =
as

ρ0

∑
i

1

(∆li)2

(
2ρ(rα)− ρ(rα + ∆li ûi)− ρ(rα −∆li ûi)

)
.

The derivatives of the the single-particle energy (3.83) yield an expression for

the velocity, as an analogous average to that for the energy,

v(p, r) =
∑

α

Sα(r− rα)v(p, rα) , (3.85)
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and an expression for the force, amounting to a prescription for the gradient,

−∂ε(p, r)

∂r
= −

∑
α

dSα(r− rα)

dr
ε(p, rα) . (3.86)

The integration precision for the lattice method will depend on the evaluation of

these single-particle energy derivatives.

In the simulations, I take S(r) =
∏

i gi(ri/∆li). In the interior of the

computational area, I use g(x) = 0.5 for |x| < 0.5, g(x) = 0.75− 0.5|x| for

0.5 < |x| < 1.5, and g(x) = 0 for 1.5 < |x|. At the front edge, I use

g(x) = 0.75 + 0.5x for −1.5 < x < 0.5, and g(x) = 0 outside of that interval.

Within the above equations, I find the physical quantities stem from averaging

over a range of neighboring cells. The velocity and the force for the quasiparticles in

Eq.(3.85) and (3.86) impact the long-time evolution of a reaction system. The

consistency between the averaging and evaluation of derivatives here ensures good

accuracy for the conservation of energy and momentum, generally improves the

convergence of the numerical solution. The accuracy of energy conservation has

been tested for momentum-dependent MFs by Danielewicz in the BUU simulations

[12], and the method was found to work well.

3.6.4 In-Medium Cross Sections

The nucleon-nucleon cross sections inside a nuclear medium have been

investigated by many authors and were found to be significantly different from the

free space NN cross sections. Microscopic Bethe-Goldstone equation calculations

[130, 131, 132, 133] and Dirac-Brueckner method [134, 135, 136] were used, in

particular, in studying the in-medium effects, and the in-medium cross sections were

found to be both density and temperature dependent. There is a possibility of a

cross section enhancement near a superconducting phase transition [131], which is
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often ignored in transport simulations because of the narrow parameter-range where

the enhancement might occur.

At low energies, NN collisions are suppressed by the Pauli principle. This

significantly increases the mean free path of the nucleons inside nuclear matter, and

the effect is quite important for low energy transport simulations. In transport

simulation, the Pauli blocking effect is included in the collision integral through

occupation f and vacancy 1− f on the r.h.s. of the Boltzmann equations, Eq.(3.14)

and (3.15). The net effect is to reduce the collisions that result in particles inside

the Fermi sphere, and it is less significant for high momentum particles.

Reductions of cross section inside the medium might take place due to

geometrical shadowing of the collisions. Such a shadowing would result in a

geometrical cut-off for the total cross section, with the maximum of the cross

section taking the phenomenological form σ0 = yρ−2/3, where y ∼ 1. The limit on

the in-medium cross section can be, in practice, implemented with [12, 7]:

σ = σ0 tanh(σfree/σ0) . (3.87)

where the constant factor y is usually taken between 0.8 ∼ 1.0.

The Rostock group found the in-medium cross sections to be both density and

energy dependent [137, 138]. Their results can be coarsely parameterized with:

σ = σfree exp

(
−0.6

ρ

ρ0

1

1 + (Tcm/150 MeV)2

)
(3.88)

where Tcm is the c.m. kinetic energy of a scattering nucleon pair.

Another employed phenomenological form the in-medium cross sections is one

characterized by a linear reduction [139].

σ = (1− α
ρ

ρ0

)σfree. (3.89)
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The linear reduction at low ρ is, e.g., borne out by Eq. (3.88). But as density

becomes large, the simple linear dependence might differ significantly from

Eq. (3.88).

Transport simulations with free-space cross sections were found to be

inadequate to explain many experimental observables. The directed flow studies and

the related balance energy studies, as well as the stopping power studies have

demonstrated that reduced in-medium cross sections better describe experimental

results. Specifically, the Rostock and the geometry cut-off type in-medium cross

sections were found to produce similar stopping power, and correspondingly to give

rise to similar viscosities [7]. The linear reduction type was also extensively studied

by many authors, with the linear reduction coefficients in Eq. (3.89) needing to be

around α ∼ 0.2 in order to explain the stopping power and the balance energy

[140, 141].

The in-medium cross sections are also likely isospin dependent, which have

been reviewed by Li et al. [9], but few efforts have addressed this issue in terms of

transport theory. Some theoretical results, in fact, point to a quite different isospin

dependence of the in-medium NN cross sections from that in free space [131, 132]. I

also have investigated isospin dependence of the in-medium cross sections. If one

assumes the Rostock or the geometry cut-off model, then, additional reduction of

the n-p cross section by 20% compared to pp only increases the balance energy by

less than 10MeV. Such a change is not very significant, because the balance energy

and flow are sensitive to the overall cross sections irrespective of isospin dependence.

One can expect a stronger sensitivity to the isospin dependent cross section in the

isospin related signals, such as signals from isospin diffusion process. The isospin

diffusion coefficient, which characterizes isospin diffusion process, is directly

proportional to the in-medium n-p cross section independent of the n-n or p-p cross

sections in the lowest order approximation. (See chapter 4 on the isospin diffusion
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coefficients and the discussion of isospin diffusion process in Chapter 5).
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Chapter 4: Nuclear Isospin

Diffusivity

4.1 Introduction

This chapter deals with the irreversible transport of isospin and other

quantities in a nuclear system, as pertinent for reactions, for small deviations from

equilibrium. In that limit, the irreversible transport acquires universal features and

is characterized in terms of transport coefficients, that include the isospin-diffusion

coefficients. The coefficients are derived here for the dynamics described in terms of

a Boltzmann equation set such as that used in reaction simulations [10, 86]. The

main diffusion coefficient or diffusivity, characterizing isospin diffusion driven by the

gradient of asymmetry, is evaluated using free neutron-proton cross sections. In the

past, other transport coefficients, viscosity and heat conductivity, have been

investigated for nuclear matter [142, 143, 144, 145, 146]. It was subsequently found

that conclusions from comparisons of reaction simulations to data on stopping can

be universally formulated in terms of the nuclear viscosity [7]. It is hoped that the

diffusivity can be of such utility as other coefficients, for the systems with a varying

isospin content.

The past studies of irreversible linear transport for nuclear matter were

primarily directed at momentum and energy. Tomonaga [142] and Galitskii et al.

[143] obtained the low- and high-temperature limits for the shear viscosity and heat

conductivity. Danielewicz [144] derived results for those coefficients valid in a wide

range of nuclear densities and temperatures. Hakim and Mornas [146] studied

different transport coefficients within the Walecka model following the

relaxation-time approximation.
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My derivation of diffusion coefficients follows the general strategy of Chapman

and Enskog [76], but here for a Fermi system, with inclusion of mean-field effects

appropriate for a nuclear system. In the next section, I will discuss the diffusion

coefficient concept qualitatively and make simple estimates for nuclear matter. The

modification of the Boltzmann equation to extend it to fermions has been first

discussed by Uhlenbeck and Uehling [73, 74]. In Sec. 4.3, I will formally solve the

set of Boltzmann equations for a binary system of fermions to find thermodynamic

fluxes driven by specific thermodynamic forces and to find general but formal

expressions for the diffusion and other transport coefficients. The transport

coefficients have been (as I found) first considered for fermions by Hellund and

Uhlenbeck [147]; compared to their paper, my notation here adheres more to what is

now customary for nuclear reactions. Closely related to the diffusivity is the

electrical conductivity that is included in my considerations. In Sec. 4.4, I obtain

more specific results for the coefficients on assuming deviations from equilibrium

suggested by the Boltzmann equation set, for specific thermodynamic forces present.

Numerical results for the coefficients are obtained in Sec. 4.5 using free NN cross

sections, where I also estimate the pace of isospin equilibration in reactions. I

summarize the results in Sec. 4.6. More technical mathematical details and some

reference information are provided in five appendices. In sequence, these appendices

are devoted to the definitions of macroscopic quantities, the continuity equations,

the continuity equations for an ideal fluid, the transformations in the driving force

for diffusion and to the algebra of collision brackets.

4.2 Diffusion in a Binary System

Diffusion and other irreversible transport processes occur when a system is

brought out of equilibrium. The direction of those processes is to bring the system
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back to the equilibrium. For small perturbations, in terms of constraints that may

be set externally, the system response is linear in the perturbation. The coefficient

of proportionality between the induced flux and the perturbation is the transport

coefficient.

In a multicomponent system with no net mass flow, irreversible particle flows

result if particle concentrations are nonuniform. For N components, there are N − 1

independent flows and N − 1 independent concentrations (since the concentrations

need to sum up to 1). The flows are then related to the gradients of the

concentrations with an (N − 1)× (N − 1) matrix of diffusion coefficients. In a

binary system, only a single coefficient of diffusion, or diffusivity, relates the

irreversible particle flow to the nonuniformity in concentration. However, as we shall

see, nonuniformities in quantities other than concentration, can induce a dissipative

particle flow as well. My focus, obviously, is the binary system of neutrons and

protons. However, for the sake of utility of the results elsewhere and for the ability

to examine various limits, I shall consider a general two-component system of

fermions. An extension of these results to bosons, outside of condensation, will be

trivial. The two components will be denoted 1 and 2. Then, for the particle i, the

density is ni = Ni/V , where Ni is the particle number in some infinitesimal volume

V . With net density n = n1 + n2, the particle concentration for 1 is ν = n1/n and

for 2 it is 1− ν = n2/n. Moreover, with mi representing the mass of particle i, the

net mass density is ρ = ρ1 + ρ2 = m1 n1 + m2 n2, and the mass concentration for i is

ci = mi ni/ρ. The differential particle concentration is δ = (n1 − n2)/n. The

different concentrations are obviously related and thus we have ν = (1 + δ)/2 and

c1 = m1 (1 + δ)/(m1 (1 + δ) + m2 (1− δ)). Later in this Chapter, I shall primarily

use the differential concentration δ as an independent variable.
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The dissipative particle flows Γi are defined relative to the local mass velocity v,

Γi = ni (vi − v) , (4.1)

where vi is the local velocity of i’th component and

v = (ρ1 v1 + ρ2 v2)/ρ . (4.2)

We might consider other flows such as those defined relative to the local particle

velocity, but those flows are combinations of Γ1 and Γ2. Moreover, even Γ1 and Γ2

are redundant and we might just use Γ1 as an independent flow with the flow of 2,

as easily seen, given by Γ2 = −m1 Γ1/m2. Another option might be to use as

independent the differential flow defined as

Γδ = Γ1 − Γ2 . (4.3)

If the system is at uniform pressure and temperature, but there is a small

concentration gradient present, the fluxes develop linear in the gradient, enabling us

to write, e.g.

Γ1 = −nD1
∂ν

∂r
and Γ2 = −nD2

∂(1− ν)

∂r
. (4.4)

These are so-called Fick’s laws. Notably, the stability of an equilibrium state

requires Di > 0. Since m1 Γ1 + m2 Γ2 = 0, One has m1 D1 = m2 D2. For the

differential flow, one has

Γδ = −nD1
∂ν

∂r
+ nD2

∂(1− ν)

∂r
= −nDδ

∂δ

∂r
. (4.5)

Here, the differential coefficient is Dδ = (D1 + D2)/2.
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So far, I assumed a system at a uniform pressure and temperature, with only

the concentration changing with position. If the variations in a system are more

complex, other nonequilibrium forces than the concentration gradient can drive the

diffusion. This will be explored later in this chapter. General guidance regarding

the forces which can contribute is provided by the Curie principle. This principle

exploits symmetry and states that the driving forces must have the same tensor

rank and parity as the flux they generate.

For the system of neutrons and protons, the differential concentration δ

becomes a concentration of the isospin and the differential flow becomes the isospin

flow, Γδ ≡ ΓI . Moreover, the differential diffusion coefficient becomes an isospin

diffusion coefficient, Dδ ≡ DI , and for equal masses one expects DI = Dp = Dn.

It is popular to relate the concept of a diffusion coefficient to a diffusion

equation. Indeed, if one considers a uniform system of protons and neutrons at rest,

but with the nucleon concentration changing in space, then, from the continuity

equation for the differential density

∂ (n δ)

∂t
= −∇ · ΓI , (4.6)

I get the familiar equation

∂δ

∂t
= DI ∇2δ . (4.7)

Here, for DI , I have assumed a weak dependence on the concentration δ.

Before turning to a derivation of rigorous results for the diffusion and other

transport coefficients, it may be instructive to produce simple mean-free-path

estimates for those coefficients. Let us consider components of equal mass (the mass

then becomes a simple normalization coefficient in density that may be factored

out) and consider the gradient of concentration along the x axis, in the medium at

rest. If one takes the three coordinate axes, then 1/6 of all particles will be
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primarily moving along one of those axes in the positive or negative direction, with

an average thermal velocity V =
√

3T/m, for the distance of the order of one mean

free path λ, without a collision. Considering the particles 1 moving through the

plane at x = 0, they will be reflecting density at a distance λ away. Including the

particles moving up and down through the plane, I find for the flux

Γ1 ≈ 1

6
(n1(x− λ)− n1(x + λ)) V ≈ −1

3
λV

∂n1

∂x
.

With (4.4), I then get for the diffusion coefficient

D ∼ 1

3
λV ∼ 1

nσ

√
T

3m
, (4.8)

with λ ∼ 1/(nσ). A more thorough investigation shows that it is the cross section

σ12 for interaction between the two species that enters the diffusion coefficient.

Let us now evaluate the magnitude of the isospin diffusion coefficient. At

temperature T ∼ 60 MeV and normal density n0 = 0.16 fm−3, with σnp ∼ 40 mb,

one finds DI ∼ 0.2 fm c. As will be seen, this is in a rough agreement with thorough

calculations.

Similarly to the above, one could employ the mean-free path arguments to

determine the better investigated coefficients: shear-viscosity η and heat conduction

κ. One finds η ∼ 1
3
nm V λ and κ ∼ 1

3
nV λ cV , where cV is the specific heat per

particle. For T ∼ 60 MeV and σ ∼ 40 mb, I find η ∼ 30 MeV/(fm2 c) and

κ ∼ 0.06 c/fm2. Up to factors, the shear viscosity and heat conduction coefficients

play the role of diffusion coefficients in the diffusion equation for velocity vorticity

and in the heat conduction Fourier equation identical in form to the diffusion

equation.

In the estimates above, I just considered the free motion of particles in-between

collisions. If self-consistent mean fields produced by the particles depend on
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concentration, then this dependence, on its own, contributes to the diffusion. In the

case of nuclear matter, the interaction energy per nucleon may be well

approximated in a form that is quadratic in isospin asymmetry, eint
sym δ2, where

δ = (np − nn)/n and eint
sym is the interaction contribution to the symmetry energy

esym. At normal density, the interaction symmetry energy is eint
sym ≈ 14 MeV. The

naive expectation for two-body interactions is that eint
sym is linear in density. At

constant net density, the quadratic dependence of the interaction energy on δ leads

to the force Fp,n = ∓(4 eint
sym/n) (∂np/∂r), of opposite sign on protons and neutrons.

The direction of the force for positive eint
sym is to reduce nonuniformity in isospin.

Under the influence of this force, a proton accelerates for a typical time between

collisions ∆t = λ/V and then, in a collision, resets its velocity. The described

polarization effect augments then the proton flow by

∆Γp = np ∆vp = −4 eint
sym

np

n

λ

2 mV

∂np

∂r
. (4.9)

In comparing with (4.8), after correcting for the local center of mass motion, I find

that the polarization increases the diffusion coefficient by

D′
I ∼ (1− δ2)eint

sym

1

T
D0

I , (4.10)

where D0
I represents the previous estimate in Eq. (4.8). It is apparent that the

contribution of the polarization effect is negligible for temperatures T À eint
sym.

However, at temperatures comparable to eint
sym, the contribution could be significant;

notably, at those temperatures Fermi effects also need to play a role.

The isospin diffusion induced by mechanical forces has analogy in an electric

current induced by the electric fields. Indeed, for large enough systems, the

Coulomb interactions can contribute currents altering the concentration and, for

completeness, I evaluate the conductivity σE for nuclear matter, relating the isospin
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flux to the electric field,

ΓI = σE E , (4.11)

where E is the local electric field.

4.3 Fluxes from the Boltzmann Equation Set

4.3.1 Coupled Boltzmann Equations

The two components of the binary system will be described in terms of the

quasiparticle distribution functions fi(p, r, t). The local macroscopic quantities

h(r, t) are expressed as momentum integrals of f ,

h(r, t) =
g

(2π~)3

∫
dpχ(p)f(p, r, t) , (4.12)

where g is the intrinsic degeneracy factor. Different standard expressions for

macroscopic quantities in terms of f , such as pressure and heat flow, are listed in

Appendix A.

The components are assumed to follow the nonrelativistic set of coupled

fermion Boltzmann equations, without momentum-dependence in the MFs,

∂fi

∂t
+

p

mi

· ∂fi

∂r
+ Fi · ∂fi

∂p
= Ji . (4.13)

The terms on the l.h.s. account for the changes in fi due to the movement of

quasiparticles and their acceleration under the influence of mean-field and external

forces, included in Fi, while the r.h.s. accounts for the changes in fi due to

collisions. In the following, I shall often denote the l.h.s. of a Boltzmann equation as

Di. With dσ/dΩ and v∗ representing the differential cross section and relative
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velocity, respectively, the collision integral for particle 1 is

J1 = J11 + J12

=
g

2(2π~)3

∫
d3p1a dΩ′ v∗

(
dσ11

dΩ

) (
f̃1 f̃1a f ′1 f ′1a − f1 f1a f̃ ′1 f̃ ′1a

)

+
g

(2π~)3

∫
d3p2 dΩ′ v∗

(
dσ12

dΩ

) (
f̃1 f̃2 f ′1 f ′2 − f1 f2 f̃ ′1 f̃ ′2

)
. (4.14)

Here, f̃ = 1− f is the Pauli principle factor. The factor of 1/2 in front of the first

r.h.s. J11 term, compared to the J12 term, compensates for the double-counting of

final states when integration is done over the full spherical angle in scattering of

identical particles. The subscript a and the primes in combination with the particle

subscripts 1 and 2 are used to keep track of incoming and outgoing particles for a

collision. Other than in the context of particle components, such as here, the 1 and

2 subscripts will not be utilized in this chapter. The collision integral J2 for particles

2 follows from (4.14) upon interchange of the indices 1 and 2. As it stands, the set of

the Boltzmann equations (4.13), with (4.14), preserves the number of each species.

In the macroscopic quantities (4.12), the distribution function f gets multiplied

by the degeneracy factor g. When considering changes of macroscopic quantities

(4.12) dictated by the Boltzmann equation (4.13), the changing distribution

function f continues to be multiplied by g. In these equation, the factor of f for the

other particle in the collision integral J is accompanied by its own factor of g. As a

consequence, in the variety of physical quantities I derived, the factor of f is always

accompanied by the factor of g, while, however, f̃ is not. To simplify the notation,

in the derivations that follow, I will suppress the factors of g, only to restore those

factors towards the end of the derivations.

When the Boltzmann equation set is used to study the temporal changes of

densities of the quantities conserved in collisions, i.e. number of species, energy and

momentum, local conservation laws follow. Those conservation laws are discussed in
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Appendix B.

4.3.2 Strategy for Solving the Boltzmann Equation Set

Irreversible transport takes place when the system is brought out of equilibrium

such as under the influence of external perturbation. Aiming at the transport

coefficients, I shall assume that the deviations from the equilibrium are small, of the

order of some parameter ε that sets the scale for temporal and spatial changes in

the system. Then the distribution functions may be expanded in the power series in

ε [76, 75]

f = f (0) + f (1) + f (2) + . . . , (4.15)

where f (k) represent the consecutive terms of expansion and f (0) is the strict local

equilibrium solution. The terms of expansion in f may be nominally found by

expanding the collision integrals in ε, following (4.15), expanding, simultaneously,

the derivative terms in the equations and by demanding a consistency,

D(1)
i +D(2)

i + . . . = J
(0)
i + J

(1)
i + J

(2)
i + . . . . (4.16)

Here, one recognizes that the derivatives, themselves, bring in a power of ε into the

equations and, thus, the derivative series starts with a first order term in ε.

While I nominally included the zeroth-order term in the expansion of the

collision integral Ji, the integral vanishes for the equilibrium functions

f
(0)
j = 1

/{
exp

[(
(p−mj v)2

2mj

− µj

)
/T

]
+ 1

}
, (4.17)

where µj, v and T are the local kinetic chemical potential, velocity and temperature

which are functions of r and t, consistent with the Euler equations (B.7). Notably,

the vanishing of the collision integrals is frequently exploited in deriving the form of
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the equilibrium functions, leading to the requirement that fj/f̃j is given by the

exponential of a linear combination of the conserved quantities. In the context of

specific transport coefficients, the boundary conditions for the Euler equations (B.7)

may be chosen to generate just those irreversible fluxes, and forces driving those

fluxes, that are of interest.

The equation set (4.16) can be solved by iteration, order by order in ε, requiring

D(k)
i = J

(k)
i . (4.18)

Thus, f
(0)
j may be introduced into Di, producing D(1)

i and allowing to find f
(1)
j .

Next, inserting f
(1)
j into Di yields D(2)

i that allows to find f
(2)
j and so on.

For finding the coefficients of linear transport, only one iteration above is

necessary, since f
(1)
i , as linear in gradients, yield dissipative fluxes that are linear in

those gradients. The local equilibrium functions on its own produce no dissipative

fluxes, as the species local velocities Vj and heat flux Q vanish, while the kinetic

pressure tensor P is diagonal,

ni V
(0)
i =

∫
d3p

(2π~)3

p

mi

f
(0)
i (p, r, t) = 0 , (4.19a)

Q(0) =
∑

j

∫
d3p

(2π~)3

p2

2mj

p

mj

f
(0)
j (p, r, t) = 0 , (4.19b)

P
(0)

=
∑

j

∫
d3p

(2π~)3

pp

mj

f
(0)
j (p, r, t) =

2

3
nE 1 , (4.19c)

in the frame where the local velocity vanishes v(r, t) = 0, with E representing the

local kinetic energy per particle. The above fluxes reduce the local continuity

equations to the ideal-fluid Euler equations.

102



4.3.3 Boltzmann Set in the Linear Approximation

I now consider the terms linear in derivatives around a given point, i.e. the case

of k = 1 in (4.18), for the Boltzmann equation set. On representing the distribution

functions as fj = f
(0)
j + f

(1)
j , I expand the collision integrals Ji, to get terms J

(1)
i

linear in f
(1)
j . Upon representing f

(1)
j as f

(1)
j = f

(0)
j f̃

(0)
j φj, I get for the k = 1 i = 1

version of (4.18):

∂f
(0)
1

∂t
+

p

m1

· ∂f
(0)
1

∂r
+ F1 · ∂f

(0)
1

∂p
= −I11(φ)− I12(φ) , (4.20)

where

Iij(φ) =
1

1 + δij

∫
d3pja

(2π)3
dΩ′ v∗

(
dσij

dΩ

)
f

(0)
i f

(0)
ja f̃

(0)′
i f̃

(0)′
ja

(
φi + φja − φ′i − φ′ja

)
,

(4.21)

and where I have utilized the property of the equilibrium functions

f
(0)
i f

(0)
ja f̃

(0)′
i f̃

(0)′
ja = f̃

(0)
i f̃

(0)
ja f

(0)′
i f

(0)′
ja . (4.22)

The result for i = 2, analogous to (4.20), is obtained through an interchange of the

indices 1 and 2.

The l.h.s. of Eq. (4.20) contains the derivatives of equilibrium distribution

functions with respect to t, r and p. These derivatives can be expressed in terms of

the parameters describing the functions (4.17), i.e. µi, T and v. Through the use of

the Euler equations (Appendix B) and equilibrium identities (Appendix C),

moreover, the temporal derivatives may be eliminated to yield for the rescaled l.h.s.

of (4.20)

T

f
(0)
1 f̃

(0)
1

D(1) =

(
p2

2m1

− 5

3
E

)
p

m1 T
· ∂T

∂r
+

p̊ p

m1

:
∂

∂r
v +

p

ρ1

· d12 . (4.23)
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Here, a symmetrized traceless tensor is defined as x̊ y = 1
2

(
xy + y x

)− 1
3
(x · y) 1,

and

d12 =
ρ1 ρ2

ρ

[(
−F1

m1

+
F2

m2

)
+ T

∂

∂r

(
µ1

m1 T
− µ2

m2 T

)
+

5

3 T

(
E1

m1

− E2

m2

)
∂T

∂r

]
,

=
ρ1 ρ2

ρ

[(
−F1

m1

+
F2

m2

)
+

∂

∂r

(
µ1

m1

− µ2

m2

)
+

(
s1

m1

− s2

m2

)
∂T

∂r

]
, (4.24)

where si is the entropy per particle for species i, si = (5Ei/3− µi)/T . The result for

species 2 in the Boltzmann equation is obtained by interchanging the indices 1 and

2 in Eqs. (4.23) and (4.24). Note that d21 = −d12.

The representation (4.23) for the l.h.s. of the linearized Boltzmann equation

(4.20) exhibits the thermodynamic forces driving the dissipative transport in a

medium. Thus, one has the tensor of velocity gradients ∂
∂r

v contracted in (4.23)

with the tensor from particle momentum. The distortion of the momentum

distribution associated with the velocity gradients gives rise to the tensorial

dissipative momentum flux in a medium. As to the vectorial driving forces, they all

couple to the momentum in (4.23) and they all can contribute to the vector fluxes in

the medium, i.e. the particle and heat fluxes, as permitted by the Curie law. The

criterion that I, however, employed in separating the driving vectors forces in (4.23)

was that of symmetry under the particle interchange. When considering the

diffusion in a binary system, with the two components flowing in opposite directions

in a local frame, one expects the driving force to be of opposite sign for the two

species. On the other hand, in the case of heat conduction, one expects the driving

force to distort the distributions of the two species in the same direction.

Regarding the antisymmetric driving force in (4.24), one may note that for

conservative forces we have

Fi = − ∂

∂r
Ui . (4.25)

One can combine then the first with the second term on the r.h.s. of (4.24) by
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introducing the net chemical potentials µt
i = µi + Ui and obtaining

d12 =
ρ1 ρ2

ρ

[
∂

∂r

(
µt

1

m1

− µt
2

m2

)
+

(
s1

m1

− s2

m2

)
∂T

∂r

]
. (4.26)

For a constant temperature T , the driving force behind diffusion is the gradient of

the difference between the chemical potentials per unit mass, µt
12 = µt

1/m1 − µt
2/m2,

as expected from phenomenological considerations [148]. However, the temperature

gradient can contribute to the diffusion as well, which is known as the thermal

diffusion or Soret effect. Note that the vector driving forces in (4.23) vanish when

the temperature and the difference of net chemical potentials per mass are uniform

throughout a system.

Given the typical constraints on a system, it can be more convenient to obtain

the driving forces in terms of the net pressure P t, temperature T and concentration

δ, rather than µt
12 and T . Thus, on expressing the potential difference as

µt
12 = µt

12(P
t, T, δ), I get

dµt
12 =

(
∂µt

12

∂P t

)

T,δ

dP t +

(
∂µt

12

∂T

)

P t,δ

dT +

(
∂µt

12

∂δ

)

P t,T

dδ , (4.27)

and

d12 =
ρ1 ρ2

ρ

(
ΠP

12∇P t + ΠT
12∇T + Πδ

12∇δ
)

, (4.28)

that I will utilize further on. The coefficient functions are

ΠP
12 =

(
∂µt

12

∂P t

)

T,δ

, (4.29a)

ΠT
12 =

(
∂µt

12

∂T

)

P t,δ

+

(
s1

m1

− s2

m2

)
, (4.29b)

Πδ
12 =

(
∂µt

12

∂δ

)

P t,T

, (4.29c)

and specific expressions for those functions in the nuclear-matter case are given in
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Appendix D. Notably, however, the concentration δ may not be a convenient

variable in the phase transition region where the transformation between the

chemical potential difference and δ is generally not invertible.

With the l.h.s. of the linearized Boltzmann set (4.20) linear in the driving

forces exhibited on the r.h.s. of (4.23), and with the collision integrals linear in the

deviation form-factors φ, the form factors need to be linear in the driving forces,

φ1 = −A1 · ∇T −B1 :
˚∇v −C1 · d12 ,

φ2 = −A2 · ∇T −B2 :
˚∇v −C2 · d12 , (4.30)

where A, B and C do not depend on the forces. On inserting (4.30) into (4.20), one

gets the following equations, when keeping alternatively a selected exclusive driving

force finite:

p

ρ1 T
f

(0)
1 f̃

(0)
1 = I11(C) + I12(C) , (4.31a)

− p

ρ2 T
f

(0)
2 f̃

(0)
2 = I22(C) + I21(C) , (4.31b)

when keeping d12,

p̊ p

m1 T
f

(0)
1 f̃

(0)
1 = I11(B) + I12(B) , (4.32)

and another one, with indices 1 and 2 interchanged, when keeping
˚∇v, and, finally,

(
p2

2m
− 5

3
E1

)
p

m1 T 2
f

(0)
1 f̃

(0)
1 = I11(A) + I12(A) , (4.33)

and another one, with 1 and 2 interchanged, when keeping ∇T (while d12 = 0).

The linearized collision integrals Iij cannot change the tensorial character of

objects upon which they operate. Moreover, the only vector that can be locally

utilized in the object construction is the momentum p. This implies, then, the
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following representation within the set (4.30):

Ci = ci(p
2)

p

ρi

, (4.34a)

Ai = ai(p
2)

(
p2

2mi

− 5

3
Ei

)
p

mi T 2
, (4.34b)

B = bi(p
2) p̊ p . (4.34c)

Here, the tensorial factors are enforced by construction. The factorization of the

scalar factors is either suggested by the respective linearized Boltzmann equation or

will be convenience later on. The unknown functions a, b and c can be principally

found by inserting (4.34) into Eqs. (4.31)-(4.33). The resulting equations are,

however, generally quite complicated and analytic solutions are only known in some

special cases. In practical calculations, I shall content myself with a power

expansion for the unknown functions. It has been shown that any termination of

the expansion will produce lower bounds for the transport coefficients and that the

lowest terms yield a predominant contribution to the coefficients [76].

4.3.4 Formal Results for Transport Coefficients

Before solving Eqs. (4.31)-(4.33), I shall obtain formal results for the transport

coefficients, assuming that solutions to (4.31)-(4.33) exist. I shall start with the

diffusion. The velocity for species 1 is

V1 =
1

n1

∫
d3p

(2π~)3

p

m1

δf1 =
1

n1

∫
d3p

(2π~)3

p

m1

φ1 f
(0)
1 f̃

(0)
1

= T

∫
d3p

(2π~)3
φ1 [I11(C) + I12(C)]

= −∇T
T

3

∫
d3p

(2π~)3
A1 · [I11(C) + I12(C)]

−d12
T

3

∫
d3p

(2π~)3
C1 · [I11(C) + I12(C)] , (4.35)
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where I have utilized (4.30) and (4.34). The contribution of a tensorial driving force

to the vector flow drops out under the integration over momentum, as required by

the Curie principle. With a result for V2 analogous to (4.35), I get for the difference

of average velocities (utilized for the sake of particular symmetry between the

components)

V1 −V2 = −∇T
T

3

{ ∫
d3p

(2π~)3
A1 · [I11(C) + I12(C)]

+

∫
d3p

(2π~)3
A2 · [I22(C) + I21(C)]

}

−d12
T

3

{ ∫
d3p

(2π~)3
C1 · [I11(C) + I12(C)]

+

∫
d3p

(2π~)3
C2 · [I22(C) + I21(C)]

}

= −T

3
({A,C}∇T + {C,C}d12) , (4.36)

where the brace product {·, ·} is an abbreviation for the integral combinations of

vectors A and C, multiplying the driving forces. The brace product has been first

introduced for a classical gas [76]. The fermion generalization of the product and its

properties are discussed in the Appendix E; see also [147].

The diffusion coefficient is best defined with regard to the most common

conditions under which the diffusion might occur, i.e. at uniform pressure and

temperature, but varying concentration. I have then, cf. (4.3),

V1 −V2 =
ρ

(m1 + m2) n1 n2

Γδ = −ρ n m12

ρ1 ρ2

Dδ ∇δ , (4.37)

where m12 is the reduced mass, 1/m12 = 1/m1 + 1/m2. Respectively, when P t and
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T vary, with d12 given by (4.28), I write the r.h.s. of (4.36) as

V1 −V2 = −ρ n m12

ρ1 ρ2

Dδ

(
∇δ +

ΠP

Πδ
∇P t + kT ∇T

)
, (4.38)

where, simplifying the notation, I dropped the subscripts 12 on coefficients Π. The

diffusion coefficient in the above is given by

Dδ =
T

3m12

Πδ

n

(
ρ1 ρ2

ρ

)2

{C,C} , (4.39)

and

kT =
ΠT

Πδ
+

1

Πδ

ρ

ρ1 ρ2

{A,C}
{C,C} . (4.40)

One can note that the expressions above contain Πδ in the denominators.

Normally, the positive nature of the derivative (4.29c) is ensured by the demand of

the system stability. However, across the region of a phase transition the

concentration generally changes while the chemical potentials generally do not, so

that Πδ = 0. While the coefficient Dδ above is the one I am after as the standard

one in describing diffusion, in the phase transition region it can be beneficial to

resort to the description of diffusion as responding to the gradient of the potential

difference in (4.28). Notably, as explained in the Appendix E, the brace product

{C,C} in (4.39) is positive definite. This ensures the positive nature of Dδ away

from the phase transition and, in general, ensures that, at a constant temperature,

the irreversible asymmetry flux flows in the direction from a higher potential

difference µt
12 to lower.

As to the Soret effect, i.e. diffusion driven by the temperature gradient,

described in (4.38)-(4.40), it has its counterpart in the heat flow driven by a

concentration gradient, termed Dufour effect. Transport coefficients for counterpart

effects are related through Onsager relations [149] that are also borne out by my
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results. Diffusion driven by pressure is rarely of interest, because of the usually

short times for reaching mechanical equilibrium in nuclear systems, compared to the

equilibrium with respect to temperature or concentration. However, an irreversible

particle flux may be further driven by external forces, such as due to an electric field

E . With the flux induced by the field given by Γδ = σE E , where σE is conductivity,

with the first equality in (4.37), and with (4.36) and (4.24), I find for the

conductivity

σE =
T

3m12

(
ρ1 ρ2

ρ

)2 (
q2

m2

− q1

m1

)
{C,C} =

(
q2

m2

− q1

m1

)
n

Πδ
Dδ , (4.41)

where qi is charge of species i. One could see that conductivity is closely tied to

diffusivity.

While my primary aim is to obtain coefficients characterizing the dissipative

particle transport, due to the generality of the results I can also obtain the

coefficients for the transport of energy and momentum. Thus, starting with the

expression (A.1e) in a local frame and proceeding as in the case of (4.35) and (4.36),

I get, with (4.33),

Q1 + Q2 = −T

3
({A,A}∇T + {C,A}d12) +

5

3
(E1 n1 V1 − E2 n2 V2)

= −T

3
({A,A}∇T + {C,A}d12) (4.42)

+
5

3

(
E1

m1

− E2

m2

)
ρ1 ρ2

ρ
(V1 −V2) ,

where in the second step I make use of the condition on local velocities

ρ1 V1 + ρ2 V2 = 0. The standard procedure [148] in coping with the heat flux is to

break it into a contribution that can be associated with the net movement of

particles and into a remnant, driven by the temperature gradient, representing the

heat conduction. With this, the driving force d12 needs to be eliminated from the
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heat flux in favor of the species velocities. Using (4.36), I find

Q1 + Q2 = −∇T
T

3

(
{A,A} − {C,A}2

{C,C}
)

+ (V1 −V2)

[
5

3

(
E1

m1

− E2

m2

)
ρ1 ρ2

ρ
+
{C,A}
{C,C}

]
. (4.43)

The coefficient

κ =
T

3

(
{A,A} − {C,A}2

{C,C}
)

, (4.44)

relating the heat flow to the temperature gradient, is the heat conduction

coefficient. From (4.44) and considerations in Appendix E, it follows that κ given by

Eq. (4.44) is positive definite.

The final important coefficient that I will obtain, for completeness, is the

viscosity. The modification of the momentum flux tensor (A.1d), on account of the

distortion of momentum distributions described by (4.30), is

P
(1)

=

∫
d3p

(2π~)3

pp

m1

δf1 +

∫
d3p

(2π~)3

pp

m2

δf2

= −
∫

d3p

(2π~)3

pp

m1

(
B1 :

˚∇v

)
f

(0)
1 f̃

(0)
1 −

∫
d3p

(2π~)3

pp

m2

(
B1 :

˚∇v

)
f

(0)
2 f̃

(0)
2

= −1

5

˚∇v

(∫
d3p

(2π~)3
B1 :

pp

m1

f
(0)
1 f̃

(0)
1 +

∫
d3p

(2π~)3
B2 :

pp

m2

f
(0)
2 f̃

(0)
2

)

= −T

5

˚∇v {B, B} . (4.45)

The coefficient of proportionality between the shear correction to the pressure

tensor and the tensor of velocity derivatives is, up to a factor of 2, the shear

viscosity coefficient

η =
T

10
{B, B} . (4.46)

As with other results for coefficients, from Appendix E it follows that the result for

η above is positive definite, as physically required [148].
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On account of symmetry considerations within the linear theory, the changes in

temperature or concentration do not affect the pressure tensor. However, the

situation changes if one goes beyond the linear approximation. For a general

discussion of different higher-order effects see Ref. [76]. As a next step, I need to

find the form factors in (4.30); that requires finding the functions a, b and c in

(4.34) by solving Eqs. (4.31)-(4.33).

4.4 Transport Coefficients in Terms of Cross

Sections

4.4.1 Constraints on Deviations from Equilibrium

Since the zeroth-order, in derivative expansion, local-equilibrium distributions

are constructed to produce the local particle densities, net velocity and net energy,

corrections to the distributions cannot alter those macroscopic quantities. Thus, I

have locally the constraints

δni =

∫
d3p

(2π~)3
δfi = 0 , (4.47a)

δ (ρV) =

∫
d3p

(2π~)3
p δf1 +

∫
d3p

(2π~)3
p δf2 = 0 , (4.47b)

δ (nE) =

∫
d3p

(2π~)3

p2

2m1

δf1 +

∫
d3p

(2π~)3

p2

2m2

δf2 = 0 . (4.47c)

With driving forces being independent of each other and with form factors in (4.30)

being independent of the forces, each of the form factors sets must separately meet

the constraints. By inspection, however, one can see that the density and energy

constraints are met automatically with the expressions (4.34) of form factors.

Moreover, the tensorial distortion (4.34c) satisfies all the constraints. At a general

level, the ability to meet the constraints while solving Eqs. (4.31)-(4.33) relies on
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the fact that the linearized collision integrals Iij (in Eqs. (4.20) and (4.21)) nullify

quantities conserved in collisions, so a combination of the conserved quantities may

be employed in constructing the form factors φi, ensuring that the constraints are

met. When the transport coefficients get expressed in terms of the brace products,

though, ensuring that the constraints are met becomes actually irrelevant for results

on the transport coefficients, because the linearized integrals and the corresponding

brace products nullify the conserved quantities.

Given cross sections and equilibrium particle distributions, the set of equations

(4.31)-(4.33) may be principally solved. However, such a solution is generally

complicated and would likely not produce clear links between the outcome and

input to the calculations. On the other hand, the experience has been that when

expanding the form-factor functions, a, b and c in (4.34), in power series in p2, the

lowest-order results represent excellent approximations to the complete results and

are quite transparent, e.g. [144]. Thus, I adopt here the latter strategy and test the

accuracy of the results in a few selected cases.

4.4.2 Diffusivity

If one inserts (4.34a) with ci(p
2) = ci into the local velocity constraint (4.47a),

one gets the requirement

c1

ρ1

∫
d3p

(2π~)3
p2 f

(0)
1 f̃

(0)
1 +

c2

ρ2

∫
d3p

(2π~)3
p2 f

(0)
2 f̃

(0)
2 = 0 . (4.48)

After partial integrations, I find that this is equivalent to the requirement

c1 = −c2 ≡ c.

When ci is constant within each species, then Ci is up to a factor equal to

momentum and, thus, gets nullified by the linearized collision integral within each

species Iii(C) = 0. To obtain a value for c, I multiply the first of Eqs. (4.31) by C1
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and the second by C2, add the equations side by side and integrate over momenta.

With this, I get an equation where both sides are explicitly positive definite and, in

particular, the l.h.s. is similar to the l.h.s. of Eq. (4.48), but with an opposite sign

between the component terms. That side of the equation can be integrated out

employing the explicit form of f (0) from Eq. (4.17). The other side of the resulting

equation represents {C,C} where only the interspecies integrals survive. On solving

the equation for c, I find

c =
6 ρ1 ρ2

ρχ12

, (4.49)

where

χ12 = g2

∫
d3p1

(2π~)3

d3p2

(2π~)3
dΩ v∗

(
dσ12

dΩ

)
(p1 − p′1)

2 f
(0)
1 f

(0)
2 f̃

(0)′
1 f̃

(0)′
2 . (4.50)

The integral stems from a transformed brace product {C,C} and I resurrect here

the degeneracy factors g. For the brace product itself, I find

{C,C} =
c2

2

(
ρ

ρ1 ρ2

)2

χ12 =
18

χ12

. (4.51)

On inserting this into the diffusivity (4.39), I obtain

Dδ =
6T

m12

Πδ

n χ12

(
ρ1 ρ2

ρ

)2

. (4.52)

In the above, one sees that the diffusion coefficient depends both on the

equation of state, through the factor Πδ, and on the cross section for collisions

between the species, through χ12. The collisions between the species are weighted

with the momentum transfer squared. Only those collisions between species that are

characterized by large momentum transfers suppress the diffusivity and help localize

the species. The marginalization of collisions with low momentum transfers is a

common feature of all transport coefficients.

114



At high temperatures the Fermi gas reduces to the Boltzmann gas. In the

absence of mean-field effects, one finds Πδ ∼ 2T
m

for small asymmetries. The integral

χ12 is then of the order n2 σ12 p3/m ∼ n2 σ
√

mT 3. Together, these yield

Dδ ∼ 1
n σ12

√
T
m

. The precise high-T result for isotropic cross-sections in the

interaction of species with equal mass m is [76, 75]

Dδ =
3

8nσ12

√
T

πm
. (4.53)

The square-root dependence on temperature will be evident in the numerical results

at high T . With an inclusion of the mean field, with the net energy quadratic in

asymmetry, the derivative Πδ gets modified into Πδ ∼ [2
(
T + 2eint

sym

)
]/m. Thus, the

mean field enhances the diffusion.

At low temperatures, the derivative Πδ is simply proportional to the symmetry

energy, Πδ ∼ (4esym)/m. As to the collisional denominator of the diffusion

coefficient, at low temperatures the collisions take place only in the immediate

vicinity of the Fermi surface. I can write the product of equilibrium functions in the

collision integral as

f
(0)
1 f

(0)
2 f̃

(0)′
1 f̃

(0)′
2 = K1 K2 K ′

1 K ′
2 , where Ki =

1

2 cosh{( p2

2mi
− µi)/T}

, (4.54)

and, at low T , Ki ∼ 2π m T δ(p2 − p2
Fi). The integration in (4.50) yields

χ12 ∼ σ12 m2 T 3 n2/p3
F . In consequence, I find that the diffusion coefficient diverges

as 1/T 2 at low temperatures. For the spin diffusion coefficient, one finds within the

low temperature Landau Fermi-liquid theory [90]

Dσ =
v2

F

3
(1 + F a

0 ) τD , (4.55)

where vF is Fermi velocity, F a
0 is a spin-antisymmetric Landau coefficient and τD is
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a characteristic relaxation time that scales as τD ∼ T−2. The isospin diffusivity for

symmetric matter should differ from the spin diffusivity in the replacement of the

spin-antisymmetric Landau parameter with the isospin asymmetric parameter,

neither of which has a significant temperature dependence. Thus, here consistently I

find a T−2 divergence of the diffusivity at low temperatures. Moreover, the factor

(1 + F a
0 ) is nothing else but a rescaled symmetry energy, with F a

0 being the ratio of

the interaction to the kinetic contribution to the energy [150]. Thus, here

consistently I find a proportionality of the diffusivity to the symmetry energy at low

temperatures.

To summarize the above results on diffusivity, I find that the diffusivity is

inversely proportional to the cross section between species for high momentum

transfers. Moreover, whether at low or high temperatures, the diffusivity is sensitive

to the symmetry energy in the mean-fields. The mean-field sensitivity is associated

with the factor

Πδ =
∂µ12

∂δ
+

∂

∂δ

(
U1

m1

− U2

m2

)
=

∂µnp

∂δ
+ 4eint

sym

1

m
,

where the last equality pertains to the system of neutrons and protons and eint
sym

represents the interaction contribution to the symmetry energy at the relevant

density.

While I obtained the diffusivity here assuming constant ci in (4.34a), I will

show that the next-order term in the expansion of ci increases the diffusion

coefficient Dδ only by 2% or less in the case of my interest.

4.4.3 Heat Conductivity

Evaluation of the heat conduction and shear viscosity coefficients requires

similar methodology to that utilized for the diffusivity. While these coefficients have
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been obtained in the past for a one component Fermi system [144], it can be still

important to find them for the two component system.

If one assumes ai(p
2) = ai in (4.34b), then, interestingly, one finds that the

momentum constraint (4.47a) is automatically satisfied. To obtain the values for ai,

I multiply Eq. (4.33) on both sides by A1 and integrate over momenta and I

multiply the equation analogous to (4.33) by A2 and also integrate over momenta.

As a consequence, I get a set of equations for ai of the form

Lj = Aj1 a1 +Aj2 a2 , j = 1, 2 , (4.56)

where Aji are coefficients independent of a,

Aii =
1

a2
i

([A,A]ii + [Ai,Ai]12) , A12 = A21 =
1

a1 a2

[A1,A2]12 , (4.57)

cf. Appendix E, and

Lj =
1

mj T

(
7 nj E2

j −
25

3
nj

(
Ej

)2
)

, (4.58)

where E2
j and

(
Ej

)2
are, respectively, the average local square kinetic energy of

species j and square average local kinetic energy of the species.

The solution to the set (4.56) is

a1 = (A22 L1 −A12 L2) /∆A ,

a2 = (A11 L2 −A12 L1) /∆A , (4.59)

where the determinant is

∆A = A11A22 −A2
12 . (4.60)

The brace product {A,A} for use in calculating the heat conduction coefficient κ in

117



(4.44) is

{A,A} = a1 L1 + a2 L2 . (4.61)

The product {C,A} in (4.44) can be calculated given the values of a and c, and

{C,C} was already obtained before.

4.4.4 Shear Viscosity

Evaluation of the shear viscosity coefficient η follows similar steps to those

involved in the evaluation of κ. Thus, I assume bi(p
2) = bi in (4.34c). To find the

coefficient values, I convolute both sides of Eq. (4.32) with p̊ p and integrate over

the momenta and I do the same with the other constraint equation for B. The l.h.s.

integrations produce

1

mi T

∫
d3p

(2π ~)3
p̊ p : p̊ p f

(0)
i f̃

(0)
i =

2

3 mi T

∫
d3p

(2π ~)3
p4 f

(0)
i f̃

(0)
i =

20

3
ρi Ei . (4.62)

With the above, I get the set of equations for bi:

20

3
ρj Ej = Bj1 b1 + Bj2 b2 , j = 1, 2 , (4.63)

where the coefficients B are given by,

Bii = [p̊ p, p̊ p]ii + [(p̊ p)i, (p̊ p)i]12 , B12 = B21 = [(p̊ p)1, (p̊ p)2]12 . (4.64)

Solving the set for b, One finds

b1 =
20

3∆B
(ρ1 E1 B22 − ρ2 E2 B12) ,

b2 =
20

3∆B
(ρ2 E2 B11 − ρ1 E1 B12) , (4.65)

118



where the determinant is

∆B = B11 B22 − B2
12 . (4.66)

The brace product for calculating the shear viscosity coefficient η = T
10
{B, B}

becomes

{B, B} =
20

3
(b1 ρ1 E1 + b2 ρ2 E2) . (4.67)

4.5 Quantitative Results

4.5.1 Transport Coefficients

I next calculate the transport coefficients as a function of density and

temperature, using experimentally measured nucleon-nucleon cross sections. The

cross sections may be altered in matter, compared to free space, but the

modifications are presumably more important at low than at the high momentum

transfers important for the transport coefficients. With regard to the diffusivity, I

will first ignore any mean-field contribution to the chemical potential difference

between species. This yields a reference diffusivity to which the diffusivity affected

by mean fields may be compared.

The diffusivity for the experimental cross sections and no interaction

contributions to the symmetry energy is shown at δ = 0 and different densities n in

Fig. 4.1, as a function of temperature T . At low temperatures, the diffusivity

diverges due to a suppression of collisions by the Pauli principle. At high

temperatures, compared to the Fermi energy, the role of the Pauli principle is

diminished and the diffusivity acquires a characteristic
√

T dependence. At

moderate temperatures and densities in the vicinity and above normal density, the

diffusion coefficient turns out to be in the vicinity of my original estimate of

DI ∼ 0.2 fm c.
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It should be mentioned that, for symmetric matter, the factors for temperature

and pressure gradients in the thermodynamic force d12 (4.28) vanish, ΠP = 0 and

ΠT = 0, and the brace product in (4.40) vanishes, {A,C} = 0, yielding kT = 0 in

(4.38). As physically required, the temperature and pressure gradients produce no

relative motion of neutrons and protons for the symmetric matter.

The diffusivity at normal density at different asymmetries is next shown in Fig.

4.2 as a function of temperature. Because of charge symmetry, the diffusivity does

not depend on the sign of δ. At low temperatures the diffusivity is generally

expected to behave as

DI ∝ ~3 p2
F

m3 T 2 σ
, (4.68)

while at high temperatures in the manner prescribed by (4.53). With the respective

behaviors serving as a guidance, I provide a parametrization of the numerical results

for Dδ as a function of n, T and δ,

DI = (1− 0.19 δ2)

[
11.34

T 2.38

(
n

n0

)1.54

+
1.746

T

(
n

n0

)0.56

+ 0.00585 T 0.913

(
n0

n

)]
. (4.69)

Here, temperature T is in MeV and the diffusivity DI is in fm c. The

parametrization describes the numerical results to an accuracy better than 4%

within the region of thermodynamic parameters of 1.0 ≤ n/n0 ≤ 4.0,

10 MeV ≤ T ≤ 100 MeV and |δ| ≤ 0.4. This is, generally, the parameter region of

interest in intermediate-energy reactions.

The heat conductivity is shown for symmetric matter at different densities in

Fig. 4.3, as a function of temperature. The results are similar to those in Ref. [144],

though there the two component nature of nuclear matter was ignored and the

isospin-averaged nucleon-nucleon cross-sections have been used. A closer
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Figure 4.1: Isospin diffusion coefficient DI in symmetric matter, for Ui = 0, at dif-
ferent indicated densities, as a function of temperature T . In the high-temperature
limit, the diffusion coefficient exhibits the behavior DI ∝

√
T/n. Correspondingly,

at high temperatures in the figure, the largest coefficient values are obtained for the
lowest densities and the lowest coefficient values are obtained for the highest den-
sities. In the low-temperature limit, the diffusion coefficient exhibits the behavior
DI ∝ n3/2/T 2 and the order of the results in density reverses.
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Figure 4.2: Isospin diffusion coefficient DI at normal density n = n0 = 0.16 fm−3 and
different indicated asymmetries δ, for Ui = 0, as a function of temperature T . An
increase in the asymmetry generally causes a decrease in the coefficient, as discussed
in the text.
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examination of results in Subsections 4.4.3 and 4.4.4 indicates that the use of the

isospin-averaged cross-sections is, actually, justified for symmetric matter, when

calculating the heat-conduction and shear-viscosity coefficients. Otherwise, however,

Fig. 4.3 has been based on a more complete set of cross sections than results in

[144]. As in the case of diffusivity, the heat conductivity diverges at low

temperatures and tends to a classical behavior at high temperatures, exhibiting

there no density dependence and being proportional to velocity, κ ∝ √
T . As in the

case of diffusivity, I next provide a parametrization of the numerical results for the

heat conductivity κ as a function of n, T and δ,

κ = (1 + 0.10 δ2)

[
0.235

T 0.755

(
n

n0

)0.951

−0.0582

(
n

n0

)0.0816

+ 0.0238T 0.5627

(
n

n0

)0.0171
]

. (4.70)

Here, T is again in MeV and κ is in c/fm2. The parameterization agrees with the

numerical results to an accuracy better than 4% within the range of thermodynamic

parameters indicated in the case of DI .

The shear viscosity coefficient η is shown for symmetric matter at different

densities, as a function of temperature, in Fig.4.4. Again, the results are similar to

those in Ref. [144]. At high temperatures, the dependence on density weakens and

the viscosity becomes proportional to velocity. The numerical results for η are well

described, to an accuracy better than 4% within the before-mentioned range, by

η = (1 + 0.10 δ2)

[
856

T 1.10

(
n

n0

)1.81

− 240.9

T 0.95

(
n

n0

)2.12

+ 2.154 T 0.76

]
. (4.71)

Here, η is in MeV/fm2 c and T is in MeV.

One notes in (4.69)-(4.71), that the diffusion coefficient weakly drops with

increasing magnitude of asymmetry |δ|, while the viscosity and heat conduction
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Figure 4.3: Thermal conductivity κ in symmetric nuclear matter, at different indi-
cated densities in units of n0, as a function of temperature T . The conductivity
increases as density increases.
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Figure 4.4: Shear viscosity η in symmetric nuclear matter, at different indicated
densities in units of n0, as a function of temperature T . The viscosity increases as
density increases.
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coefficients weakly increase. Given the weak dependencies, the behaviors exhibited

in parametrizations represent, in practice, averages over the considered

independent-parameter regions. Overall, the drop and rise in the respective

coefficients with |δ| is characteristic for a situation where the local flux of a

component grows faster than the concentration of that component. That type of

growth, with the magnitude of asymmetry, typifies a mixture of degenerate fermion

gases. The general trends can be deduced following the mean-free-path arguments

from Sec. 4.2. When the average velocity rises with asymmetry, so do the heat

conduction and shear viscosity coefficients. Additional rise for those coefficients, in

the case at hand, can result from the Pauli principle effects and from the difference

between cross sections for like and unlike particles. Regarding the diffusion

coefficient, though, one needs to consider an irreversible part of relative particle

flux, under the condition of the concentration varying with position. If, starting

with a given configuration of concentration gradients, one introduces uniform

changes of concentration on top, not just the overall relative flux undergoes change

but also the reversible flux of concentration gets altered. The rise in the relative flux

associated with the velocity of a dominant component rising with concentration is

normally more than compensated by the rise in reversible flux, leading to a

reduction in the irreversible flux and producing a reduction in diffusivity with

particle asymmetry. A mean-field example where the reversible flux eats into the

net flux reducing the diffusivity with increasing asymmetry is the estimate in Eq.

(4.10), obtained there without invoking Fermi statistics.

As is found in Secs. 4.3.3 and 4.4.2, the dependence of mean fields on species

enters the diffusivity through the factor Πδ resulting from the variable change in

thermodynamic driving force, from the difference of chemical potentials per mass to

asymmetry. The simplest case where one can consider the impact of the mean fields

is that of symmetric nuclear matter, at δ = 0. In this case, the factor may be
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represented as

Πδ =
1

m

(
n

ξ
+ 4 eint

sym

)
, (4.72)

where ξi = ∂ni/∂µi ≡ ξ (cf. Appendix C). At high temperatures, one has

approximately ξi ≈ ni/T , so that n/ξ ≈ 2T . The naive expectation is that eint
sym has

a linear dependence on the net density, eint
sym = aI

(
n
n0

)ν

, where aI = 14 MeV and

ν = 1. The mean-field amplification factor R = Πδ(eint
sym)/Πδ(eint

sym = 0) for the

diffusion coefficient, assuming the linear and also quadratic density-dependence of

eint
sym (ν = 1 and 2) is shown in Fig. 4.5. The quadratic dependence gives higher

amplification factors at n > n0, than the linear dependence, while the opposite is

true at n < n0. At low temperatures and moderate to high densities the

amplification is very strong suggesting that the diffusion could be used to probe the

symmetry energy, aside from the in-medium neutron-proton cross sections.
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Figure 4.5: Mean-field enhancement factor of the diffusion coefficient in symmetric
nuclear matter, R ≡ DI(Ui)/DI(Ui = 0), at fixed density n, as a function of tem-
perature T . The solid and dashed lines represent the factors for the assumed linear
and quadratic dependence of the interaction symmetry energy on density. The lines
from top to bottom are for densities n = 2 n0, n0, 0.5 n0 and 0.1 n0, respectively. At
normal density the results for the two dependencies coincide.
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4.5.2 Testing the Form-Factor Expansion

The calculations of transport coefficients above have been performed assuming

that the functions ai, bi and ci in Eqs. (4.34) can be approximated by constants. In

the more general case, the functions can be expanded in the series in p2, e.g.

ci(p
2) = c

(1)
i + c

(2)
i p2 + c

(3)
i p4 + . . . . (4.73)

The coefficients of the expansion can be found by considering moments of the

form-factor equations (4.31)-(4.33). With the more general form of the form-factor

functions, the transport coefficients generally increase, but their rise is generally

very limited.

To illustrate the magnitude of higher-order effects, I provide in Table 4.1 results

for the diffusivity obtained in the standard first-order and in the higher-order

calculations at sample densities and temperatures. In the indicated cases, the

second-order calculations never increase the diffusion coefficient by more than 3%

above the first-order calculations. The efficiency of my Monte-Carlo procedure

employed to evaluate the integrals for coefficients worsens as the order of the

calculations increases and, correspondingly, I provide only a single third-order result

for illustration.

4.5.3 Isospin Equilibration

To gain a further insight whether the diffusion coefficient results are sensible, I

will consider the issue of isospin equilibration in a reacting system [151] such as

96Ru + 96Zr at Elab/A = 100 MeV. At this energy, the Boltzmann-limit estimate for

temperature, T ∼ 1
6
Elab/A ∼ 16 MeV, and the degenerate Fermi limit estimate,

T ∼
√

Elab/(2a) ∼ 20 MeV for a ≈ A/(8 MeV), produce similar results. The typical

densities in this reaction are around normal. Based on Figs. 4.1 and 4.5, one can
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Table 4.1: Diffusion coefficient DI obtained within different orders of calculation,
using experimental np cross sections, at sample densities n and temperatures T in
symmetric nuclear matter, for species-independent mean fields. The numerical errors
of the results on DI are indicated in parenthesis for the least-significant digits. The
last two columns, separated by the ’±’ sign, give, respectively, the relative change in
the result for the highest calculated order compared to the first order and the error
for that change.

n T DI Relative

1st order 2nd order 3rd order Change
fm−3 MeV fm c %
0.016 10 0.29949(15) 0.3055(12) 2.0 ± 0.4
0.016 60 2.3891(18) 2.390(14) 0.0 ± 0.6
0.16 10 0.27964(21) 0.2800(29) 0.2809(25) 0.5 ± 0.9
0.16 60 0.29591(24) 0.2965(19) 0.2 ± 0.7
0.32 10 0.4446(15) 0.4465(26) 0.4 ± 0.7
0.32 60 0.18187(15) 0.1827(13) 0.5 ± 0.7

estimate the streaming contribution to the diffusivity at 0.21 fm c and the mean-field

contribution at 0.20 fm c, for a net DI ≈ 0.41 fm c.

Considering the direction perpendicular to the plane of contact between the

nuclei, with nuclei extending a distance L ∼ (A/n0)
1/3 ∼ 8 fm both ways from the

interface, one may use the one-dimensional diffusion equation to estimate the

isospin equilibration

∂δ

∂t
= DI

∂2δ

∂x2
, (4.74)

where x is the direction perpendicular to the interface, cf. Eq. (4.7). With isospin

flux vanishing at the boundaries of the region [−L,L], the solution to (4.74) is

δ(x, t) = δ∞ +
∞∑

n=1

an sin kn x exp (−DI k2
n t) +

∞∑
n=1

bn cos qn x exp (−DI q2
n t) (4.75)

where kn L =
(
n− 1

2

)
π and qn L = nπ. The coefficients an and bn are determined

by the initial conditions and, in the case in question, bn = 0.

The different terms in the expansion (4.75) correspond to the different levels of

130



detail in the distribution of concentration, as characterized by the different

wavevectors. The greater the detail the faster the information is erased, with the

erasure rates proportional to wavevectors squared and with the overall distribution

tending towards δ∞ as t →∞. The late-stage approach to equilibrium is governed

by the rate for the term with the lowest wavevector, i.e. a1. Defining the isospin

equilibration time tH as one for which the original isospin asymmetry between the

nuclei is reduced by half, I get from (4.75)

tH ≈ ln 2

DI k2
1

=
4 ln 2 L2

π2 DI

∼ 44 fm/c , (4.76)

for the case above. When I carry out the full respective Boltzmann-equation

simulations of the 100 MeV/nucleon 96Ru + 96Zr reactions, at the impact parameter

of b = 5 fm & L/2, I find that, indeed, the nuclei need to be in contact for about

40 fm/c for the isospin asymmetry to drop to the half of original value.

4.6 Summary

Diffusion and other irreversible transport phenomena have been discussed for a

binary Fermi system close to equilibrium. For weak nonuniformities, the irreversible

fluxes are linear in the uniformities, with the characteristic transport

proportionality-coefficients dependent only on the equilibrium system. It is hoped

that, in analogy to how the nuclear equation of state and symmetry energy are

employed, the coefficient of diffusion can be employed to characterize reacting

nuclear systems with respect to isospin transport.

Following a qualitative discussion of irreversible transport in this chapter, the

set of coupled Boltzmann-Uhlenbeck-Uehling equations was considered for a binary

system, assuming slow macroscopic temporal and spatial changes. The slow changes

allow one to solve the equation set by iteration, with the lowest-order solution being
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the local equilibrium distributions. In the next order, corrections to those

distributions were obtained, linear in the thermodynamic driving forces associated

with the system nonuniformities. These corrections produce irreversible fluxes linear

in the forces. The transport coefficients have been formally expressed in terms of

brace products of the responses of distribution functions to the driving forces. The

considered coefficients include diffusivity, conductivity, heat conduction and shear

viscosity.

Furthermore, the set of the linearized Boltzmann equations was explicitly

solved under the assumption of simplified distribution-function responses to the

thermodynamic driving forces. The solutions to the equations led to explicit

expressions for the transport coefficients, with the diffusivity given in terms of the

collision integral for collisions between the two species weighted by the momentum

transfer squared. Besides associated sensitivity to the cross section for collisions

between the species, the diffusivity is also sensitive to the dependence of mean fields

on the species. The collisions between the species are those that inhibit the relative

motion of the species; the difference between mean fields affects the relative

acceleration and, in combination with the collisions, the stationary diffusive flux

that is established.

I calculated the isospin diffusivity for nuclear matter, using experimental

nucleon-nucleon cross sections for species-independent mean-fields. At low

temperatures and high densities, the diffusivity diverges due a suppression of

collisions by the Pauli principle. At high temperatures, the diffusivity is roughly

proportional to the average velocity and is inversely proportional to the density.

The diffusivity weakly decreases with an increase in the absolute magnitude of

asymmetry. I provided an analytic fit to the numerical results. For completeness, I

also calculated the heat conduction and shear viscosity coefficients and provided fits

to those. Moreover, I calculated the diffuseness mean-field enhancement factor for
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symmetric matter, assuming a couple of dependencies of the symmetry energy on

density. At low temperatures, the enhancement factor is simply proportional to the

net symmetry energy divided by the kinetic symmetry energy. Considering the

expansion of the form-factors in distribution-function responses, I demonstrated

that corrections to the Boltzmann-equation transport coefficients, beyond the

approximations I employed, are small. Finally, I produced an elementary estimate

for isospin equilibration in a low impact-parameter collision.

133



Chapter 5: Transport Simulations

As has been discussed, the Boltzmann equation set may be used for simulating

heavy-ion reactions, and the results from such simulation can be compared with

experimental data to deduce properties of nuclear matter. This chapter is

specifically devoted to the reaction simulations. In the first part of this chapter, I

will analyze the spectator-participant interaction in peripheral reactions and the

relation of spectator observables to the nuclear equation of state (EOS). In the

second part, I will discuss isospin diffusion process in reactions of isospin

asymmetric systems.

5.1 Spectator Response to the Participant Blast

As already stated in Chapter 1, the participant-spectator interaction plays an

essential role in the dynamics of heavy-ion reactions. In this section, I will discuss in

detail, the impact of spectator shadowing on the development of elliptic flow, and

the resulting close relation of the nuclear EOS to the spectator properties following

the dynamic stage of a heavy-ion reaction.

A brief introduction to elliptic flow within the participant region and the past

studies on the spectator region is given in subsection 5.1.1. An analysis of the

evolution of a reaction system and of the participant-spectator interaction is given

in subsection 5.1.2. The sensitivity of the emerging spectator characteristics to the

nuclear EOS is investigated in subsection 5.1.3. The predicted speeding up of the

spectator during the violent reaction has recently got support from the experiment

[152] and a discussion of the spectator velocity increase is given in subsection 5.1.4.

The results of this section are summarized in subsection 5.1.5.
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5.1.1 Introduction

As indicated in Chapter 1, the nuclear EOS significantly impacts the

development of collective flow in the participant region. Phenomenological

parameterizations of the EOS are usually constrained with the properties of

nuclear-matter at normal density ρ0 and diverge at much higher densities which can

be probed in energetic heavy-ion reactions. However, an important complication for

heavy-ion collisions results from the fact that the duration of the initial high-density

stage of the collision is very short compared to the time scale for the whole reaction

process. E.g., in an 800 MeV/nucleon b = 5 fm collision of 124Sn + 124Sn, the

high-density stage with a central density ρc > 1.5 ρ0 lasts about 13 fm/c, while the

elapsed time from the initial impact to the complete separation of target and

projectile is ∼ 40 fm/c. The spectator properties continue to develop well beyond

this time [153]. Given the short duration of the high-density stage, signals which

carry information about the high-density phase of the collision could be easily

washed out by other signals generated at a later stage. As a consequence, reaction

simulations are needed to provide guidance for the measurement of signals which

not only probe the high-density stage but survive through the entire duration of the

collision process.

Collective flow of participants has been studied already for quite some time

[154, 155, 156]. The flow is believed to result from early stage compression and an

expansion [157, 158, 51, 36, 93], and can carry information on the initial

high-density phase. The relation between the nuclear EOS and the flow phenomena

has been explored extensively in simulations and a recent example is the analysis of

the transverse-momentum dependence of elliptic flow [12]. Elliptic flow is shaped by

an interplay of geometry and the mean field and, and when gated by the transverse

momentum, reveals the momentum dependence of mean field at super-normal

densities.
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The elliptic flow pattern of the participant matter is affected by the presence of

the cold spectators [93, 12, 53], as will be reiterated. When nucleons are decelerated

in the participant region, the longitudinal kinetic energy associated with the initial

colliding nuclei is converted into thermal and potential compression energy. In a

subsequent rapid expansion or explosion, the collective transverse energy

develops [51, 36, 157, 158] and many particles from the participant region get

emitted in the transverse directions. The particles emitted towards the reaction

plane can encounter the cold spectator pieces and, hence, get redirected. In

contrast, the particles emitted essentially perpendicular to the reaction plane are

largely unimpeded by the spectators. Thus, for beam energies leading to a rapid

expansion in the vicinity of the spectators, elliptic flow directed out of the reaction

plane (squeeze-out) is expected. This squeeze-out is related to the pace at which the

expansion develops, and is, therefore, related to the EOS.

On the other hand, since the spectators serve to deflect particle emissions

toward the reaction plane, their properties may be significantly modified. This

suggests an analysis of the characteristics of the spectators resulting from the

collision process. In one sense, the spectators can be viewed as probes which were

present at the site of the nuclear explosion leading to the rapid particle emission.

Thus, a careful study of their characteristics could complement the results from

elliptic flow and provide further information regarding the properties of high-density

nuclear matter.

Long-time evolution of spectators has been studied recently by Gaitanos et

al.[153]. A comprehensive summary of experimental results for spectators produced

in reactions at different centralities has been presented by Pochodzalla [102]. In

particular, universal features of spectator multifragmentation have been well

documented [102, 14]. The transverse momentum change of the spectator during a

semicentral collision, to be addressed here, was studied in the past via emulsions by
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Table 5.1: Parameter values for the different mean fields utilized in the simulations.
First three columns refer to Eq. (3.28) and the next two to Eq. (3.33). The last
column gives the Landau effective mass in normal matter at Fermi momentum.

EOS a b ν c λ m∗/m
(MeV) (MeV)

S 187.24 102.623 1.6340 0.98
SM 209.79 69.757 1.4623 0.64570 0.95460 0.70
H 121.258 52.102 2.4624 0.98

HM 122.785 20.427 2.7059 0.64570 0.95460 0.70

Bogdanov et al. [159] (see also [160]). The participant-spectator interaction and

spectator physics were discussed in [161]. The systematics of the longitudinal

momentum transfer to spectators in energetic reactions induced by light projectiles

is discussed in Ref. [162]. The spectator acceleration in certain heavy reaction

systems has been observed in experiment [152], and further experiments are

proposed to study the systematics of the spectator acceleration and its relation to

the nuclear EOS.

5.1.2 Spectators and Participants

Within transport simulations, I will investigate here, the spectator-participant

interaction and the spectator shadowing effect on elliptic flow in a heavy-ion

reaction. The Boltzmann equations underlying microscopic transport theory have

been already described in Chapter 3. For later reference, I have listed the

parameters for the utilized Mean Fields (MF) in Table 5.1. Details of the

momentum independent and momentum dependence MFs have been already given

in Chapter 3 (see also Ref. [12]) and shall not be repeated here.

Figure 5.1 presents some results from simulations of 197Au + 197Au collisions at

a beam energy Tlab = 1 GeV/nucleon and an impact parameter b = 8 fm. Unless

indicated otherwise, the hard momentum-dependent (HM) EOS (cf. Table 5.1) was
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used. Figure 5.1(a) shows the time evolution of the density for the participant and

for the spectator matter. The solid and dashed curves show, respectively, the

baryon density ρc at the center of the collision system, i.e., participant density and

the baryon density in the local frame at the geometric center of the spectator

matter ρspec. Here, the operational definition of spectator matter is that the

magnitude of the local longitudinal velocity exceeds half of the velocity in the initial

state and that the local density exceeds one tenth of the normal density. The solid

line in Fig. 5.1(a) clearly illustrates the rapid density build-up (for t ≤ 5 fm/c)

followed by expansion of the participant matter. The dashed-line also points to a

weak compression of the spectator matter during the expansion phase of the

participants. The latter observation is consistent with the expected delay associated

with the time it takes a compression wave to reach the center of the spectator

matter, starting from an edge.

Figure 5.1(b) shows the time evolution of the elliptic flow parameter v2 for all

mid-rapidity particles. The parameter is defined as

v2 = 〈cos (2φ)〉 , (5.1)

where φ is the azimuthal angle in the X-Y plane perpendicular to the beam axis Z;

the X-Z plane defines the reaction plane. The value of v2 conveys information about

the pattern of particle emission from the central participant region. The hot

participant region has an initial elliptic shape in the X-Y plane due to the overlap

geometry. Since the long and short axes of the ellipse point in the Y-direction and

in the X-direction, respectively, the matter starts out with stronger MF and

pressure gradients in the X-direction. Given the shape of the emission source and

the gradients, the matter is first expected to develop a stronger expansion in the X

direction and, hence, to give rise to positive values of v2. If the spectators are nearby
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Figure 5.1: Results from a BUU simulation of the the 197Au + 197Au collision at
1 GeV/nucleon and b = 8 fm, as a function of time: (a) the central densities of
the participant ρc and the spectator matter ρspec, (b-d) the midrapidity elliptic flow
parameter v2. The results are from a simulation with the HM mean field, except for
those in the panel (c) which are from a simulation with no mean field. The panels (b)
and (c) show the elliptic flow parameter for all particles in the system while (d) shows
the elliptic flow for particles emitted in the vicinity of a given time. In the case of
the HM calculations, also shown is v2 when a high-momentum gate pt > 0.55 GeV/c
is applied to the particles.
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during the expansion phase, they can serve to stall the expansion in the X direction

and a compression wave then develops within the spectator matter (cf. Fig. 5.1(a)).

The resulting dominant expansion of participant matter in the Y direction gives rise

to negative values of v2. Figure 5.1(b) indicates that this preferential out-of-plane

emission pattern begins after ∼ 7 fm/c. The time correlation between the change in

sign of v2 and the decrease in the magnitude of the central density should be noted

in the figure. The central density of participant matter ρc begins to drop at about 7

fm/c and the most rapid declines ends at ∼ 16 fm/c; during this time the elliptic

flow drops from its maximum positive value to its maximum negative value.

A comparison of Figs. 5.1(b) and 5.1(c) illustrates the important role of the MF

in shaping the elliptic flow magnitude. Figure 5.1(c) shows the time dependence of

v2 obtained when the calculations are performed without the inclusion of a MF

(cascade mode). In contrast to the evolution with the mean field (cf. Figs. 5.1(b))

where v2 first achieves significant positive and then negative values, Fig. 5.1(c)

indicates v2 values which stay close to zero over the entire time evolution of the

system. This trend is related to the fact that in the cascade model the transverse

expansion is slow compared to the time duration for which the spectators are in

close proximity to the participant matter, or compared to the time required for

longitudinal motion to stretch the matter to low density. The important role of the

MF for the generation of elliptic flow and the sensitivity of this flow to the EOS has

been stressed [93, 12, 53].

The temporal difference of v2 for all midrapidity particles in the system, and for

those particles that have left the system can be observed by comparing Figs. 5.1(b)

and 5.1(d). Figure 5.1(b) shows the change in v2 with time as discussed above. On

the other hand, Fig. 5.1(d) indicates little or no change of v2 (over time) for

midrapidity particles that have left the system. That is, out-of-plane emission is

favored (negative v2) for all emission times. Figures 5.1(b) and 5.1(d) also show v2
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as a function of time for particles with transverse momentum pt > 0.55 GeV/c;

these panels indicate that faster particles are more sensitive to the obstructions as

well as to any directionality in the collective motion.

The analyses of elliptic flow and related works have established connections

between features of the participant matter resulting from the participant-spectator

interaction and the nuclear EOS [51, 157, 158, 12, 93, 53]. On the other hand, it is

not known whether the same interaction (during the violent stage of a reaction)

leaves any lasting effects in the spectators that could be related to the EOS.

Extensive studies of the statistical behavior of spectator matter have been carried

out [102, 14] for time scales which are long compared to the collision time. Such

studies do not address the dynamical impact of the violent reaction stage on

spectators. During the violent stage of a collision, the spectators remain close to the

participant matter, so they might serve as a good sensor for the explosion. Thus, I

proceed to take a closer look at the changes which may occur in the spectator

matter following their interaction with the participants. In addition I investigate

whether or not such changes have a connection to the EOS.

Figure 5.2 shows contour plots of different quantities within the reaction plane

now from 124Sn + 124Sn reaction simulations at the beam energy of Tlab = 800

MeV/nucleon, at the impact parameter b = 5 fm, carried out with a soft

momentum-dependent (SM) mean field. The columns from left to right represent

the reaction at 5 fm/c time increments. The top and middle rows show the baryon

density in the system frame ρ and the local excitation energy E∗/A, respectively.

The bottom row shows the density ρbnd of baryons that are bound in their local

frame (ε < m). As may be expected, the excitation energies reach rather high values

in the participant region but remain low within the spectator region throughout the

violent stage of the reaction. Most of the particles in the participant region are

found to be unbound, i.e., ρbnd is low. On the other hand, most of the particles
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within the spectator region are bound. They move with velocities that are close to

each other, and this keeps ρbnd sizeable throughout the violent collision stage.

Figure 5.3 provides next a detailed time development of the selected quantities

in the 800 MeV/nucleon 124Sn + 124Sn system for which the contour plots were

given. Figure 5.3(a) displays the evolution of baryon density at the system center,

ρc, and of baryon density at the center of the spectator region, ρspec. The

high-density stage for the participant matter in Fig. 5.3(a), characterized by

ρc > ρ0, lasts over a time that is short in comparison to the time needed for a clear

separation of the target and projectile spectators from the participant zone, cf.

Fig. 5.2. To observe a stabilization of the spectator properties I needed to follow the

particular reaction up to ∼ 60 fm/c. Longer-term studies of the spectator

development have been carried out within the BUU approach [153]. However, as the

spectators approach equilibrium, they may be described in terms of the statistical

decay method which at this stage has advantages over the BUU equation.

Figure 5.3(b) shows the average transverse momentum per nucleon of the

spectator, in the reaction plane, as a function of time. In calculating the average, I

include all spectator particles as specified before (dashed line in the panel) or the

subset of particles that are bound in the local frames (solid line). The averages,

obviously, approach the same asymptotic value over time, but the approach is faster

for the bound-particle average. Note that the extra lines in Fig. 5.3(b) represent the

evolution of the average momenta past the 40 fm/c of the abscissa. Calculated in

either manner, the spectator average momentum 〈PX/A〉 reaches its final magnitude

during the high-density stage in the participant matter and only somewhat reduces

to stable during the expansion that follows. This suggests that the spectators can,

indeed, provide information on the high-density stage of the collision.

Figure 5.3(c) shows the average excitation energy per nucleon 〈E∗/A〉 of the

spectator as a function a time. Within the studied time interval, the excitation
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Figure 5.2: Contour plots of the system-frame baryon density ρ (top row), local exci-
tation energy E∗/A (middle row), and of the density of bound baryons ρbnd (bottom
row), in the 124Sn + 124Sn reaction at Tlab = 800 MeV/nucleon and b = 5 fm, at
times t = 0, 5, 10, 15 and 20 fm/c (columns from left to right). The calculations
have been carriered out employing the soft momentum-dependent EOS. The contour
lines for the densities correspond to values, relative to the normal density, of ρ from
0.1 to 2.1 with increment of 0.4. The contour lines for ρbnd are from 0.1 to 1.1 with
increment of 0.2. The contour lines for the excitation energy correspond to the values
of E∗/A at 5, 20, 40, 80, 120, 160 MeV. For statistical reasons, contour plots for the
energy have been suppressed for the baryon densities ρ < 0.1 ρ0. Note, regarding the
excitation energy, that the interior of the participant region is hot while the interior
of the spectator matter is cold.
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Figure 5.3: Evolution of selected quantities in the 124Sn + 124Sn reaction at 800
MeV/nucleon and b=5 fm, from a calculation with a soft momentum-dependent EOS.
The panel (a) shows the density at the center of a spectator ρspec (dashed line) together
with the density at the system center ρc (solid line). The panel (b) shows the average
in-plane transverse momentum per nucleon of the spectator 〈PX/A〉 calculated using
all spectator particles (solid line) and using only bound spectator particles (dashed
line). Two extra lines in the panel show evolution of the momenta past the 40 fm/c
of the abscissa. The panels (c) and (d) show, respectively, the spectator excitation
energy per nucleon 〈E∗/A〉 and the mass number 〈A〉 from all spectator particles.
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energy rapidly rises and decreases and then changes at a slower pace. During the

violent reaction stage, some particles traversing from the participant into the

spectator matter contribute to the excitation of the spectator matter. As time

progresses, some of those particles will travel through the matter and leave the

spectators. Some other will degrade their energy within the spectator frame. (Note:

I consistently continue with definition where the spectator matter is that for which

the c.m. local velocity is larger than half the beam velocity and the local density

exceeds the tenth of normal.)

Figure 5.3(d) shows the mass number of a spectator region as a function of

time. The spectator mass number decreases rapidly as particles dive into the

participant region and then the mass recovers somewhat, around the time of

20 fm/c, as some particles get through the opposite moving corona matter and join

the bulk of the spectator matter moving along the beam direction. Later, a gradual

deexcitation slowly reduces the spectator mass.

I have analyzed in this subsection the interplay between the participants and

spectators. I have examined how elliptic flow is generated as a result of that

interplay and how the interplay affects the spectator characteristics. In the next

subsection I will explore the sensitivity of spectator characteristics to the EOS for

nuclear matter in collision.

5.1.3 Spectator Sensitivity to the Nuclear Equation of State

In the light that the changes of the spectator properties could probe the

compression and explosion of the participant matter, I follow the reaction

simulations until a clear separation develops between the spectators and the

participant matter and a stabilization of the spectator is attained. I explore the

sensitivity of the emerging spectator properties to different assumptions on the

nuclear EOS. The results could serve to initialize statistical decay calculations for a
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complete description of a reaction.

In the following, I shall present a sample of my spectator investigations, within

the 124Sn + 124Sn system in the beam energy range of 250 MeV/nucleon to 1

GeV/nucleon at impact parameters b = 5− 7 fm. I shall also quote results from

197Au + 197Au at 1 GeV/nucleon. I utilized four different EOS explored in the past,

of which the parameters are given in Table 5.1. I concentrated on the quantities

that could be experimentally determined for the spectator, and thus the average

transverse momentum per nucleon 〈PX/A〉, the change in the average c.m.

momentum per nucleon ∆|〈P/A〉|, the average excitation energy per nucleon

〈E∗/A〉, and the average mass 〈A〉 following the violent stage of the reaction. The

change in the average c.m. momentum is

∆|〈P/A〉| =
√
〈PX/A〉2 + 〈PZ/A〉2 − (P/A)i.

The above mentioned quantities, towards the end of the simulations, are shown

as a function of the impact parameter at Tlab = 800 MeV/nucleon in Fig. 5.4, by

open symbols, and as a function of the beam energy at b = 5 fm in Fig. 5.5,

respectively. The resulting spectator 〈PX/A〉 exhibits a clear sensitivity to the

stiffness of the EOS. I can see in both figures that a stiffer EOS results in a stronger

sidewards push to the spectator. However, even more prominent is the sensitivity to

the momentum dependence of the mean field. A strong momentum dependence

results in a stronger push to the spectator. Recall that the interplay between the

spectator and the participant matter also generates elliptic flow for the participant

matter and it was possible to exploit the latter in the determination of the

mean-field momentum dependence at super-normal densities [12, 53].

The final momentum of the spectator reflects the momentum exchanges with

the participant zone throughout the reaction. Initially, the nucleons from the

opposing nucleus move nearly exclusively along the beam axis relative to the

spectators. As equilibration progresses, the momenta in the participant zone acquire
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Figure 5.4: Spectator properties in the 800 MeV/nucleon 124Sn + 124Sn collisions, as
a function of the impact parameter, for four representative EOS: hard momentum-
dependent (HM), soft momentum-dependent (SM), hard momentum-independent (H)
and soft momentum-independent (S). Panel (a) shows the average in-plane transverse
momentum of the spectator per nucleon 〈PX/A〉. Panel (b) shows the change in the
average net c.m. momentum per nucleon ∆|〈P/A〉|. Panel (c) shows the average exci-
tation energy per nucleon 〈E∗/A〉, and, finally, panel (d) shows the average spectator
mass 〈A〉. Open symbols represent results obtained with reduced in-medium nucleon-
nucleon cross sections; filled symbols represent results obtained at b = 5 fm with free
cross sections.
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Figure 5.5: Spectator properties in the 124Sn + 124Sn collisions at b = 5 fm, as a func-
tion of the beam energy, for four representative EOS: hard momentum-dependent
(HM), soft momentum-dependent (SM), hard momentum-independent (H) and soft
momentum-independent (S). Panel (a) shows the average in-plane transverse momen-
tum of the spectator per nucleon 〈PX/A〉. Panel (b) shows the change in the average
net c.m. momentum per nucleon ∆|〈P/A〉|. Panel (c) shows the average excitation
energy per nucleon 〈E∗/A〉. Finally, panel (d) shows the average spectator mass 〈A〉.
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a level of randomness. Random exchanges of momentum between spectators and

participants generally drive the spectator momentum towards the average for the

system, i.e. zero. However, the participant nucleons reach the spectators moving

away from the system center, coming with momentum directed on the average

outward, delivering an outward push to the spectator pieces.

The order of magnitude for the transverse push may be obtained from a simple

estimate. Thus, in Sn + Sn at 800 MeV/nucleon, estimating the pressure in the

compressed region from the nonrelativistic ideal-gas estimate,

p ' ρ
2

3
Tlab/4A (5.2)

with ρ ∼ 2 ρ0 ∼ 2/6 fm−3, I get p ∼ 40 MeV/fm3. The size of the high-density

region in the X-Z plane for Sn + Sn at medium b is ∼ 4 fm, cf. Fig. 5.2. The push

to the spectator is then of the order of

P x ≈ p S ∆t , (5.3)

where S is the transverse area pushed by the participant matter and ∆t is the

duration of the push. With S = π R2/4 ∼ 13 fm2 and ∆t ∼ 5 fm/c, cf. Figs. 5.2 and

5.3, I get

P x

A
=

40 MeV/fm3 × 13 fm2 × 5 fm/c

50
' 50

MeV

c
, (5.4)

This is within the general order of magnitude as found in the simulations. When the

impact parameter increases, the fireball pressure decreases while the spectator mass

increases. Thus, the momentum per nucleon decreases. With regard to the beam

energy variation in the simulations, at low energies the pressure in the fireball region

drops, resulting in smaller push to the spectators, with some compensation coming

from a longer time for the spectators in the reaction zone and a longer fireball
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lifetime. With the rise in the beam energy from the low energy end, the rise in the

transverse fireball pressure is moderated by pion production and an increasing

transparency. The spectator time in the vicinity of the explosion continuously drops

resulting in a level of saturation in the spectator momentum per nucleon.

With regard to the changes in the magnitude of the c.m. momentum per

nucleon ∆|〈P/A〉|, one can see in Figs. 5.4 and 5.5 that the results for MD MFs

significantly differ from the results for MI MFs for Sn + Sn, with the later MFs

giving more momentum loss. The spectator mass and excitation energy, in contrast

to the momentum, are rather insensitive to the MF in the present system.

While the results discussed until now have been obtained with reduced

in-medium nucleon-nucleon cross sections [12], I also carried out calculations with

free nucleon-nucleon cross sections. The latter calculations for the same system at

Tlab = 800 MeV/nucleon b = 5 fm, are represented by filled symbol in Fig. 5.4. With

free cross sections, the remnant masses are a bit lower, the excitation energies are

higher, and so is the transverse push. The transverse push is more sensitive to the

change in the EOS, than to the change in cross section, as evident in the figure.

Contrary to what one might naively expect, less momentum per nucleon is lost in

the free cross section case. I will come back to the last issue later.

In investigating the differences in results for the different EOS, I obviously

looked at the details in the time development of the systems for the different EOS.

Figure 5.6 shows the central participant density as a function of time. For the hard

momentum-independent EOS a maximal density is reached earlier and the

expansion sets faster than for the soft momentum-independent EOS. The S EOS

allows for a higher compression than the H EOS. An MD EOS allows for a lower

compression than a corresponding MI EOS. Moreover, the expansion develops

earlier for an MD EOS than a corresponding MI EOS. Evidently, the momentum

dependence plays a similar role to the stiffness of nuclear matter; it renders the
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Figure 5.6: Baryon density as a function of time at the center of the 124Sn + 124Sn
system at Tlab = 800 MeV/nucleon and b = 5 fm, for different MFs.

matter less compressible in a dynamic situation.

Figure 5.7 shows the spectator transverse momentum in the X-direction as a

function of time. As I have already pointed out before, the spectator transverse

momentum per nucleon rises within a relatively short time interval. The rise starts

about the time when the maximal density is reached at the participant center; the

rise stops due to combined effects of the spectator passing by and of the dilution of

the participant zone. While there are up to 2 fm/c differences in the start and end

of the rise interval in Fig. 5.7, it is apparent that the differences in the final 〈PX/A〉
must be due to the differences in magnitude of the transverse pressure (transverse

momentum flow) for the different EOS and not in the duration of the rise. In fact,

the slopes of the dependence of transverse momentum on time differ considerably

more than do the final transverse momenta. A faster dilution for the more

incompressible EOS shuts off the momentum rise sooner than for the more
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Figure 5.7: Average in-plane transverse momentum per nucleon of a spectator in
b = 5 fm 124Sn + 124Sn collisions at Tlab = 800 MeV/nucleon, as a function of time,
for different EOS.

compressible EOS and moderates the differences in the final spectator momenta.

Figure 5.8 shows differences in the Landau effective mass, m∗ = p/v, in cold nuclear

matter at different densities for MI and MD MFs. Lower masses for the MD MF

means that particles move out faster at the same momenta.

The change in the magnitude of the c.m. momentum per nucleon ∆|〈P/A〉| is

generally dominated by the change in the longitudinal momentum per nucleon. In

Figs. 5.4 and 5.5 the net momentum per nucleon is seen to decrease in the Sn + Sn

reactions under all conditions. That change in the momentum might be considered

a measure of the friction involved in the interaction of the spectator with the

participant zone. The friction is due to mentioned random changes of momenta in

collisions between participants and spectators that, besides knocking particles off

spectators, over time drive the average momentum towards the system average of

zero. When examining the net spectator momentum per nucleon as a function of
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Figure 5.8: Landau effective mass m∗ = p/v, in units of free nucleon mass, as a
function of momentum at several densities in cold nuclear matter for S and SM MFs.

time in the Sn + Sn reactions, the momentum is first found to decrease but then

found to recover somewhat. The late increase and part of the early momentum

decrease could partly be attributed to our inability to cleanly separate the

spectators from the participants, which intermittedly intermixed and then separate.

The above view on the net spectator momentum, however, needs to be revised once

the changes in the momentum are examined in the Au + Au system. The change in

the net momentum per nucleon is shown for a 1 GeV/nucleon reaction as a function

of the impact parameter in Fig. 5.9, by open symbols for the in-medium reduced

cross section. For low impact parameters and MD MFs, the average spectator

momentum per nucleon increases in the reaction simulations!

The mass and the excitation energy of the spectator in Figs. 5.4 and 5.5 do not

exhibit a sensitivity to the EOS likely because they are determined by the geometry

and the capability of matter to retain the energy, respectively. As to the momentum
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Figure 5.9: The change in the net average c.m. momentum per nucleon ∆|〈P/A〉|
of spectators in the 197Au + 197Au system at Tlab = 1 GeV/nucleon. Open symbols
represents results obtained with reduced in-medium nucleon-nucleon cross sections;
filled symbols represent results obtained at b = 6 fm with free cross sections. A
negative value of ∆|〈P/A〉| indicates a spectator deceleration, while a positive value
indicates a net acceleration.

changes, though, I have demonstrated that they can provide information on the

violent stage of energetic reactions and constrain the properties of high density

nuclear matter.

5.1.4 Spectator Acceleration

The acceleration of the spectator during a heavy-ion reaction, is of interest on

its own. After all, if we shoot a bullet through a wall, we expect the bullet to slow

down, not accelerate. The systematics of the spectator velocity after a heavy-ion

reaction has been studied before and the velocity decrease of the spectator piece was

found to be proportional to the decrease of the spectator mass in the peripheral

collisions (often known as the Morrissey systematics [162]). Such deceleration of the
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spectator could be attributed to the friction between the spectator and the

participant matter. However, the simulation results shown in Fig. 5.9 point to an

acceleration of the spectator in a heavy-mass system at low impact parameter. The

unusual prediction of the simulation has been confirmed by recent experiment [152].

Below, I will give a qualitative explanation for the spectator acceleration.

The speeding up of the spectator at low b in Au + Au may be understood in

terms of the explosion of the participant zone. On one hand, the spectator acquires

transverse momentum. On the other, in the longitudinal direction the explosion acts

more on the rear of the spectator piece than on the front. If the explosion is strong

enough, the ordered push may overcome the friction effects, producing a net

longitudinal acceleration for the spectator. There is no issue of energy conservation

since the work is done by the participant on the spectator zone. The difference

between Sn + Sn and Au + Au is in the equilibration time scale relative to the

duration of the fireball. Differences in the net final momentum per nucleon between

different MFs for both systems, with significantly higher net momenta for the MD

than MI MFs, may be understood in terms of the violence of the explosion that

accelerates the spectator.

An important aspect of the spectator momentum per nucleon, underscoring the

interpretation above, is its dependence on the nucleon-nucleon cross section. In

Fig. 5.9, the results of b = 6 fm Au+Au simulation with the free cross sections are

represented by filled symbols. With the larger free cross sections, the spectator

remnants emerge even faster from the reaction than the with the lower cross

sections! This is because for higher cross sections, the equilibration is faster, which

allows the participant to explode more violently when the spectators are still

nearby. Quantitatively, in the b = 6 fm HM free cross-section case, the gain in the

longitudinal momentum per nucleon contributes as much as 17 out of 24 MeV/c of

the gain in the net spectator momentum per nucleon in Fig. 5.9. In the b = 6 fm
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HM reduced cross-section case, the longitudinal gain contributes about 4 out of 8

MeV/c of the net momentum gain per nucleon.

5.1.5 Summary

Within semiclassical transport simulations of energetic semicentral collisions of

heavy ions, I have carried out an investigation of the interplay between the

participant and spectator regions. The spectators pass by the participant region

when the participant matter undergoes a violent explosion. On one hand, the

spectators block the expansion of the participant matter in the in-plane direction,

producing elliptic flow for the participant matter. On the other hand, the explosion

pushes the spectators giving them transverse momentum pointed away from the

reaction zone. The momentum transfer to the spectators and the shadow left in the

pattern of the participant emission depend on the speed of the explosion. The

speed, in turn, depends on the EOS of the dense matter. Due to their nature, the

spectators represent a perfectly timed probe right at the reaction site. A careful

analysis of in-plane transverse momentum of a spectator may yield information on

the EOS comparable to that provided by elliptic flow analysis. An analysis of the

longitudinal momentum transfer may yield information on the momentum

dependence of the MFs in the reactions. The signatures in the spectator momenta

per nucleon rise with the lowering of the impact parameter, but at the cost of the

lowering of a spectator mass, reducing the chances of identifying the spectator

remnants. Significantly, for most repulsive MFs and small impact parameters in a

heavy system, spectators may emerge from the reaction with a higher net average

momentum per nucleon than the original momentum.
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5.2 Isospin Diffusion Process in HIC

In this section, I will discuss isospin diffusion process in an isospin asymmetric

reaction system. Elementary discussion of isospin diffusion process in realistic

heavy-ion reaction system is provided in subsection 5.2.1. The nuclear equation of

state based on isospin dependent mean fields (IEOS) and the isospin diffusion

coefficient for nuclear matter are discussed in subsection 5.2.2. The results from the

isospin diffusion simulation in a peripheral reaction, including the time evolutions of

the spectator isospin asymmetry, are discussed in subsection 5.2.3. The results from

the current simulation are compared with data [100] in subsection 5.2.4. The results

and the discussions on isospin diffusion are summarized in subsection 5.2.5

5.2.1 Introduction

Isospin diffusion process, which results from isospin non-equilibration, generates

an isospin flow that transports isospin asymmetry from the higher concentration

region to the lower concentration region. In the limit of small isospin gradient and

close to equilibrium, isospin diffusion process could be described in terms of a

transport coefficient (see the discussions in in Chapter 4 “Nuclear Isospin

Diffusivity” ). The isospin diffusion coefficient is related to the n-p cross sections

σnp and to the isospin dependence of the nuclear equation of state. As seen in

Chapter 4, the different IEOS give rise to different isospin diffusion coefficients, and

thus different isospin diffusion time scales. The direct relation between isospin

diffusion process and IEOS gives us possibilities to test the different IEOS models in

heavy-ion reactions.

In reactions of isospin-asymmetric reaction systems, isospin diffusion process is

controlled by two competing time scales: the isospin diffusion time scale and the

reaction time scale. At lower energies, the reaction time scale is much longer than
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the characteristic isospin diffusion time scale, and the isospin gets close to

equilibration in the reaction system. At higher energies, the reaction time scale is

much shorter than the isospin diffusion time scale, thus, the projectile-like region

and the target-like region will show memories of the initial system. Such a

transition, from proximity to isospin equilibration at lower energies to

nonequilibrium at higher energies, has been demonstrated in certain reaction

systems by Johnston et al. [98, 163]. The isospin non-equilibrium after a heavy-ion

reaction is important for the measurement of isospin diffusion process. A complete

isospin equilibration would erase the asymmetry in the initial reaction system and

make the isospin related observables insensitive to the diffusion process. The isospin

nonequilibrium has been first used to measure nuclear stopping power by Rami et

al. [99].

However, isospin diffusion process is complicated by other processes that affect

the isospin content of the reaction system, such as, the fast particle emission

process, the possible liquid-gas phase transition and the cluster formation process.

Impact of the fast particle emission process will depend on the excitation and

isospin content of the emitting source; the effects of the liquid-gas phase transition

and the cluster formation process have already been discussed in Chapter 2, on a

phenomenological basis. Here I will introduce an isospin diffusion ratio that

suppresses effects of the non-diffusion processes, by taking the difference between

signals from the non-symmetric and symmetric reaction systems.

5.2.2 IEOS and Isospin Diffusion

In general, isospin diffusion process will be affected by the isospin-dependence of

the nucleon-nucleon interaction. Isospin dependence of elementary nucleon-nucleon

interaction gives rise to different optical potential for protons and neutrons in the

mean field description and to different interparticle cross sections, affecting the
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motion of the protons and neutrons, and enhancing or suppressing the isospin

transport process in the nuclear medium. In the limit of small isospin concentration

gradient and close to equilibrium, isospin diffusion process may be characterized by

an isospin diffusion coefficient which probes, in particular, the isospin dependence of

the nuclear EOS (see the discussions on isospin diffusion process in Chapter 4).

While assuming the applicability of the Boltzmann equations, the isospin

diffusion coefficient for nuclear matter has already been derived in Chapter 4. The

different parameterizations of the isospin dependence for the nuclear EOS have been

shown, in particular, to give rise to different isospin diffusion coefficients. In the low

temperature limit, the isospin diffusion coefficient is proportional to the symmetry

energy of nuclear matter.

In this section, I will explore four specific parameterizations of the isospin

dependence of the nuclear EOS and the isospin diffusion coefficients for nuclear

matter with those IEOS. For the use in later discussions, I will first produce an

estimate of the relevant temperature and density in the participant matter during

the violent stage for the peripheral reactions to be investigated. Afterwards, I will

discuss the characteristics of the four IEOS and of the corresponding isospin

diffusion coefficients for the relevant physical region.

I will specifically focus on the peripheral reactions of 112,124Sn+112,124Sn at the

beam energy of Elab/A = 50 MeV. The central temperature in a fully thermalized

Fermi gas is estimated as T =
√

Elab/(2 Aa) ∼ 14 MeV, using a ≈ A/(8 MeV).

Taking into account the incomplete dissipation of kinetic energy in the participant

region and possible collective motion and effects of reduced statistics, the average

thermal temperature is estimated to be half of the peak value, Tave ∼ 7 MeV. The

maximum density at the center of a peripheral collision at such beam energy is

around normal density, but since the compression stage is usually shorter than the

expansion stage for the participant region and also the spectators partially slide
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over the participant matter, the average density in the participant region during the

violent reaction stage is below normal density ρave ∼ 0.7ρ0.

In BUU simulations, I will use four IEOS as discussed in section 3.5.2, but with

slightly different value for the constants.

eint
sym =





14 ξ2, iso-SH;

14 ξ, iso-NH;

14 ξ1/3, iso-NS;

38.5 ξ − 21.0 ξ2, iso-SKM.

(5.5)

where the reduced density is defined with ξ = ρ/ρ0 and where ρ0 = 0.16 fm−3 is the

normal density of nuclear matter. The three power law types of the IEOS (iso-SH,

iso-NH, and iso-NS) have the same symmetry energy at normal density; while the

iso-SKM type, which was suggested by Colonna [101], has a larger symmetry energy

at the normal density. The symmetry energies for the four different IEOS have very

different behavior as a function of density as shown by Fig. 5.10. Following the

convention introduced in section 3.5, the iso-SH and iso-NH types belong to the

iso-stiff type of IEOS, while the iso-NS and iso-SKM belong to the iso-soft type. At

subnormal densities of ρ/ρ0 ∼ 0.7, the iso-SKM has the largest value for the

symmetry energy, while the iso-SH has the smallest value of the four IEOS.

The different density dependencies of the symmetry energy in Fig. 5.10 are

expected to give rise to different paces for isospin diffusion process, following the

considerations in Chapter 4. The left panel of Fig. 5.11 shows the isospin diffusion

coefficients for nuclear matter at temperature T = 7 MeV, with the different lines

there corresponding to five different assumptions on the IEOS: the four IEOS in

Eq. (5.5) and the free Fermi-gas EOS. The different IEOS, as seen in Fig. 5.11, give

rise to different isospin diffusion coefficients as a function of density. In the regions

of our interest, at densities around ρ ∼ 0.7ρ0, the iso-stiff type of IEOS (iso-SH and
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Figure 5.10: The interaction part of the symmetry energy as a function of density for
four different IEOS: iso-SH, iso-NH, iso-NS and iso-SKM. The interaction symmetry
energy for the first three of the IEOS yields, by construction, the same symmetry
energy at the normal density, while the iso-SKM yields a different value.

iso-NH) yields less diffusion as compared to the iso-soft type IEOS (iso-NS and

iso-SKM). The softest type (iso-SKM) of the four IEOS gives rise to the highest

isospin diffusion coefficient at moderately subnormal densities. The ordering of the

isospin diffusion coefficients for different IEOS is seen to be the same as the ordering

of the symmetry energy, cf. Figs. 5.10 and 5.11. Such correspondence is a result of

the proportionality between symmetry energy and the isospin diffusion coefficient at

low temperatures (see the discussion on the low temperature limit of isospin

diffusion coefficients in Chapter 4). To exhibit the effects of isospin dependence of

the MFs, we may normalize the coefficients to the one without such dependence,

i.e., the coefficient for the free Fermi gas. The diffusion-coefficient ratio is plotted in

the right panel of Fig. 5.11, which now emphasizes the relative difference in results

for the different IEOS. In the next subsection, I will explore the relative strength of
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the diffusion in actual simulations with different IEOS.
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Figure 5.11: In the left panel, the isospin diffusion coefficients for nuclear matter
for MFs with four different dependence on isospin and also without such dependence,
plotted as a function of density; in the right panel, the isospin diffusion coefficients are
normalized to that obtained with no isospin dependence in the MF. The temperature
of nuclear matter is set at T = 7 MeV.

5.2.3 Isospin Diffusion in Reaction Simulations

The BUU simulations have been carried out for four different reaction systems:

124Sn+124Sn, 124Sn+112Sn, 112Sn +124 Sn and 112Sn+112Sn, at the beam energy of

Elab/A = 50 MeV, and a peripheral impact parameter of b = 6.5 fm. I will analyze

the isospin asymmetry of projectile-like spectators that, because of peripherity,

largely keeps their original identity. The two projectile-target symmetric reaction

systems, 124Sn+124Sn and 112Sn+112Sn, are the most and least neutron-rich systems.

These serve as the references for the projectile-target asymmetric reaction systems,

124Sn+112Sn and 112Sn+124Sn, where isospin diffusion between the projectile and

target regions takes place. The projectile-like (124Sn like) spectator in the
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124Sn+112Sn system will have about the same excitation as that in the 124Sn+124Sn

reaction system. Since the fast particle emission process is most related to the

excitation and the isospin asymmetry of the source, to the lowest order one can

assume that the changes of projectile isospin asymmetry due to fast particle

emission in the two systems are the same. Similar ideas apply to the other two

systems with 112Sn projectile.

The simulation utilized the MI IEOS as discussed in section 3.5.2, and the

specific parameters for the IEOS in this simulation are already given in section

5.2.2. The isospin independent mean field is expected to have little impact on

isospin diffusion process, and a soft EOS has been utilized for all the simulations.

Geometrically reduced in-medium cross sections, that were shown to yield

reasonable description of the stopping in the heavy-ion reactions, has been used in

my simulations. In the simulations, the projectile-like spectator region was selected

according to the phase space selection criteria, with employed velocity gate of higher

than half of the beam velocity in the center of mass frame and a low density cut-off

of 0.05ρ0. Such selection was shown to give reasonable description of the spectator

matter during and after the violent reaction stage [161].

The isospin asymmetry of the projectile-like spectator region is plotted as a

function of time in Fig. 5.12, for the peripheral reactions of 124,112Sn+124,112Sn. The

collision systems were followed till asymptotic large time of t = 150 fm/c, where the

two spectator remanent pieces from the reaction were well separated and their

properties are quite stabilized.

The isospin asymmetry of the projectile-like spectator exhibits clear

systematics. The projectile-like spectator isospin asymmetry in the most neutron

rich system 124Sn+124Sn is decreasing with time and is consistently higher than in

any other reaction systems throughout the reaction. In the least neutron rich

system 112Sn+112Sn, the asymmetry changes slower than in any other system and is

163



0 20 40 60 80 100 120 140

0.10

0.15

0.20

time (fm/c)

0.10

0.15

0.20
124+124

124+112

112+124

112+112

124+124

124+112

112+124

112+112

iso-SH

iso-SKM

δ

Figure 5.12: Isospin asymmetry of the projectile-like spectator region is plotted as
a function of time, for four different reactions systems of 124Sn+124Sn, 124Sn+112Sn,
112Sn+124Sn and 112Sn+112Sn at beam energy Elab = 50 MeV/nucleon and impact
parameter b = 6.5 fm. The top panel is from a simulation with a stiff symmetry
energy density dependence (iso-SH) and the lower panel is from a simulation with a
soft symmetry energy density dependence (iso-SKM).

consistently lower than any other reaction system. The change of isospin asymmetry

in the projectile-target symmetric reaction systems is characteristic of the fast

particle emission process, where the projectile-like spectator is excited by the

impact of the target and begins to emit protons and neutron. The projectile-like

spectator in the mixed system 124Sn +112Sn changes differently from that in the

symmetric system 124Sn+124Sn, reflecting the effect of the different target. The

main difference is attributed to the extra isospin diffusion process that transports

the isospin asymmetry between the projectile-like and target-like regions in the
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system 124Sn+112Sn. The diffusion process also differentiates the other two systems

112Sn+124Sn and 112Sn+112Sn.

The two mixed systems, 124Sn+112Sn and 112Sn+124Sn, differ just in the

interchange of the projectile and target. The projectile remnant in one system

corresponds to the target remnant in another system. The isospin asymmetry for

the projectile remnant in the 124Sn+112Sn decreases over time, while the opposite

happens to in the counterpart system. Such behavior for the mixed system

specifically expected for the process of isospin diffusion, which acts to transport the

isospin asymmetry between the two spectator regions. Isospin diffusion process, if

allowed to proceed forever, would eventually make the projectile-like and target-like

regions to reach the same in isospin asymmetry. As the time evolution in Fig. 5.12

suggests, the scenario of a complete isospin equilibration between the two spectators

was not achieved in any of the mixed systems.

By comparing the top and lower panels of Fig. 5.12, I find that isospin diffusion

process is affected by isospin dependence of the nuclear equation of state. The top

panel shows the simulation result assuming a stiff isospin density dependence

(iso-SH) for the mean field interaction, and the lower panel shows that assuming a

soft isospin density dependence (iso-SKM). The two projectile-target symmetric

systems, 124Sn +124Sn and 112Sn+112Sn, exhibit differences in time evolution of

asymmetry and in the asymptotic value for the asymmetry in the top and lower

panel. A more significant difference, connected to isospin diffusion process in the

reactions, is the separation between the mixed systems in the two panels. While in

the case of iso-SH EOS, the line for the projectile-like spectator (124Sn-like) in the

124Sn+112Sn system, is always well separated from that for the 112Sn-like spectator

in system 112Sn+124Sn. In the case of iso-SKM EOS, the separation between the

lines for the two mixed system is small, signifying an increased isospin diffusion

process. The different isospin diffusion process in the two simulations is anticipated
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from my earlier argument on the relations between the IEOS and isospin diffusion

process (Section 5.2.2).

Drawing conclusions on isospin diffusion by comparing directly the asymptotic

isospin asymmetry values in the simulations is difficult because the fast particle

emission process is also affected by the IEOS. To emphasize the change of isospin in

the projectile-target asymmetric systems as compared to the symmetric systems,

however, one may define an isospin diffusion ratio similar as that employed by Rami

et al. [99]:

Ri =
(2δi − δ124+124 − δ112+112)

(δ124+124 − δ112+112)
, (5.6)

where the δ124+124 and δ112+112 are the isospin asymmetry of the projectile-like

spectator region for the symmetric reaction systems(124Sn+124Sn and 112Sn+112Sn),

and they set the relative scale of the isospin changes in the reactions. By definition,

the ratio is Ri = 1 for the most neutron rich system 124Sn+124Sn, and Ri = −1 for

the least neutron rich system 112Sn+112Sn throughout the reaction. If the spectator

isospin were at any time completely equilibrated between the collision partners

during the reaction, the ratios of the two asymmetric system would be Ri = 0.

In Fig. 5.13, the isospin diffusion ratio Ri is plotted as a function of time for

the two mixed systems. The center lines and the shaded regions are the average

values and the statistical uncertainties estimated from multiple runs of simulations

[164]. As before, the top and lower panel are for the cases of iso-SH and iso-SKM

respectively; the upper and lower lines in each panel are for the projectile-like

spectators in the 124Sn+112Sn and 112Sn+124Sn systems respectively.

The isospin diffusion ratios for the mixed systems start from Ri = ±1, and

gradually decrease in magnitude. The asymptotic values are reached at around

100 fm/c, which is comparable to the spectator separation time scale of

60 ∼ 80 fm/c. After 100 fm/c, the ratios Ri do not change much, indicating a

stability of the ratio with respect to further particle evaporation process.
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Figure 5.13: The isospin diffusion ratio as defined by Eq. (5.6) is plotted as a function
of time for two IEOS. The top panel is for the most stiff symmetry energy density de-
pendence (iso-SH), and the lower panel is for the most soft symmetry energy density
dependence (iso-SKM). Note the stability of the ratio after 100 fm/c. The shaded
areas around the lines indicate the statistical error from averaging over multiple sim-
ulations.

The isospin diffusion ratios in the simulations with different IEOS could be

directly compared to yield information about isospin diffusion process, because

effects of the fast particle emission are largely cancelled out in the ratios. In the

iso-SH case, the large magnitudes for the ratios Ri, and the larger difference

between the ratios at a given time for the 124Sn+112Sn and 112Sn+124Sn systems, are

reflections of the less isospin diffusion between the projectile-like and the target-like

spectators. On the other hand, the results for the iso-SKM case just indicate a more

complete isospin diffusion within the mixed system. The degree of completeness for

isospin diffusion process, is now simplified to the ratio Ri, and the effect of the
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different IEOS in the simulation is more transparent in Fig. 5.13 than in Fig. 5.12.

As will be shown in the next section, the isospin diffusion ratio Ri may also be

compared to experimental data, and such a comparison can yield information on

isospin dependence of the nuclear EOS [100].

5.2.4 Comparison to Data

In this section, I will compare the ratios Ri obtained from the experiment and

the simulations, and show that the experimental result favors the iso-SH type of

IEOS. I will also discuss the difficulties in comparing the simulation with the

experiment as well as the many factors that could affect the isospin diffusion ratio.

The peripheral collision data from the experiment have been selected by gates

in charged particle multiplicity that correspond to a reduced impacted parameter of

b/bmax ≥ 0.8 in the sharp cut-off approximation [165, 166], with the efficiency

weighted average impact parameter equal to < b >= 6.5 fm. The isotope yields at

rapidities y/ybeam ≥ 0.7 were used for the projectile-like region isospin analysis.

More details of the experiment and data selection can be found in [100].

The isospin diffusion ratios from experiment were extracted for the isoscaling

parameter, which describes the change in the yield of an isotope with the change of

the isospin content of a reacting system. Specifically, the experimental ratio

R21(N,Z) of yields between two systems of similar mass and energy as a function of

isotope N and Z, were found to obey a simple scaling relation

[104, 167, 168, 103, 48]:

R21(N,Z) = Y2(N, Z)/Y1(N/Z) = C exp(αN + βZ). (5.7)

where α and β are the isoscaling parameters for the two sources, and are related to

the free neutron and proton densities in the emitting source. The neutron isoscaling
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parameter α is used for the experimental isospin diffusion ratio:

Ri =
2αi − α124+124 − α112+112

α124+124 − α112+112

. (5.8)

In the Expanding-Emitting-Source model (EES) as well as in the canonical

Statistical Multifragmentation Model (SMM), the isoscaling parameter α is roughly

linearly related to the isospin asymmetry δ [104]. If I assume either the EES

relation or the SMM relation, as derived by Tsang [104], then the isospin diffusion

ratio defined by δ (Eq. 5.6) and by α ( Eq. 5.8) only differs by less than 4% [100].

From the peripheral collision data of the Sn+Sn systems, the experimental isospin

diffusion ratios are found to be Ri = 0.48± 0.03 for the system 124Sn+112Sn,

Ri = −0.48± 0.03 for system 112Sn+124Sn [100].

The experimental result for isospin diffusion ratio Ri together with those from

the BUU simulation results are plotted in figure 5.14. The experimental value is

almost half way between the lines for no diffusion (Ri = ±1) and for complete

mixing of isospin (Ri = 0), which indicates that the isospin diffusion time scale is

comparable to the collision time scale.

For the two iso-soft type of IEOS (iso-NS and iso-SKM), the simulation

suggests almost complete isospin mixing in the projectile-target asymmetric system,

which is just the opposite of the experimental result. Therefore, I could safely

conclude that iso-soft type of IEOS induces too much isospin diffusion to explain

the experimental result. On the other hand, the iso-stiff type of IEOS (iso-SH or

iso-NH) introduces much less isospin diffusion between the two spectators, and are

much closer to the experimental result. The iso-SH results match the experimental

results especially well, indicating a weak isospin diffusion in the reaction system.

Another interesting feature is that the experimental Ri for the 124Sn+112Sn and

112Sn+124Sn system are of opposite sign but same magnitude, or in another word,
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Figure 5.14: The isospin diffusion ratios from the simulations are compared to the
experimental extracted isospin diffusion ratios. The symbols above the line Ri = 0
are for the projectile-like spectators in the 124Sn+112Sn system, while those below are
for the system 112Sn+124Sn. The error bars reflect the uncertainties in the experiment
or in the simulations.

they are mirror values against the line at Ri = 0. Such symmetry in the experiment,

is not seen in the simulations. In the simulation, the pair of Ri for any given IEOS

shows deviation from such a symmetry, the average of the pair is always to the

positive side of the line Ri = 0.

The lack of symmetry in pair of ratios Ri in the simulations, may be attributed

to the effect of fast particle emissions. If the system did not emit any fast particles,

all isospin removed from the 124Sn-like spectator would go into 112Sn-like spectator,

and the pair of isospin diffusion ratios from the two mixed systems should average

to near zero. However, the emission of fast particles, of which isospin asymmetry

need not be linear in the asymmetry of the emitting source, will affect the isospin

asymmetry in the spectators directly. Furthermore, the fast particle emission from
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the hot participant region will affect the isospin that flows between the two

spectators, and thus affect the spectator isospin indirectly. In the mixed system, a

reduced asymmetry emission in the 124Sn-like spectator region, an enhanced

asymmetry emission in the 112Sn-like spectator region, and a reduced asymmetry

emission in the participant region will all shift the average value for the pair of

ratios Ri to the positive side.

On the other hand, if the experimental data for the projectile-like source

happen to incorporate some of the fast particles emitted during the early reaction

stage, then the resulting Ri pair will reflect more the values of the initial system.

Different experimental source selection criteria are needed for a more conclusive

argument. The assumption in the comparison that isotope ratios of the

projectile-like region reflect the corresponding isospin content after the reaction

(t ≥ 80 fm/c), albeit supported by some correlation analysis [169, 170], may require

further testing.

To understand better the effects of the fast particle emission process and

isospin diffusion process, one may look in more detail at the simulation results.

Table 5.2 shows the average neutron number N , proton number Z, total nucleon

number A and total isospin asymmetry δ of the projectile-like spectator at the end

of the simulations. The total nucleon number A for the 124Sn-like spectator in the

124Sn+112Sn system is higher than that in the 124Sn+124Sn system, while the total

neutron numbers in both system are quite close. The average difference of the

spectators in the two system is about two protons, which are transferred from the

112Sn-like spectator to the 124Sn-like spectator. The same result of two proton

difference also applies to the 112Sn+124Sn and 112Sn+112Sn systems. For simulations

with different IEOS, I find differences in the total N, Z, and A, even for the

projectile-target symmetric systems. Those differences demonstrate the complex

nature of the fast particle emission process. The isospin asymmetries of the
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Table 5.2: The simulation results for the four reaction systems of 124Sn+124Sn,
124Sn+112Sn, 112Sn+124Sn and 112Sn+112Sn, for the four explore IEOS of iso-SH, iso-
NH, iso-NS and iso-SKM. The average N, Z, A, δ values for the spectator-like region
at the end of the simulation t = 150 fm/c are listed here.

124Sn +124 Sn N Z A δ
iso-SH 56.02 40.01 96.03 0.167
iso-NH 55.61 40.45 96.06 0.158
iso-NS 55.61 40.00 95.60 0.163

iso-SKM 54.18 40.63 94.81 0.143

124Sn +112 Sn N Z A δ
iso-SH 56.30 41.70 98.00 0.149
iso-NH 55.79 42.31 98.10 0.137
iso-NS 56.00 42.57 98.57 0.136

iso-SKM 54.20 42.63 96.83 0.120

112Sn +124 Sn N Z A δ
iso-SH 48.61 38.05 86.67 0.122
iso-NH 48.26 38.06 86.32 0.118
iso-NS 49.35 37.98 87.33 0.130

iso-SKM 47.49 37.77 85.26 0.114

112Sn +112 Sn N Z A δ
iso-SH 48.62 39.71 88.33 0.101
iso-NH 48.72 40.22 88.94 0.096
iso-NS 48.86 40.02 88.89 0.099

iso-SKM 47.99 40.23 88.22 0.088

symmetric systems, which set the scale of the ratio Ri, do not follow a simple

relation with the IEOS. Extrapolating from the two symmetric systems, I expect

that the mixed system is also affected by the fast particle emission process.

If a free cross section is used in the above simulations, isospin diffusion process

in the mixed systems will, in general, be reduced, but the effect is limited. The two

type of cross sections are primarily different at low momentum transfer, i.e., at low

energies and/or forward scatterings. As we have learned in Chapter 4, the isospin

diffusion coefficient is inverse proportional to a weighted cross section σnp, with a
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weighting factor of the momentum transfer squared (See Eq. 4.50 in Section 4.4.2).

This weighting factor suppresses the differences between the two cross sections. As

far as isospin diffusion process is concerned, the simulations with free cross section

and with in-medium cross section should not yield significantly different results.

However, the use of free cross sections might change the dynamical evolution of the

system and the fast particle emissions. In the context of balance energy studies, one

already knows that BUU simulations with free cross section give the wrong balance

energy for the current system.

The almost complete isospin mixing in the simulation with the iso-soft type

EOS is unique in the current energy, and was used to differentiate the different

IEOS. In general, as the beam energy goes up, the reaction time scale will

inevitably be reduced, and the degree of the isospin diffusion will become more

incomplete even with the iso-SKM used here. At much higher energy, isospin

diffusion process will be insignificant to be detected in the experiment, and the

isospin diffusion ratio will be less useful.

5.2.5 Summary

A systematic study of isospin diffusion process in isospin asymmetric heavy-ion

reactions has been carried out within the BUU simulations. The projectile spectator

regions in the peripheral reactions of 124,112Sn +124,112 Sn at Elab/A = 50 MeV have

been studied, and the isospin asymmetry in such regions was found to be influenced

by fast particle emission and by isospin diffusion process. The isospin diffusion ratio

Ri defined in Eq. 5.6 reduces the fast-particle emission-effects, and improves

sensitivity to isospin diffusion process in the projectile-target asymmetric reactions.

The ratio Ri exhibits long-time stability following a collision. The values at which

Ri stabilizes are different in simulations that rely on EOS with different isospin

dependencies. In nuclear matter with weak isospin gradients, isospin diffusion
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process is expected to be related to the IEOS, and such an approximate relation is

indeed found in the simulations. The isospin diffusion ratios Ri from the simulations

have been compared with ratios constructed from data. The two iso-soft IEOS

(iso-NS and iso-SKM) were found to induce too much isospin diffusion to explain the

data; the simulation results with iso-stiff IEOS (iso-SH and iso-NH), especially the

iso-SH type, agree better. However, the pair of experimental isospin diffusion ratios

for the mixed systems 124Sn +112 Sn and 112Sn +124 Sn show a mirror symmetry

which is not quite found in all simulations. The effects of fast particle emission

competing with isospin diffusion, causing difficulty in comparing simulations and

experiment, and the cross section and energy scale issue have been discussed.

Specific analysis of the simulations reveals that about two protons are transferred

between the spectators in the mixed system. The results in this section demonstrate

the new possibilities for the exploration of isospin physics in heavy-ion reactions.
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Chapter 6: Conclusions

In this thesis, I have discussed various aspects of transport in heavy-ion

reactions. Much of the discussion has been devoted to microscopic transport theory,

which underlies the transport reaction simulations. The simulations are essential for

understanding the mechanisms of central heavy-ion reactions. The

phenomenological analysis helps one to understand the physical process as well as

the cause-effect relationship in the simulations. Analytical solutions of the transport

equations can not be developed for realistic reaction system, but can be for some

very simplified cases. However, when such analytical solutions are available, they

provide important insights into the physical process beyond the pure numerical

understanding from transport simulations. The validity of the theories, and of the

assumptions in the theories, is tested when the analytical and/or simulational

results are confronted with the experimental data.

Chapter 1 introduces the general background and some of the active areas of

research for nuclear transport theory and transport phenomena. Heavy-ion reaction

represent an important tool for studying the properties of the hot dense nuclear

matter. The possible nuclear liquid-gas phase transition and the nuclear equation of

states have been extensively studied in heavy-ion reactions. The isospin related

transport theory and phenomena have recently raised quite some interest.

Chapter 2 is devoted to a discussion of neutron enrichment in the midrapidity

source in the heavy-ion reactions. A phenomenological phase transition model is

introduced for nuclear matter, and the neutron enrichment is explained in terms of

the phase equilibrium condition between the liquid and the gas phase. The cluster

formation process in the neck region, when viewed as droplets in the gas phase,

counteracts the trend of neutron enrichment in the midrapidity source. When the

nonequilibrium nature of the heavy-ion reaction is taken into account, the phase
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equilibrium conditions give the direction of isospin flow in the reaction system. A

reversal in the direction of isospin flow is proposed to occur during the reactions.

Chapter 3 introduces microscopic transport theory. The reacting nuclear

system may be viewed in terms of the transport and interaction of quasiparticles.

The Boltzmann equation set, which is the center of transport theory, contains two

essential ingredients: the mean field dynamics and the inter-particle collisions. The

mean field is introduced through the energy-density functional; both the momentum

independent and momentum dependent parameterizations of the functional are

discussed. Isospin physics has raised much interest in recent years spurred by the

development of the experimental facilities. After a brief introduction of the isospin

related phenomena, I discussed isospin dependence of the mean field in detail. Both

the density dependence and the momentum dependence of the neutron and proton

optical potentials have been discussed. A general T-matrix argument is used to

justify the high momentum behavior of the isospin dependent optical potentials.

The isospin dependent mean fields have been used to access the Urca cooling

process in neutron stars. Some practical issues for reaction simulations have also

been discussed, including the initialization of a reaction system, test particle

method for integrating transport equations, the lattice Hamiltonian method for

improved accuracy and modification of cross sections inside a nuclear media.

Chapter 4 was devoted to the derivation of the isospin diffusion coefficient for

nuclear matter. A systematic expansion of the Boltzmann equation gives

self-consistent equations for the variations of the distribution function, from which

the flux and transport coefficients could be derived. The isospin diffusion coefficient,

shear viscosity and heat conductivity have been all calculated using the free space

N-N cross-sections. The isospin diffusion time scale have been also estimated for a

heavy-ion reaction system, and the result was compatible with that from a

simulation.
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Chapter 5 was devoted to transport simulations for heavy-ion reactions. In the

first part of that chapter, the interplay of the participant and spectator zones in high

energy reactions was examined. The interplay, on one hand, produces the elliptic

flow pattern in the participant region, and on the other hand impact the properties

of the spectator remnants. In transport simulations, the properties of the spectator

remnants after a collision turn out to be directly linked to the features of the nuclear

equation of state (EOS) in the participant zone. An acceleration of the spectator

piece is found in a heavy system at low impact parameters in the simulations. The

acceleration may be explained in terms of the blast of the exploding participant

matter impacting the spectator. Finally, isospin diffusion process is studied in

heavy-ion reaction simulations. The process is expected to be sensitive to isospin

dependence of the mean fields, and such sensitivity is indeed found in transport

simulations. The results from the simulation have been compared to data from the

same reaction system. The experimental results are better explained with a

symmetry energy characterized by a stiff dependence on the nuclear density.
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Appendix A: Macroscopic

Quantities

I shall consider different types of macroscopic quantities, either net or for

separate components, either in the general frame of observation or in a local frame.

For a single component i in the observation frame, the density ni, mean velocity vi,

mean kinetic energy ei, momentum flux tensor pi and kinetic energy flux qi, are

given in terms of the distribution fi, respectively, as

ni(r, t) =
g

(2π~)3

∫
d3p fi(p, r, t) , (A.1a)

ni vi =
g

(2π~)3

∫
d3p

p

mi

fi(p, r, t) , (A.1b)

ni ei =
g

(2π~)3

∫
d3p

p2

2mi

fi(p, r, t) , (A.1c)

pi =
g

(2π~)3

∫
d3p

pp

mi

fi(p, r, t) , (A.1d)

qi =
g

(2π~)3

∫
d3p

p2

2mi

p

mi

fi(p, r, t) . (A.1e)

The net quantities result from combining the component contributions. Thus,

the net density is n = n1 + n2, the net mass density is ρ = ρ1 + ρ2 = m1 n1 + m2 n2

while the net velocity v is obtained from ρv = ρ1 v1 + ρ2 v2. The kinetic energy e

averaged over all particles is given by n e = n1 e1 + n2 e2, the net momentum flux is

p = p1 + p2 and the net kinetic energy flux is q = q1 + q2.

Local quantities are those calculated with momenta transformed to the local

mass frame, i.e. following the substitution p → p−mi v. To distinguish local

quantities from those in the observation frame, when the frame matters, the local

quantities will be capitalized. The local momentum flux tensor P is the kinetic

pressure tensor and the local kinetic energy flux Q is the heat flux.
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Appendix B: Continuity Equations

The collisions in the Boltzmann equation set (4.13) conserve the quasiparticle

momentum and energy and the species identity. This leads to local conservation

laws for the corresponding macroscopic quantities.

Let χj(p) represent one of the quasiparticle quantities conserved in collisions,

χj(p) = δij, p or p2/2mj. For those quantities, the integration with collision

integrals produces
∑

j

∫
d3p χj Jj = 0 . (B.1)

As a consequence, from the Boltzmann equation set, I obtain

∑
j

∫
d3p

(2π~)3
χj

(
∂fj

∂t
+

p

mj

· ∂fj

∂r
+ Fj · ∂fj

∂p

)
= 0 . (B.2)

After a partial integration, I get from the above

∂

∂t

(
nχ

)
+

∂

∂r
·
(

n
p

m
χ

)
− nF · ∂χ

∂p
= 0 , (B.3)

where the averages are defined with

nχ =
∑

j

∫
d3p

(2π~)3
χj fj(p, r, t) . (B.4)

Substituting for χj the conserved quantities (χj(p) = δij, p or p2/2mj), I get

the respective continuity equations:

∂ni

∂t
+

∂

∂r
· (ni vi) = 0 (B.5a)

∂

∂t
(ρv) +

∂

∂r
· p− n1 F1 − n2 F2 = 0 , (B.5b)

∂

∂t
(n e) +

∂

∂r
· q− n1 v1 · F1 − n2 v2 · F2 = 0 . (B.5c)
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Here, I made yet no use of the local frame.

The local frame is useful when wants to make use of the assumption of local

equilibrium that imposes restrictions on local quantities. On representing the

average velocities as vi = Vi + v in the equations above, I obtain the following set,

∂ni

∂t
+

∂

∂r
· (ni v) +

∂

∂r
· (ni Vi) = 0 , (B.6a)

∂ρ

∂t
+

∂

∂r
· (ρv) = 0 , (B.6b)

∂

∂t
(ρv) +

∂

∂r
· (ρv v) +

∂

∂r
· P − n1 F1 − n2 F2 = 0 , (B.6c)

∂

∂t
(nE) +

∂

∂r
· (nE v) + P :

∂

∂r
v +

∂

∂r
·Q− n1 V1 F1 − n2 V2 F2 = 0 .(B.6d)

The equation for mass density in the set above follows from combining the

equations for particle densities.

The above equations significantly simplify when the assumption of a strict local

equilibrium is imposed. Under that assumption, the local species velocities and the

heat flow vanish, Vi = 0 and Q = 0, and the kinetic pressure tensor becomes

diagonal, P = 2
3
nE 1. The equations reduce then to the Euler set

∂ni

∂t
+

∂

∂r
· (ni v) = 0 , (B.7a)

∂

∂t
(ρv) +

∂

∂r
· (ρv v

)
+

2

3

∂(nE)

∂r
− n1 F1 − n2 F2 = 0 , (B.7b)

∂

∂t
(nE) + v · ∂

∂r
(nE) +

5

3
nE

∂

∂r
· v = 0 . (B.7c)
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Appendix C: Space-Time

Derivatives for an Ideal Fluid

In an ideal fluid, all local quantities can be expressed in terms of the local

temperature T and the local kinetic chemical potential µi. If I consider changes of

the densities ni or of the local kinetic energies Ei with respect to a parameter x

representing some spatial coordinate or time, or their combination, I find

∂ni

∂x
= ξi T

∂αi

∂x
+

3

2
ni

∂β

∂x
,

∂(ni Ei)

∂x
=

3

2
ni T

∂αi

∂x
+

5

2
ni Ei

∂β

∂x
, (C.1)

where αi = µi/T , β = log T and ξi = (∂ni/∂µi)T . With the trace derivative defined

as

d

dt
=

∂

∂t
+ v · ∂

∂r
,

a particular version of the above relations is

dni

dt
= ξi T

dαi

dt
+

3

2
ni

dβ

dt
,

d(ni Ei)

dt
=

3

2
ni T

dαi

dt
+

5

2
ni Ei

dβ

dt
. (C.2)

A combination of the above trace-derivative relations with the Euler equations

from Appendix B yields the following simple results,

dαi

dt
= 0 , (C.3a)

dβ

dt
= −2

3

∂

∂r
· v , (C.3b)

the consistency of which with (C.2) and (B.7) is easy to verify. The results (C.3)
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express basic features of the isentropic ideal-fluid evolution of a mixture. The

entropy per particle in species i depends only on αi, while the ratio of the densities

of species n1/n2 depends both on α1 and α2. The conservation of αi for both species

is equivalent to the conservation of entropy per particle and of relative

concentration. Finally, the density for species i is proportional to T 3/2 multiplying a

function of αi, which is equivalent to the second of the results above, given the

continuity equation for species and the conservation of αi.
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Appendix D: Variable

Transformation

The driving forces for diffusion are naturally expressed in terms of the gradients

of temperature and of chemical potential difference per unit mass µt
12. However,

given the typical constraints on systems, it can be convenient to express the

chemical potential in terms of other quantities, that are easier to assess or control,

such as the differential concentration δ, temperature T and net pressure P t. A

transformation of the variables for the driving forces has been employed, at a formal

level, in Sec. 4.3.3. Here, I show, though, how the transformation can be done in

practice for the interaction energy per particle specified in terms of the particle

density n and concentration δ, Ev = Ev(n, δ). With the nuclear application in mind,

I limit myself to the case of m1 = m2 = m.

The transformation can exploit straightforward relations between different

differentials. One of those to exploit is the Gibbs-Duhem relation

dP t = n1 dµt
1 + n2 dµt

2 + n s dT = n dµt +
mn δ

2
dµt

12 + n s dT . (D.1)

Here, s is the entropy per particle and µt = (µt
1 + µt

2)/2 is the median chemical

potential. Two other relations stem from the differentiations of equilibrium particle

distributions, already utilized in Appendix C,

dni = ξi dµi +
3
2
ni − ξi µi

T
dT ≡ ξi dµi +

(
∂ni

∂T

)

µi

dT . (D.2)

With µv
i = ∂(nEv)/∂ni, on adding and subtracting the two (i = 1, 2) relations side
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by side, I find

dn = (ξ1 + ξ2)

[
dµt −

(
∂µv

∂n

)

δ

dn−
(

∂µv

∂δ

)

n

dδ

]
+

m

2
(ξ1 − ξ2)

×
[
dµt

12 −
(

∂µv
12

∂n

)

δ

dn−
(

∂µv
12

∂δ

)

n

dδ

]
+

[(
∂n1

∂T

)

µ1

+

(
∂n2

∂T

)

µ2

]
dT(D.3)

and

δ dn + n dδ = (ξ1 − ξ2)

[
dµt −

(
∂µv

∂n

)

δ

dn−
(

∂µv

∂δ

)

n

dδ

]
+

m

2
(ξ1 + ξ2)

×
[
dµt

12 −
(

∂µv
12

∂n

)

δ

dn−
(

∂µv
12

∂δ

)

n

dδ

]
+

[(
∂n1

∂T

)

µ1

−
(

∂n2

∂T

)

µ2

]
dT .(D.4)

Those two equations have the structure

Gkn dn = Gkµ dµt + Gkd dµt
12 + Gkδ dδ + GkT dT , (D.5)

where k = 1, 2 and where the coefficients G can be worked out from (D.3) and

(D.4). On multiplying the sides of the first (k = 1) equation by G2n and the sides of

the second (k = 2) equation by G1n and on subtracting the equations side by side, I

can eliminate the dn differential obtaining

0 = (G2n G1µ −G1n G2µ) dµt + (G2n G1d −G1n G2d) dµt
12

+(G2n G1δ −G1n G2δ) dδ + (G2n G1T −G1n G2T ) dT

≡ Rµ dµt + Rd dµt
12 + Rδ dδ + RT dT . (D.6)
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On eliminating next the dµt differential using the Gibbs-Duhem relation, I find

ΠP
12 =

(
∂µt

12

∂P t

)

T,δ

=
Rµ

n
(
Rµ

m δ
2
−Rd

) , (D.7a)

ΠT
12 =

(
∂µt

12

∂T

)

P t,δ

=
Rµ s−RT

Rd −Rµ
m δ
2

, (D.7b)

Πδ
12 =

(
∂µt

12

∂δ

)

P t,T

=
Rδ

Rµ
m δ
2
−Rd

. (D.7c)
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Appendix E: Brace Algebra

The brace products are employed in finding the transport coefficients within

linear approximation to the Boltzmann equation. The brace product of two scalar

quantities A and B associated with the colliding particles is defined as

{A,B} =

∫
d3p

(2π)3
A1 I11(B) +

∫
d3p

(2π)3
A1 I12(B)

+

∫
d3p

(2π)3
A2 I21(B) +

∫
d3p

(2π)3
A2 I22(B)

= [A,B]11 + [A,B]12 + [A,B]22 , (E.1)

where, in the last step, I have broken the brace product into square-bracket

products representing contributions from collisions within species 1, from collisions

between species 1 and 2 and from collisions within species 2, respectively.

I will first show that the square-bracket product is symmetric. Thus, I have

explicitly

[A,B]ii =
1

2

∫
d3pa

(2π)3

d3pb

(2π)3
dΩ v∗

(
dσii

dΩ

)
f

(0)
ia f

(0)
ib f̃

(0)′
ia f̃

(0)′
ib

×Aia (Bia + Bib −B′
ia −B′

ib)

=
1

8

∫
d3pa

(2π)3

d3pb

(2π)3
dΩ v∗

(
dσii

dΩ

)
f

(0)
ia f

(0)
ib f̃

(0)′
ia f̃

(0)′
ib

×(Aia + Aib − A′
ia − A′

ib) (Bia + Bib −B′
ia −B′

ib) , (E.2)

where, to get the last result, I have first utilized an interchange of the particles in

the initial state of a collision and then an interchange of the initial and final states

within a collision. It is apparent that the r.h.s. of (E.2) is symmetric under the

interchange of A and B. Moreover, one can see that a square bracket for B = A,

[A,A]ii, is nonnegative and that it vanishes only when A is conserved in collisions.
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I next consider the contribution from collisions between different species,

[A,B]12 =

∫
d3p1

(2π)3

d3p2

(2π)3
dΩ v∗

(
dσ12

dΩ

)
f

(0)
1 f

(0)
2 f̃

(0)′
1 f̃

(0)′
2

×(A1 + A2) (B1 + B2 −B′
1 −B′

2)

=
1

2

∫
d3p1

(2π)3

d3p2

(2π)3
dΩ v∗

(
dσ12

dΩ

)
f

(0)
1 f

(0)
2 f̃

(0)′
1 f̃

(0)′
2

×(A1 + A2 − A′
1 − A′

2) (B1 + B2 −B′
1 −B′

2) . (E.3)

Here, I again utilized an interchange between the initial and final states and I again

observe a symmetry between A and B on the r.h.s. Thus, indeed, all square

brackets are symmetric. Moreover, for B = A, One sees that [A,A]12 ≥ 0 and that

the zero is only reached if A is conserved.

Combining the results, I find that the brace product (E.1) is symmetric.

Moreover, I find that the brace product of quantity A with itself is nonnegative,

{A,A} ≥ 0, and vanishes only when A is conserved. As the brace product has

features of a pseudo-scalar product, a version of the Cauchy-Schwarz-Buniakowsky

(CSB) inequality [171] holds,

{A,A} {B, B} ≥ ({A,B})2 . (E.4)

All the results from this Appendix remain valid, in an obvious manner, when

the brace product (E.1) is generalized to the pairs of tensors of the same rank

associated with the particles, when requiring that the tensor indices are convoluted

between the two tensors in the brace, as e.g. in (4.36). The positive definite nature

of the brace product is important in ensuring that expressions for transport

coefficients, obtained in the Chapter 4, yield positive values for the coefficients that

in this case represent a stable system.
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