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ABSTRACT

USING LIGHT EMITTED CLUSTERS AS A PROBE OF THE SYMMETRY ENERGY
IN THE NUCLEAR EQUATION OF STATE

By

Michael David Youngs

The symmetry energy, and more specifically its density dependence, has been stud-

ied for quite some time from both a theoretical and experimental approach. In order

to sufficiently constrain the symmetry energy, we need to experimentally measure ob-

servables sensitive to the symmetry energy within a reasonable uncertainty and compare

those results to those of simulations of the same nuclear reactions. This dissertation aims

to achieve both experimental measurements and compare them to the results of studies

using the pBUU transport code.

These studies using pBUU aim to find the sensitivity of different observables to different

transport variables as well as the symmetry energy itself. Some of the predominant

variables that have been investigated in this dissertation are the in-medium cross section

between nucleons as well as the effect of cluster production. The specific observables

upon which we report are the center of mass spectra of protons, neutrons, deuterons,

tritons and finally 3He. In addition we investigate the n/p and t/3He single and double

ratios which have been suggested as being sensitive to the symmetry energy. As an added

check we also study the coalescence invariant n/p spectra and ratios.

We also include a study of spectra for all charged particles up through mass A=4

emitted from reactions of 112Sn+112Sn and 124Sn+124Sn at both 50 and 120 MeV/A. The

experiment to measure these reactions used the Large Area Silicon Strip Array to detect

the charged particles and the MSU Miniball to detect charge particle multiplicity in order



to select central collisions. Neutrons were also measured in this experiment using the

Large Area Neutron Array along with two thin scintillators used as a start timer for the

neutron walls and a charge particle veto to discern contamination in the neutron walls.

The neutron analyses are not extensively reported in this dissertation as they were the

focus of the dissertation of Daniel Coupland [1]. Finally, another scintillator was used to

measure the beam rate.

We compare the new experimental data with previous data. We have achieved higher

statistical precision and measured up to higher emission energies. The 50 MeV/Adata

shows reasonable agreement with previous measurements. There are no prior measure-

ments of the 120 MeV/ASn+Sn reactions. Simulated results suggest a sensitivity to the

density dependence of the symmetry energy, nevertheless there are still significant differ-

ences between the experimental data and simulated results. We present evidence that this

is partly due to clustering effects in both the experiment and simulations. More theoretical

work will need to be completed in order for the theory to be more accurately compared

to the experimental results.
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Chapter 1

Introduction

1.1 Introduction to the Symmetry Energy

Nuclear physics is often times discretized into several different fields: reactions, structure

and astrophysics. The Nuclear Equation of State (EoS) is of particular importance to all

three fields. An Equation of State is a thermodynamic equation that relates different state

variables under a given set of physical conditions. Classical and quantum liquids as well

as a wide variety of solid state systems have their own EoS. One of the most basic and

well known EoS is that of an ideal gas,

P = ρkT, (1.1)

which relates the pressure, P, density, ρ, and temperature, T. A similar equation involving

the energy, E,

E/V = (3/2)ρkT, (1.2)

1



is another EoS. The EoS of nuclear matter has been studied for many years and has

been reasonably constrained for symmetric matter, that which consists of nearly identical

proton and neutron densities. This EoS has been useful in describing both bulk properties

as well as thermodynamic properties of macroscopic nuclear matter for these symmetric

systems, however it is does not describe these properties when the matter has unequal

proton and neutron densities [9].

In order to compensate for this, a correction to the EoS is made which includes the

isospin asymmetry. The form of this equation is,

E
A

(ρ, δ) =
E
A

(ρ, 0) + Esym(ρ)δ2 + O(ρ)δ4 . . . , (1.3)

where E/A(ρ, 0) is the EoS for symmetric matter, ρ is the density and δ is the isospin

asymmetry defined by,

δ =
ρn − ρp

ρn + ρp
. (1.4)

In the case of a single nucleus at uniform density, δwould reduce to (N-Z)/A. In Equation

1.3, there is also a term, Esym, which has become known as the symmetry energy. The

significance of the symmetry energy can be plainly seen in Figure 1.1 which shows

the difference between the energy density of the system from symmetric matter to pure

neutron matter.

The symmetry energy has been theorized using many different forms. In this work,

the form used will be,

Esym = Skin(ρ/ρ0)2/3 + Sint(ρ/ρ0)γ. (1.5)

This form contains two distinct parts, the first of which is derived from Fermi motion,
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Figure 1.1: This figure (modified from [2]) provides an illustrative example of the Equation
of State for both pure neutron and symmetric matter. The difference between the two is
symmetry energy.
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Figure 1.2: Several examples of the symmetry energy from Equation 1.5 as a function of
density with different possible values for γ. For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this dissertation.

giving Skin a value of about 12.5 MeV. The value of the symmetry energy at saturation

density, ρ0, has been constrained to a value around 31 MeV with some uncertainty. As

such, Sint is assumed to be a value near 19 MeV. The value of γ is the least constrained

parameter in this equation. Theoretical constraints provide a super-stiff value of 2 and a

super-soft value of 1/3 for the most extreme values of γ. Figure 1.2 shows the symmetry

energy as a function of density for different possible values of γ.

The final term in Equation 1.3 also indicates correction terms that are higher order

in δ are possible. Most theoretical estimates, however, indicate orders higher than δ2
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are small and may even be negligible compared to the current experimental uncertainties.

Reference [10] provides some evidence for the inclusion of these terms for supersaturation

densities, however the remainder of this work will prioritize subsaturation densities and

will therefore only assume the form of the EoS to be quadratic in δ.

The symmetry snergy has been approached from many different avenues over the last

15 years and has many far reaching consequences. In nuclear structure, the symmetry

energy contributes significantly to the binding energies, neutron skin thicknesses [4],

isobaric analog states [11], and giant dipole and monopole [12] resonances. To this day

there is still debate over whether the symmetry energy can be constrained by pygmy dipole

resonance measurements [13–15]. In astrophysics, the symmetry energy has been shown

to strongly affect a neutron star’s maximum mass [16], mass-radius relationship [17],

cooling rates [10, 17, 18], even crustal vibration frequencies [19]. Nuclear reactions have

used numerous probes to constrain the symmetry energy including isoscaling [20, 21],

isospin diffusion [22, 23], n/p ratios [24], n/p flow [25], π+/π− ratios and flow [26, 27],

t/3He and 7Li/7Be ratios [28–32].

An example of the current constraints placed on the symmetry energy can be seen

in Figure 1.3. These constraints come from a variety of sources including heavy ion

collisions, neutron skin thicknesses, isobaric analog states and pygmy dipole resonances.

This figure parameterizes the symmetry energy in another analogous way where,

Esym(ρ) = S0 +
L
3

(
ρ − ρ0
ρ0

)
+

Ksym

18

(
ρ − ρ0
ρ0

)2
+ . . . (1.6)

This equation is a Taylor expansion of the symmetry energy around saturation density.

Here S0 is the value of the symmetry energy, L is the slope and Ksym is the curvature all
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at saturation density. The slope can also be related to the pressure of the system, Psym,

through,

L = 3ρ0
∂Esym

∂ρ

∣∣∣∣∣∣
ρ=ρ0

=
3
ρ0

Psym. (1.7)

It is the goal of this dissertation to add additional constraints to the symmetry energy

by comparing simulated results to new experimental heavy ion collision data.

1.2 The BUU transport model

Boltzmann-Uehling-Uhlenbeck, or BUU, models have been used to simulate heavy ion

reactions in nuclear physics ever since Bertsch and Kruse in Ref [33] where it was ini-

tially used for relativistic heavy ions. Since then, quite a few different models have been

developed based on the same basic principle. The model used throughout this disser-

tation is a BUU model developed by Danielewicz and collaborators that I will refer to

as pBUU [34–36]. This pBUU code has been tested previously and compared to certain

experimental data such as single particle distributions [34, 35], elliptic flow [37], and

stopping observables [36]. Bertsch and das Gupta provide a review of many transport

models including BUU in Ref [38].

BUU models require solving the modified Boltzmann Equation,

∂ f
∂t

+
∂εp

∂p
∂ f
∂r
−
∂εp

∂r
∂ f
∂p

=

∫
dp2

∫
dΩ′v12

dσ
dΩ′

((1∓ f1)(1∓ f2) f ′1 f ′2−(1∓ f ′1)(1∓ f ′2) f1 f2), (1.8)

self-consistently in heavy ion collisions for fermions (-) and bosons (+). The right side of

the equation describes the changes to the one particle density matrix, f , due to collisions

between particles, Pauli-blocking and scattering between momentum states while the
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Figure 1.3: The top plot displays current constraints presented in Ref [3] on the first
two terms, S0 and L of the Taylor expansion of the symmetry energy in Equation 1.6.
The contributing constraints are obtained from Heavy Ion Collisions (HIC), neutron skin
thicknesses from Sn isotopes, Isobaric Analog States (IAS) and the possible constraints
from Pygmy Dipole Resonances (PDR). In the bottom plot, constraints from HIC indicated
by the blue box are compared to several Skyrme parameterizations for the symmetry
energy. The chosen Skyrme interactions are those used in [4].
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left side describes changes in the Wigner transform of f due to motion of particles in

the mean field. In this equation the mean field is calculated self-consistently using the

Wigner transorm, f , from all particles and ε is the single particle energy for a particle with

momentum p, in the mean field.

In general, Equation 1.8, can be derived as a semi-classical limit of the Hartree-Fock

equation. Regardless of its derivation, its form is identical to the classical Boltzmann

equation. If one assumes f to be positive and definite, it can be solved by breaking up

each proton and neutron into a number of test particles. By using a sufficient number

of test particles, a physically realistic mean field and phase space density required for a

proper treatment of Pauli blocking can be achieved. A study on the dependence of test

particles is described in chapter 4.

This BUU model has two different options for calculating the mean field potential.

The first, an oversimplified momentum independent model, with the second being a

more complete, albeit more complex, momentum dependent model. At low momentum,

this dependent model can be approximated by replacing the mass of nucleons with an

effective mass. It is still uncertain on whether the proton or neutron effective mass is

larger, however they are both in the vicinity of m∗ = 0.7m and are set to be equal in this

code. While the momentum dependent model is more physically correct, it is also more

computationally expensive. Both options are studied in this dissertation, however, most

studies on the effect of individual variables other than the momentum dependence of the

mean field use the momentum independent model for the improved computational time.

Pauli blocking and other higher order effects cause the nucleon-nucleon cross section

to be modified. This pBUU code provides three possibilities for the reduced cross section.
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The free cross section is provided in the code as an initial starting point. These cross

sections were parameterizations of experimental data. An energy dependent reduced

cross section, which is referred throughout this dissertation as the Rostock cross section,

is obtained from fits to Brueckner-Hartree-Fock calculations. This parameterization has

the form,

σ(ρ) = σfree exp
(
−0.6

ρ

ρ0

1
1 + (KECM/150MeV)2

)
. (1.9)

A more strongly density dependent reduction which is referred to as the Screened cross

section is based on a more geometric approach with the form,

σ = σ0 tanh(σfree/σ0) where (1.10)

σ0 = yρ−2/3, y = 0.85. (1.11)

This is another interesting case where the Rostock reduction may be more physically cor-

rect however, the Screened reduction has shown slightly better reproduction of stopping

data. Neither the Rostock or Screened reductions were able to fully describe the data, but

both were large improvements over the Free cross section. The effects of the three cross

sections will be explored in Chapter 4.

For this work, free hydrogen and helium isotopes as well as neutrons that are emitted

from the colliding nuclei are important. In order to determine which of these particles are

free particles and not bound within a larger residue, a local density cut is placed on the

particles. If the particles have a local density less than 0.01ρ0 at the end of the simulation,

or when the particle leaves the grid of calculation, it is considered a free particle and taken

into consideration in the data. Here, ρ0 is the nuclear saturation density with a value of
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0.16 fm−3. The grid of calculation is another aspect of this code that can be modified and

possibly effect the calculation. This study is also included in chapter 4.

The pBUU code is unique amongst other BUU formulations because it has the ability

to produce light clusters up through mass A=3. The premise behind the cluster formation

in this code is that the breakup cross section for a deuteron by a proton is proportional to

the formation probability of a deuteron where either a neutron or a proton are scattered

by a third nucleon into the phase space volume of a deuteron as described in [35]. In a

similar fashion tritons and 3He can be created using collisions involving four nucleons,

three of which end up as the final triton or 3He.

1.3 Organization of Dissertation

This dissertation will be organized the following way; Chapter 2 will describe the ex-

perimental setup and detectors used for an experiment to parameterize the symmetry

energy, Chapter 3 will describe the calibration used for the detectors needed for the

observables of interest for this dissertation, Chapter 4 will describe a systematic study

of different pBUU transport variables and how they influence the observables of interest

in this experiment, and Chapter 5 will provide experimental results and comparison to

simulated data. Finally, Chapter 6 will provide several conclusions and suggestions for

future experiments.
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Chapter 2

Experimental Setup

2.1 Reaction Systems

In this dissertation we measured two systems, 112Sn+112Sn and 124Sn+124Sn at the beam

energies of E/A = 50 and 120 MeV. These systems were chosen to give the largest range

of asymmetry possible for stable Sn isotopes. In addition, we aimed to confirm the

calibration of the Large Area Silicon Strip Array (LASSA) by bombarding a CH2 target

with a 16O beam at E/A = 16.8 and 29.4 MeV. The protons in the polyethylene target were

elastically back-scattered into the LASSA array. This was intended to provide at least one

extra calibration point as described in Section 3.3.

2.2 Experimental Layout

We used six different detector systems in this experiment. LASSA was used to detect

all isotopes of hydrogen and helium, as well as some isotopes of lithium and beryllium.

The Minball array was used to select the magnitude of the impact parameter via gates on
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the charged particle multiplicity as well as to measure the transverse energy. It can also

provide information about the orientation of the reaction plane. The Large Area Neutron

Array (LANA) was used to detect the neutrons emitted over a similar angular range

as LASSA. The neutron energy was determined via time of flight measurement, using

the Neutron Walls as a stop timer. A Forward Array consisting of plastic scintillators

was used as a start timer. A complication with the Neutron Walls is that high energy

hydrogen isotopes that punch through the walls must be distinguished from neutrons.

For this purpose, Proton Veto scintillator paddles were constructed and used in order to

detect and veto those charged particles. Finally, a scintillator was used downstream of the

reaction target to calibrate the beam intensity. In this chapter, we discuss the placement

and properties of these detectors. The details of the calibration and analysis of all of

the detectors can be found in Chapter 3. Figure 2.1 shows a three dimensional design

drawing of the S2 experimental vault at the NSCL where the experiment took place. This

drawing gives relative locations of the Miniball, LASSA and the Neutrons Walls. Figure

2.2 shows a picture of the vault from the entrance, directly before the experiment began.

2.3 LASSA: The Large Area Silicon Strip Array

LASSA is an array of charged particle detecting telescopes each consisting of two separate

silicon strip detectors followed by a set of four thallium-doped cesium iodide (CsI(Tl))

crystals which are read out using a photodiode. The total array consists of nine telescopes

that can be arranged into differing geometries depending on the needs of particular

experiments. In the case of this experiment, only six telescopes were used. Each telescope

is capable of precisely measuring the energy, charge and mass of particles emitted from a
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Figure 2.1: Three dimensional drawing of the layout of the experimental vault.
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Figure 2.2: A picture of the vault in running condition with the top of the chamber
removed showing (from this angle) the Miniball inside the scattering chamber and the
Neutron Walls in the back of the vault.
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Figure 2.3: A schematic of the inside of a LASSA telescope. The first piece is a 500 µm
thick double sided silicon all backed by four 6 cm CsI(Tl) telescopic shaped crystals.

reaction.

2.3.1 The Silicon Detectors

The first of the three physical detectors in a full LASSA telescope is a 65 µm thin, dE (or

∆E) silicon strip detector. The face of the silicon is split into 16 strips each 3 mm wide with

a 100 µm interstrip gap to get some angular distribution information out of each hit. As

will be described in more detail to follow, by plotting the energy loss in the dE detector

versus the energy deposited in the E detector (for a particle that stops in the E) one is able

to obtain particle identification (mass and charge). Since particles that stop in the thick

silicon are too low in energy to be interesting in this experiment, the dE detectors were

left out of the telescopes.

The next detector in the telescope is a 0.5 mm thick, E silicon strip detector. The thick

silicon has the front half of the face segmented horizontally and the back half segmented

vertically, each with 16 channels as can be seen in Figure 2.3. Each strip, like the dE, has a
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Figure 2.4: A picture of a thick LASSA double sided silicon.

3 mm pitch with a 100 µm interstrip gap. A picture of a thick silicon detector can be seen

in Figure 2.4. In order to keep the solid angle coverage the same at the front of the CsI

crystals as at the back, the front face of the silicon detector must be 20 cm from the target.

At this distance, the 3 mm strip width corresponds to a width of 0.86°in angular coverage.

In this experiment, the detectors were arranged in a way to cover polar angles, θ, from

approximately 16°to 58°and azimuthal angles, φ, ranging from -45°to 45°. The coverage

in the lab can be found in Figure 2.5. Each point in the figure corresponds to the location

of the center of a 3 mm by 3 mm pixel defined by the combinations of different front and

back strips.

2.3.2 The CsI(Tl) Crystals

CsI(Tl) crystals are incredibly beneficial in detecting charged particles in a range of E/A=30-

200 MeV. The crystals are far cheaper than silicon detectors, they are less hygroscopic than

their sodium iodide (NaI) counterparts and they can be made into a wide variety of

shapes and geometries. CsI(Tl) crystals have been used in many experiments that require
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Figure 2.5: A plot of the LASSA coverage in the lab.

energetic charged particle detection over a large solid angle and continue to be a cost

effective choice for such purposes.

In the case of LASSA, four crystals were tapered at the front to allow for a telescopic

shape and to maintain the same solid angle throughout the full length of the crystal. Each

crystal has a front face of 2.5x2.5 cm2, a back face of 3.5x3.5 cm2 and is 6 cm in length.

At this length, each crystal is capable of stopping up to 150 MeV protons and 580 MeV

alpha particles. The crystals can be seen in Figure 2.6 where two of the sides of a LASSA

telescope have been removed.

Each crystal is backed by a transparent acrylic light guide which is in turn optically

connected to a 2x2 cm2 photodiode. Each side was then wrapped with teflon in order

to ensure maximum uniform light collection. The front surface and the two inner sides

of each crystal were covered with an aluminized mylar foil for two reasons. The mylar

at the front is essential to providing maximum light collection with minimal energy loss.
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Figure 2.6: A picture of the inside of a LASSA telescope without the silicon included.

The mylar between the crystals is pivotal in preventing light produced in one crystal from

entering its neighbor.

More detail about the construction of the LASSA detectors can be found in Ref. [39].

2.3.3 Particle Identification

One of LASSA’s primary functions is to identify the particles that come out of the reactions.

LASSA uses a ∆E vs E technique for PID. In the case of this experiment, the thick E detector

is the ∆E and the CsI is the E measurement. The energy loss of an energetic ion through

a material can be described by the Bethe formula given in Equation 2.1. The relationship

of the energy loss in the silicon to the remaining energy measured in the CsI provides

particle identification curves that can be seen in Figure 2.7.
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Figure 2.7: An example of the LASSA particle identification clearly displaying protons,
deuterons and tritons (lowest set of three bands), helium isotopes and lithium isotopes.
Increasing mass moves from lower left to upper right. Given more statistics a set of
beryllium bands would also be seen.

−
dE
dx

=
4π

mec2
nz2

β2

( e2

4πε0

)2[
ln

( 2mec2β2

I(1 − β2)

)
− β2

]
(2.1)

2.4 The MSU Miniball 4π Array

The Miniball Array in its entirety is comprised of 11 rings arranged coaxially around the

beam axis. The detectors on an individual ring are all identical, however, since the solid

angle of detection increases with an increase in lab angle, each ring has crystals with

different shapes. The geometry of the detectors in each ring is described in Ref [5]. Table

2.1 contains information on how many detectors are in each ring as well as the solid angle

for detectors in each ring.
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Ring Detector ∆Ω θ ∆θ ∆φ d
(msr) (deg) (deg) (deg) (mm)

5 15(24) 30.8 45 10 15 140
6 14(20) 64.8 57.5 15 18 90
7 19(20) 74.0 72.5 15 18 90
8 16(18) 113.3 90 20 20 70
9 13(14) 135.1 110 20 25.7 70

10 11(12) 128.3 130 20 30 70
11 8(8) 125.7 150 20 45 70

Table 2.1: A table of each ring of the Miniball with the amount of telescopes used in
each ring (out of the full complement), the polar angle of each ring, with it’s polar and
azimuthal angular spans as well as the distance from the target to the front face of each
crystal.

Each Miniball detector is a phoswich style detector with a thin 40µm plastic scintillating

foil made from Bicron BC-498X followed by a 2 cm CsI(Tl) crystal. Two UVT light guides

and a 10-stage Burle C830622E PMT are glued to the back of the crystal using the optical

cement BC-600. A picture of an individual Miniball element can be seen in Figure 2.8.

Similar to the PMTs for the Neutrons Walls, the cylindrical light guide and the PMT are

enclosed by a µ-metal magnetic shield in order to prevent stray cosmic rays and magnetic

fields to alter the measurement of particles of interest. Each crystal is fronted by a layer

of aluminized mylar to improve light collection and two layers of SnPbSb foil to keep

secondary electrons from entering the scintillator. A schematic can be seen in Figure 2.9.

More details about the construction of the Miniball can be seen in Ref [5].

For this particular experiment, only Rings 5-11 were used. The forward angles needed

to be kept clear so that neutrons could fly straight to the Neutron Walls without the

possibility of scattering from the Miniball and so that light charged particles could be

detected by LASSA.

The Miniball’s primary purpose in this experiment is to select the impact parameter
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Figure 2.8: A picture of an individual Miniball element.
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Figure 2.9: A schematic of an individual Miniball element. [5]
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of an event. The observables for this experiment are mainly sensitive to the symmetry

energy in central collisions with very low impact parameters. This can be achieved by

measuring the charged particle multiplicity in the Miniball. The secondary purpose is

to measure transverse energies of particles over the angles covered by the Miniball. In

order to measure transverse energy, proper particle identification is required. This can be

achieved using the stacked scintillators in a phoswich method. As shown in Figure 2.10,

the Miniball phoswich detector’s signal is divided into three distinct regions designated

fast, slow and tail. The shape of this curve is due to the difference in light output between

thin fast plastic scintillator and the slower CsI crystal. Using a pulse shape discrimination

technique, we can identify different particles that are detected by the Miniball. This

process will be described in more detail in Chapter 3.

Many modifications to the Miniball array had to be made for this experiment. Tele-

scopes had to be removed to allow particles to be detected in the Forward Array, LASSA,

and the Neutron Walls. Two telescopes also had to be removed to be replaced by the

target drive and a camera used for beam alignment. Experimental pictures can be seen in

Figures 2.11 , 2.12.

2.4.1 The Downstream Scintillator

As already discussed, the Miniball is the detector used to measure the centrality of a

collision. It does this by measuring the number, or energies, of particles that enter any of

the Miniball tubes in a given event. The multiplicity of the Miniball can be directly related

to the cross section of a reaction and as such, be directly related to the impact parameter.

In order to accurately determine the cross section, an accurate determination of the beam
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Figure 2.10: An example of the time signal seen through the phoswich method. [5]
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Figure 2.11: A picture of the inside of the Miniball looking upstream with the target ladder
in place.
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Figure 2.12: A picture showing LASSA’s positioning in relation to rings 5 and 6 in the
Miniball.
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rate is needed.

This is achieved by what was called the Downstream Scintillator, a 3.5 inch by 3.5 inch

square piece of 0.125 inch thick Bicron BC-404 Scintillator. The scintillator was optically

coupled to a piece of Ultraviolet Transmitting (UVT) light guide which was then glued to a

4.8 cm in diameter piece of UVT light guide with Tra-Bond F113 Optical Epoxy. This light

guide was coupled to a Thorn EMI 4011 PMT using Dow Corning Q2-3067 optical grease.

This scintillator was lowered into the beamline just downstream of the Miniball to get an

accurate value for the beam rate. The full construction as mounted in the experimental

chamber is shown in Figure 2.13.

2.5 LANA: The Large Area Neutron Array

The neutron detectors used for this experiment are called the Large Area Neutron Array,

also called LANA or the Neutron Walls. Each of the two walls in the array contains a

stack of 25 hollow Pyrex bars. For this experiment each wall only used 24 bars due to

limited availability of electronics channels for the data readout. Each Pyrex bar is 2 meters

long, 7.62 cm tall and 6.35 cm thick and is filled with approximately 10 L of the liquid,

organic scintillator NE-213. Each bar is tapered at each end to a 3 inch diameter circle so

that it can be coupled to a photomultiplier tube which collects the light from interactions

in the bar. A detailed description of the construction of the walls can be found in Ref [6].

A picture of the inside of one of the walls can be seen in Figure 2.14. In experimental

running conditions a cover is in place to prevent light contamination in the scintillator.

The two walls were arranged normal to the target with the center of the wall covering

forward angles at 6 m from the target and the backward wall at 5 m from the target. The
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Figure 2.13: The full Downstream Scintillator as mounted in the chimney of the experi-
mental chamber.
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angular coverage of the active area of walls is seen in Figure 2.15.

This particular array was chosen as the neutron detector because of the liquid scintil-

lator. Ionizing particles have two components in their scintillation process, a fast, prompt

light generation and a slower, delayed light generation. The time constant for the prompt

generation is on the order of nanoseconds where the delayed constant is on the order of

hundreds of nanoseconds. For the same total light generation, different particles will have

different proportions of light generated in the two regions. For example, cosmic rays or

electrons that have been Compton scattered from γ rays, produce most of their light in the

prompt region. Protons that have been scattered by a neutron, however ionize the system

much more strongly and produce more of their light in the delayed region. An example

of this concept can be seen in Figure 2.16.

This concept is the basis for a process called Pulse Shape Discrimination which lets

us selectively omit cosmic and γ ray contamination. Figure 2.17 shows an example of

this where we plot the charge collected in the fast gate versus the charge collected in the

total gate. The fast and total gates correspond to approximately the first 30 and 300 ns

after a detected hit, respectively. This figure shows a calibration run using an americium-

beryllium source. This source is a neutron and γ emitter which follows the process in

Equation 2.3. The separation between the two bands allows a gate to be drawn around

the reactions coming from strongly ionizing particles.

241Am→237 Np + α + γ (2.2)

α +9 Be→12 C + n + γ4.4MeV (2.3)

29



Figure 2.14: A picture of the inside of the Neutron Walls.
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Figure 2.15: A plot of the Neutron Wall coverage in the lab.
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Figure 2.16: An example of the intensity versus time for different particles in the NE-213
in the Neutron Walls. [6]

One difficulty with neutron detection is that neutrons will almost never deposit all of

their energy in just one collision. They will deposit some energy and scatter off at another

angle. Due to this, a significant amount of neutrons detected by the neutron walls can

come from scattering off of other materials in the experimental vault.

In an attempt to determine the contamination from background scattering, a set of

30 cm x 6.8 cm x 7.5 cm solid brass shadowbars were used to block all direct particles

coming from the target on their path to the neutron walls. The shadowbars were centered

just under 2.5 m from the target. A picture of one of the shadowbars can be seen in

Figure 2.18 as well as an example of their use during experiment in Figure 2.19. The bars

were situated such that they would have enough solid angle coverage to fully shadow

the height of at least one bar in the Neutron Wall. By comparing the number of neutrons

detected in the shadowed region to the spectra across the rest of the bar, one can determine

the fraction of events that are background.
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Figure 2.17: An example of the pulse shape discrimination in the Neutron Walls from an
AmBe source. The gamma (and any cosmic) rays are in the upper band with the neutrons
(and in an experiment hydrogens) in the lower band.
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Figure 2.18: A picture of one of the four shadowbars.
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Figure 2.19: A picture of the shadowbars in the mount blocking certain areas of the
backward wall.
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2.5.1 The Forward Array Start Timer

The Forward Array is a new timing detector array of 16 scintillating pieces built specifically

for this experiment and for two directly preceding it. It replaced a timing array consisting

of 5 scintillating pieces used previously. The Forward Array was constructed and tested

in the early Spring of 2009.

The Forward Array consists of an aluminum plate constructed at Western Michigan

University with modifications made at Michigan State University. The plate is circular

with a 4.5 inch diameter and a 72°gap in azimuthal angle about the beam axis. The plate

has a one inch diameter hole cut in the center to allow passage of the beam. The plate is

aligned normal to the beam axis with the center being about 11 cm from the center of the

target.

Sixteen roughly equal sized, plastic NE-110 scintillators are arranged on the face of

the plate. All faces of each scintillator were painted with Bicron BC-620 reflective paint

and wrapped in aluminized mylar foil in order to keep as much light as possible from

escaping the scintillator or entering the next. Only the back face was left unpainted and

unwrapped where it is coupled to a very small Hamamatsu R5600U photomultiplier tube

with an E5780 base. The tubes are held in place using Tra-Bond F113 Optical Epoxy. This

epoxy was designed to have good optical conducting properties especially for contacts

with glass and plastic which made this epoxy a good option for this task. The reflective

paint and aluminzied mylar create a nearly undetectable cross talk between scintillators.

Figure 2.20 shows the construction of the Forward Array.

In order to measure the energy of neutrons from a beam on target reaction, one must

use time of flight techniques. Time of flight techniques require both a start trigger provided
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Figure 2.20: (upper left) A single element after painted with reflective paint. (upper right)
A single element after wrapped with aluminized mylar. (lower left) All elements glued to
the plate. (lower right) The Forward Array with the all of the PMTs glued and the Array
put in place in the experimental setup.
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Figure 2.21: An picture taken just prior to the experiment with LASSA, the Forward Array
and the Miniball all in final position.

from a detector and a stop trigger from another. In this experiment the Neutron Walls act

as the stop trigger and the Forward Array acts as the start trigger. The neutron detected

by the neutron wall is not the particle that acts as the start trigger, instead, the start comes

from the shower of charged particles entering the Forward Array from a reaction in the

target. With the small distance from target to Forward Array, the mean time that the

shower of particles hits the Forward Array can be extrapolated back to the target to obtain

a start time for the neutron time of flight. An example of the position of the Forward

Array in relation to LASSA and the Miniball can be seen in Figure 2.21.
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2.5.2 The Proton Vetoes

Neutron detectors, such as the Neutron Walls, use the scintillation from a recoil proton to

measure the interaction of a neutron. In the case of very high energy protons, the Neutron

Walls will detect the protons that interact in a similar way as the recoiled protons making

it impossible to differentiate between neutrons and protons without additional informa-

tion. This is the reason the Proton Vetoes were used. For each event, particles will pass

through the Proton Vetoes which are thin enough that there is less than a 1% probability

of interaction for neutrons. Unlike neutrons, protons and other charged particles will

always deposit some energy in the vetoes on their flight path to the Wall. In these cases,

software gates can usually be used to identify any charged particle contamination in the

neutron spectra and determine which particles are charged and which are not.

Two different designs of Proton Veto scintillators were used in this experiment. One

design, designated as the paddle design, is made from Bicron BC-408 scintillator and

shaped into squares of 16 cm in length and 3/8 inch in thickness. On two adjoining sides

of the scintillator is a wavelength shifting light guide. The junction of these light gudes

is glued to a 1 inch diameter cylinder of UVT light guide which is coupled to a PMT

with Dow Corning Q2-3067 optical grease. These paddles were sufficient for the low

multiplicity of charged particles in previous experiments, however, in this experiment

the high multiplicity of charged particles means that there could be an unacceptably high

accidental coincidence rate between the charged particles and neutrons in the same region

of the neutron wall. As such a finer granularity than the paddles can achieve was required.

For this reason, a set of 13 Proton Veto bars was made. Each bar was made out of

the same plastic scintillating material as the paddles but are 12 mm thick by 24 mm wide
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and 274 mm in length. Each bar was polished, wrapped in a white reflective paper, then

wrapped in aluminized mylar and finally wrapped in a black plastic, all to avoid light

loss and light contamination as well as to prevent optical cross talk. For this experiment,

these bars were used to cover the angles of the forward wall and four paddles were used

to cover the angles of the backward wall. A picture of their mount location on the outside

of the thin walled chamber can be seen in the last picture of Figure 2.22.

2.6 Electronics

This experiment required extensive amounts of electronics. Over this section I will de-

scribe the electronics of each section as individually as possible. To begin I will start with

the master trigger and then proceed to move through each individual system’s submaster.

2.6.1 Master Trigger

During the course of the experiment, several different trigger conditions were used, pri-

marily for different calibration purposes. During standard data runs, a coincidence be-

tween the Forward Array and Miniball submasters was required to generate a trigger.

All the other systems operated in a slave condition. These two systems were chosen for

the trigger requiring that the Miniball have a minimum multiplicity in order to reject pe-

ripheral events that were not the focus of this experiment and so that the Forward Array

would ensure a time component for every event. If need be, any logic signal in the dashed

box in Figure 2.23 could be used as the trigger for different purposes by switching one

cable. This allowed rapid trigger changes between calibration runs.

Due to efficiency issues in the silicon, a trigger for the 2 Hz LASSA pulser is also
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Figure 2.22: (From top to bottom) The Veto bars after they have been polished and partially
wrapped. The complete array of the Proton Veto bars in their mount. All Proton Veto bars
and paddles in experimental setup.
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implemented separate from the rest of the system submasters. The ”OR” trigger from the

Pulser trigger and the submaster trigger provided the Master trigger signal. The output

from this ”OR” gate was set to a 20 µs length to avoid any retriggering. If an event causes

the Master trigger to fire, this 20 µs gate is sent to each of the submaster systems. At this

time the master also begins a latch, providing a computer busy signal. In the instance of

a pulser trigger the computer trigger is delayed an additional 786 µs to provide enough

time for the signal digitization in the ASIC electronics. Once triggered, data was acquired

through the NSCL DAQ system. Once the DAQ is finished with an event, a signal from the

I/O module clears the computer busy latch and the LASSA internal busy latch, readying

the electronics for another event.
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Figure 2.23: This is a schematic diagram of the Master trigger logic for this experiment. The individual subsystems will
follow.
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Figure 2.24: A block diagram of the ASIC electronics logic. [7]

2.6.2 LASSA submaster

The silicon strips and the CsI crystals are read out using very different systems. The silicon

uses an Application Specific Integrated Circuit (ASIC) while the CsI uses conventional

electronics. The ASIC’s were designed to be used with the HiRA array, a similar telescope

like detector to that of LASSA. The descriptions of the H1NP16C chip can be seen in [7].

In general, the electronic processing which is shown in 2.24 is not that different than any

of the other detector systems.

The signal from a silicon strip can be directed through a high gain or low gain charge

sensitive amplifier (CSA), depending on the constraints of the experiment. Instead, we

chose to use external preamps to maximize the gain. The signal is then divided to a

constant fraction discriminator (CFD) that determines if a particle hit that strip and then

on to a time to voltage converter (TVC). The other part of the signal is shaped in a time

of about 1 µs. The time and energy of each strip is stored for readout until a trigger tells

it to be read out. If the trigger is not provided in a given amount of time, the values are

cleared. This is the same concept as the Neutron Wall and Miniball subsystems except the
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Figure 2.25: An example of a chipboard with a prototype chip. The quarter is used for a
size reference.

ASIC’s do it on a channel by channel basis. The biggest difference between the ASIC’s

and conventional electronics is the scale of the space, size and cost difference. Each

chip processes 16 channels individually, with two chips comprising one chipboard. A

chipboard is shown in Figure 2.25 with a prototype chip and a quarter for a size reference.

Another benefit of the ASIC’s is that they have several inspection points, shown by the

large black circles in Figure 2.24, which can be monitored on a channel by channel basis

remotely. The chipboards also contain the electronics to distribute the bias voltage to the

silicon strips.

45



Figure 2.26: A picture of the HiRA motherboard used for this experiment with six chip-
boards contained within.

A maximum of 16 chipboards can be used in one motherboard. A motherboard with

six chipboards that were used in this experiment can be seen in Figure 2.26. Each

motherboard contains a field programmable gate array (FPGA) in order to handle the

communication between the chips and the DAQ system. The energy and time from the

ASIC are sent to a SIS3301 flash ADC. A JTEC XLM universal logic module manages the

communication between the silicon subsystem and the master logic. This is the module

that accepts the master trigger and tells the computer when the silicon data has been

digitized. In general this system is optimized for sparse readout, which is the reason that

there is the long 786 µs delay for the 2 Hz pulser trigger. The system is not optimized to

read out that many channels.

Since the ASIC chips treat each channel individually, particularly noisy strips or elec-

tronics channels will not cause a backup on the whole system so long as those strips are
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Figure 2.27: A schematic diagram of the CsI Subsytem.

not part of the trigger. The down side to this is that the dead time of individual channels

is impossible to measure through scalers. The 2 Hz pulser was designed to measure this

and the treatment and analysis of such is described in 5.1.2.

The CsI subsystem is much simpler than the other systems since there are much fewer

channels than most of the other detectors, and the times are not digitized. In an event, the

light generated in the crystal is collected by a photodiode and amplified by preamplifiers

contained within the LASSA telescope. The signal is split into a time path which creates

a raw ”OR” signal that is passed to the master logic while an energy path is shaped and

digitized in an ADC. The time length of a signal from the CsI is sufficiently long that a

subsystem busy and fast clear are not required, instead the master trigger simply starts

the ADC gate. The electronic diagram for the CsI subsystem is shown in Figure 2.27

2.6.3 Miniball Subsystem

Signals from the photomultiplier tubes in the Miniball are treated two different ways. For

telescopes in rings 7 and forward, their signals are sent directly to custom made Miniball

splitters. For the backward rings, their signals are first amplified before being sent to

47



the splitters. The splitters passively split each signal into four paths. A portion of the

signal is amplified and sent to a modified Phillips 7106 discriminator which provides

time information and the basis of the Miniball logic. Modifications were made to the

discriminators in order to prevent any retriggering within 1.5 µs. The remaining signal is

split into the other three paths, designated fast, slow and tail. This split is done passively

at 92% for the fast and 4% each for the slow and tail. This causes the integrated charge

between all three time regions to be reasonably similar.

Due to the Pulse Shape Discrimination timing, the Miniball subsystem would be

triggered before the master logic would produce a master trigger. To rectify this, a fast

clear circuit was created that would abort digitization and close the QDC gates if a master

trigger is not received within 500 ns of the subsystem trigger. A Miniball subsystem busy

gate was sent to the global busy so that triggering on another event was impossible during

this fast clear window. The Miniball busy was set to be 1.5 µs long so to account for the fast

clear time as well as the QDC internal busy to flush the aborted data that was digitized.

The Miniball subsystem was typically triggered on a minimum multiplicity in order

to concentrate on central collisions. To achieve this, the analog SUM outputs from each

discriminator were added in a summer/amplifier module. Each discriminator provided a

50 mV/hit signal. The discriminator settings for the trigger were then set to correspond to

a multiplicity in the Miniball chosen for each beam isotope and energy combination. Since

our data collection was limited by data rate and not beam rate, we adopted two different

multiplicity triggers. This increased statistics for the largest multiplicity events while still

allowing for collection data from more peripheral collisions. Both discriminators were

blocked by the global busy to avoid triggering while the system was busy. The high
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Figure 2.28: A schematic diagram of the Miniball Subsystem.

multiplicity trigger was run in an ”OR” condition with a downscaled low multiplicity

trigger. This ”OR” signal created the Miniball submaster trigger which was then sent to

the global trigger logic. For better Pulse Shape Discrimination, the fast QDC was triggered

by the low multiplicity trigger instead of the submaster. The Miniball subsystem as a whole

is shown in Figure 2.28

2.6.4 Neutron Wall Subsystem

In order for the Pulse Shape Discrimination techniques used in the Neutron Wall, the anode

signal from the photomultiplier tubes are passively split to a common gated QDC and an
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individually gated QDC (IGDQC). The common gated QDCs integrate the collected charge

for approximately 300 ns while the IGQDC capture integrated charge for the first 30 ns of

signal. The dynode signal from the PMT is sent to a constant fraction discriminator for

timing purposes and to start the subsystem logic. All channels in a given QDC are ”OR”ed

together to provide the start logic for the common gate, while the individual discriminator

signals from the dynodes start a 60 ns long signal for the IGQDC. The common gates are

vetoed by a local self veto, which prevents refiring, and by the global busy so that the

Neutron Walls stay inactive while another subsystem or data acquisition process was busy.

Three common gated QDC’s were needed to accomodate all the electronics channels. An

”OR” signal between these three QDC’s comprises the Neutron Wall submaster. In a

similar way to the Miniball, the QDC’s must begin integration of charge before the global

master can start. To counter this, a fast clear circuit was again created when the submaster

fired. If a master trigger was not received in time, the data was flushed. The full Neutron

Wall subsystem is shown in 2.29.
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Figure 2.29: A schematic diagram of the Neutron Wall Subsystem.
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2.6.5 Forward Array, Proton Veto and Downstream Scin-

tillator Subsystem

The Forward Array trigger logic is very similar to the CsI subsystem with an addition

of time processing. The subsystem is shown in Figure 2.30. A TDC was set to common

stop mode so that a fast clear circuit was needless. Since the Forward Array TDC was self

timing the ”OR” from the Forward Array provides the common stop. Since the Forward

Array is meant as the start time for the system, the ”OR” is also sent to the Neutron Wall

and Miniball TDCs to provide a time reference.

The same TDC and ADC used for the Forward Array was also used for the Proton

Veto time and pulse heights. Figure 2.31 shows the similarity of the electronics from the

Forward Array to the Proton Vetoes.

The signal from the photomultiplier in the Downstream Scintillator was simply dis-

criminated and counted in a CAEN V830 scaler. This was sufficient information for the

purpose of this experiment and as such the energy and time was not read out for this

system.
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Figure 2.30: A schematic diagram of the Forward Array Subsytem.
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Figure 2.31: A schematic diagram of the Proton Veto Subsystem.
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Chapter 3

Data Calibration

3.1 LASSA Calibration

The calibration of the LASSA telescope consists of three steps; a precise energy calibration

of the silicon detectors using an α emitting 228Th source, a pulser calibration to test for

any nonlinear responses in the electronics and finally an energy calibration of the CsI(Tl)

crystals.

3.1.1 Silicon

3.1.1.1 Thorium Source Calibration

For this experiment a 228Th source was used to calibrate the silicon detectors. This source

has a decay chain with five strongly populated energies separated by at least 200 keV

making it ideal for our uses. To greater benefit, the decay chain includes the 8.78486 MeV

decay from 212Po to 208Pb which is a largest energy that one can obtain in a commercially

available source.
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At Emission After Losses
5.42315 5.0509
5.68537 5.3268
6.28808 5.9532
6.77830 6.4616
8.78486 8.5210

Table 3.1: A list of the α energies (in MeV) used for calibrating the Silicon. The right
column shows the value after the energy losses are taken into account.

There are several issues that need to be addressed in our calibration. The source is

sealed with a 50 µg/cm2 gold window through which the α particles must pass in order to

reach the detector. Each LASSA telescope also has a 1.9 micron thick aluminized mylar foil

in front of the silicon in order to prevent the interference of electrons in the detector and

to effectively create a Faraday cage around it, minimizing electronic noise contamination.

This foil provides the largest contribution to the energy loss of the alpha particles. We

must also correct for the dead layer of the silicon. Each silicon detector has a region

approximately one micron thick that does not actually contribute to the active volume

of the detector. In this dissertation the total energy loss for the particles to pass through

each layer was calculated with the spectrometer simulation code LISE++ which bases its

calculations in the Bethe equation, i.e. Equation 2.1. Table 3.1 gives the energies of the

thorium source before and after losses from the foils and the dead layer.

Using the 228Th source we can get a very accurate calibration of energy as a function

of electronic channel. Using an equation of the form,

E(MeV) = A0 + A1 ∗ ch (3.1)

where A0 and A1 are calibration constants, a simple calibration formula can be fit. Figure
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3.1 shows the result of a program written for the HiRA array to automatically fit the alpha

energies of each strip of the silicon detectors. The automatic fitting is useful since it avoids

having to calibrate all 192 strips of the LASSA array by hand. The program is designed

to fit a gaussian to the five strong peaks as seen in the top of Figure 3.1. The locations of

those peaks are then fit to match with the energies from Table 3.1. The fit result for the

alpha energy as a function of channel can be seen on the bottom of the figure.

3.1.1.2 Pulser Calibration

In previous experiments with these electronics, a nonlinear response was noted in certain

voltage regions. To paramaterize this dependence, we use a well tested, linear PB-5 pulser

developed by Berkeley Nucleonics Corp. During the experiment a series of pulser ramps

were completed both for the preamps used for the silicon and for the preamps used for

the CsI.

In the case of the silicon preamplifiers, it was found that at low voltage, the voltage of

the peak processed by the electronics became slightly nonlinear as a function of the output

voltage of the pulse. During the experiment we ramped the pulser two different ways.

The first ramp used 18 pulses from 0 to 9 V. The second was a very fine ramp using over 20

pulses from 0 to 1 V. The two ramps overlap from 535 mV to 1.035 V. Figure 3.2 displays

all the pulses from both ramps as well as a linear fit for all points greater than 535 mV in a

typical strip. The lower plot zooms in to display the nonlinearity of the electronics at low

voltages.

One benefit of silicon detectors is that the charge ionized by light particles depends

linearly on the energy deposited by a charged particle. If this charge is amplified by

a charge sensitive premaplifier the output voltage of the preamplifier will also depend

57



Figure 3.1: Using a fitting program we can automatically generate peak locations(top) and
energy vs channel relation (bottom).
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Figure 3.2: An example of the pulser ramps over the different regions of one strip of a
silicon. The red circles correspond to pulses greater than 535 mV and the blue triangles are
less than 1.035 V. The plot on the bottom is zoomed in on the low region to demonstrate
the nonlinearity and offset.
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linearly on the energy of the charged particle. In the region where the response of the

electronics is linear the following equations can be used to relate the pulser voltage to the

channel number obtained when the electronics signal is digitized.

V = l0 + l1ch forV ≥ 535mV (3.2)

ch =
V − l0

l1
(3.3)

Here, V is the output voltage of the pulser, ch is the digitized channel number, and finally

l0 and l1 are linear fitting parameters. This formula is valid above 535 mV where the

response is linear. Since the alpha calibration provided a relationship between the energy

and the channel as shown in 3.1, a linear relation between energy and voltage can be

described by,

E = A0 −
A1 ∗ l0

l1
+

A1
l1

V. (3.4)

In the region where the electronic response is linear, the function used for the voltage, V, is

obviously given by the linear fit from the pulser, causing the energy equation to reduce to

exactly the same as the alpha fit. In the region where the electronic response is nonlinear,

all pulses less than 1.035 V were fit with a fourth order polynomial and this fit is used. In

order to avoid a discontinuity in the energy calibration due to a discrete switch from the

nonlinear to linear regions, a blending was done in the region of overlap from 535 mV to

1.035 V. The energy calibration for this region has the form

E = Epoly
clin − x

clin − cpoly
+ Elin

x − cpoly

clin − cpoly
. (3.5)

Here, Epoly represents the energy from the calibration equation in the nonlinear response
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region and cpoly represents the channel corresponding to 535 mV. Similarly, Elin represents

the energy from the calibration equation in the linear response region and clin represents

the channel corresponding to 1.035 V.

3.1.2 Cesium Iodide

The CsI energy calibration has two components, like the silicon. As with the silicon

calibrations, the first is to calibrate the ADC values to a linear function of the charge at

the input of the preamplifier which reads the photodiode signal. In the case of the CsI

shapers there is a nonlinearity at the high channel end of the spectrum beginning near

channel 3800 out of 4096 across all crystals. Using a procedure similar to that of the silicon

calibrations , all pulses below channel 3800 are fit linearly. For the region above 3800, a

fitting procedure using the formula,

V = l0 + l1 ∗ ch + n ∗ (ch − 3800)2 (3.6)

where l0 and l1 are fixed values from the linear fit and n is the only variable being fit for

this region.

The point of the pulser calibration is to simulate the light output collected by the

photodiode. Hydrogen isotopes produce a light output that is linearly proportional to

the energy deposited in the crystal. The second step of the calibration is to calibrate

the signal corresponding to the energy deposited in the CsI based on the corresponding

energy deposited in the silicon. Using the LISE++ program developed at the NSCL, we

are able to calculate the energy an isotope would deposit in both the silicon and the CsI.

For protons that stop in the CsI and for a particular thickness of silicon, the relationship
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E(CsI)= f (E(Si)) is valid for a first order calibration, where f is a fifth order polynomial. A

program was written to make this process more streamlined. Displayed in Figure 3.3 is

an example of a typical CsI crystal.

This program takes two inputs, a plot of the calibrated silicon energy versus the CsI

channel number from the ADC and a hand drawn gate around the protons at silicon

energies larger than 2 MeV as shown in the top half of the figure. The program already

knows the relationship between energy deposited in the silicon and energy deposited for

particles that are stopped by the CsI crystal for the given thickness of silicon. The program

then finds the profile, or average, value of silicon energy for a given ADC channel number

and calculates the CsI energy corresponding to the same silicon energy. By performing

the calibration for each channel number within the gate the program can generate a linear

relationship from CsI ADC channel number (in the linear region of the electronics) to CsI

energy. An example of this calibration is shown by the red line in the bottom half of the

figure.

The limiting factor in the calibration of the CsI is that the fit becomes less trustworthy

if you include silicon energies below about 2 MeV since high energy protons deposit a

slowly decreasing amount of energy (∝ (1/E)) in the silicon. If those energies are included

in the fit, the weak dependence on silicon energy can cause fluctuations in the extracted

values leading to a less reasonable fit. Thus, only the low energy region is initially

calibrated by this method. In order to extend the calibration to higher energies, the punch

through points are used. Protons with sufficient energy will penetrate through the CsI,

i.e. ”punch through”. In this case the particles will not deposit all of their energy in

the CsI. The minimum energy required for a proton to punch through the CsI crystal is
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Figure 3.3: An example of the first step calibration of the CsI for a crystal in LASSA.

0.51 + 146.8 = 147.31 MeV where 0.51 MeV is deposited in the silicon and the 146.8 MeV is

deposited in the CsI. After the first step calibration from the CsI fitter program the punch

through point is typically between 5 and 10 percent off from where it should be. To fix this,

a gate is drawn around the end of the calibrated spectra for protons. A one-dimensional

plot of the CsI energy spectra from within this gate can then be plotted as shown in Figure

3.4.

The red fit line in Figure 3.4, is made using the formula:

Counts =
ax + b

1 + e(x−c)/d
+ f x + g (3.7)
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Figure 3.4: An example of the CsI energy gated on protons only. The punch through is
represented by the halfway point of the sharp falloff. The initial calibration of the CsI is
then adjusted by the punch through found through a fitting procedure.
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where a, b, c, d, f and g are parameters fit independently for each crystal. The parameter c,

represents the halfway point of the Fermi function-like falloff. This value, c, represents the

punch through energy value in the CsI from the first order fit. Since we know the punch

through energy in the CsI is 146.8 MeV, we can scale the first order CsI energy by the ratio

146.8/c in order to correct the energy calibration at these higher energies. Deuterons and

tritons have a light output that is linearly proportional to energy deposition as well and as

such, we repeat this procedure to correct the energy calibration independently for these

two isotopes.

When charged particles enter the CsI they ionize the particles along their path. Some

of the atoms that get ionized are the thallium atoms that were used to dope the crystals.

The thallium particles have several excited levels that decay through photoemission.

Hydrogen isotopes do not deposit enough energy to saturate these levels and as such

have a linear light output as a function of deposited energy. Particles with higher Z, such

as 3He and 4He have enough ionizing power that the response is no longer linear and so

another method must be used to correct their calibrated CsI energy.

3.1.3 Ionization Correction

Up until this point the CsI calibration procedure has been valid only for hydrogen isotopes.

It is well known that higher Z particles, and even deuterons and tritons, have a light output

per MeV of deposited energy that differs from that of protons. In the case of deuterons

and tritons, the light output depends linearly on energy and is treated the in the same

manner as the protons.

In a previous experiment, a set of equations had been developed for LASSA to correct
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for this effect for higher Z particles. Since we use the same crystals for this experiment,

we can assume that the same relationship between energy deposition and light output

between different isotopes is still valid. Under this assumption, the proton calibration

parameters can be used to obtain a formula for the light output,

L =
Ep − b

a
(3.8)

where Ep is the current energy calibration based on protons and L is the light output. The

formula for L can then be substituted in the other equations,

E = aL + bAc(1 − edL) Z = 2 (3.9)

E = a
√

AZ2L + b(1 + cAZ2)L1−dZ
√

A Z = 3 (3.10)

E = aAZ2L + b(1 + cAZ2)L1−dZ
√

A Z = 4 (3.11)

to correctly account for the ionization differences. In all of these equations, E is the new

corrected energy, L is the light generated by the particle as it passes through the CsI, Z is

the charge of the particle and A is the mass number of the isotope. The other variables are

parameters for each isotope and can be found in Table 3.2. The determination of these

factors can be found in [40]. The calibration for some of the heavier isotopes have been

cross-checked against the energy loss in both the silicon and CsI.

3.2 LASSA Pixelation Routine

The data for this experiment is analyzed using ROOT [41], a C++ scripting framework

meant to handle and perform calculations on large amounts of data in an organized
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Z a b c d
1 0.2010 -0.9587
2 0.1696 4.575 0.3380 -0.05772
3 0.01783 0.2456 0.09743 0.06358
4 0.0006680 0.4493 0.01015 0.02616

Table 3.2: Table providing the fitting parameters used in order to correct for the reactions
different isotopes have on the light output in the CsI.

format. At the beginning of the analysis process, the data files from the experiment are

converted into a ROOT file that has the raw channel values for different properties of each

of the detectors. The calibration processes described thus far in this chapter are used to

create a new calibrated ROOT file with information strictly about LASSA. This calibrated

ROOT file contains only calibrated energy for the silicon and CsI for each strip and crystal

in each telescope. Much of the energy calibration has already been detailed in this chapter,

except for two details; pedestal determination and effects of interstrip hits and overflow.

In this experiment, there was a large amount of pickup noise coming from the high

voltage supply used for the Miniball. In order to avoid an unreasonable efficiency for

high energy protons we ran the electronic thresholds for the LASSA ASIC’s very near the

noise level. We then ran the LASSA electronics as a slave system to avoid triggering the

experiment on that noise. With the structure of the readout for LASSA, the noise signals

are still read into the LASSA data when a master trigger is fired. To counteract this,

we find the noise pedestal by looking at the raw spectra for each silicon channel. This

spectra shows a large peak around a pedestal channel. This peak is fit with a gaussian

and a pedestal threshold value is designated to be the peak position plus two standard

deviations. During the calibration routine, only values that lie above this threshold are

filled into the calibrated ROOT file.

During the calibration routine, once values have been assigned for each strip in a
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telescope another loop through the strips is initiated. In roughly 3% of events a particle

will pass through the gap between two strips. When this happens the particle deposits

energy in both strips and so both strips would have an energy less than the actual value

measured by the opposite face of the detector. This last loop compares neighboring strips

to try to correct this situation. If a strip has a neighbor that has an energy measurement

in the range of 0.03E < Eneighbor < E, the neighboring strip’s energy is added to the strip

of reference. The neighboring strip’s energy then assigned a value of zero energy. This

process is called the gluing procedure.

The structure of the calibrated ROOT file makes it difficult to quickly determine real,

identifiable particles in LASSA from unidentifiable ones and do physics calculations at

the same time. To counteract this problem, we create a new ROOT file which we call

a primary file through a routine that we call pixelation. The pixelation routine selects

true charged particle hits in LASSA while filtering out ”phantom hits” due to noise. The

routine contains several steps and begins only after the calibrated ROOT has been created.

A step by step walkthrough will be explained next.

There are three basic steps to the pixelation routine. I will describe the procedure for

one telescope since each telescope is independent from each other in this regard. This

routine is run on an event by event basis. The first step is to create a list of all CsI crystals

in the telescope that measure a real energy (above threshold). The second step is to create

a list of all combinations of front and back strips that measure energy deposition within
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the tolerance of,

∣∣∣Efront − Eback
∣∣∣ < 0.4 forEback < 3MeV, or (3.12)∣∣∣∣∣Efront − Eback

Eback

∣∣∣∣∣ < 0.1 forEback ≥ 3MeV. (3.13)

In principle, a particle that passes through a pixel should have the energy deposition

measured the same by the front and back strip. The third and final step is to eliminate

any of the pixel locations from step two that are not backed one of the CsI crystals listed

in step one. All pixels that pass this third step are added into the primary file. During

this process, we also include other information about the particle such as the vector from

the center of the target to the center of the pixel, laboratory angles, total lab energy (with

corrections described in later in this chapter), transverse energy and momentum, center

of mass kinetic energy and angle, and identification of which isotope the particle is (PID).

This relatively simple sounding routine eliminates many issues that arise from high

level noise and multiple hits in the same telescope, if not necessarily the same crystal. The

rest of this section will describe how this occurs.

Let us begin with the logic behind the simplest case, that of one real particle in LASSA.

In this case, we would expect one front strip, one back strip and one CsI crystal all to

detect the particle with a given energy and that the front and back strips would measure

the same deposited energy within tolerance. Following through the three steps, step one

lists only the one CsI that was hit, step two lists the one pixel location corresponding to

the two strips that measured energy, and step three would do nothing in this case since

the pixel is in front of a CsI that measured energy.

Moving to the next most complicated situation where two particles hit different CsI
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crystals, hit separate front and back strips and leave vastly different energies in the silicon.

If this assumption holds true, then the number of pixel locations for N real particles that

measure energy (not necessarily matched within tolerance) is N2. In this case there would

be four possible locations. For this situation, step one would create a list of the two

crystals. Step two would create only the two possible pixel locations where the front and

back energies match. The other two possible pixel locations would never be considered

because the front and back energies would be out of tolerance of each other. Step three

again does nothing. This process would hold true for three and four real particles that all

hit different crystals and different strips.

Continuing in complication, assume two particles deposit the same energy in the

Silicon and enter opposite crystals. Step one would create a list of the two crystal locations.

Step two would then create four possible pixel locations by matching each front strip with

two back strips and vice versa. In this case, step three would then eliminate two of the

false hits because there was no CsI struck behind those pixels.

In the previous case the particles entering opposite crystals allows for filtration of the

phantom hits. If the particles enter adjacent crystals however, this is not possible. All four

possible pixels would be created and advance onto the primary file. Later in the chapter

other techniques will be described that help to filter these false hits out.

The examples just described can be continued and expanded upon for more particles

and more complications, but the premise is the same in these cases. A series of checks

were completed to determine the stability of this procedure. In theory the procedure is

sound, however, noise in the silicon, neutron contamination, bad strips and particles that

stop in the silicon require more consideration. Several examples of checks follow from
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Crystal 0 Crystal 1
M 1 M 2 M 3 M 4 M 1 M 2 M 3 M 4

1 Total Events 89844 19016 1542 87 58543 14346 1392 87
2 0-0 Events 21210 2210 123 34 13712 1916 113 34
3 0-x/x-0 Events 5147 3117 263 14 6275 2569 285 14
4 1-1 Events 59449 8002 509 14 34494 6096 452 15
5 Other Events 4038 5687 647 25 4062 3765 542 24
6 0 Pixels 26357 5327 386 48 19987 4485 398 48
7 1 Pixel 59449 8002 509 14 34494 6096 542 15
8 >1 Pixel 4038 5687 647 25 4062 3765 542 24
9 0 Matched Pixels 29332 8708 827 68 24070 7063 804 75
10 1 Matched Pixel 59199 9497 634 15 33949 6830 526 12
11 >1 Matched Pixels 1313 811 81 4 524 453 62 0
12 Matched Pixels

w/o CsI
1834 534 36 N/A 2498 693 58 N/A

13 1-1 Match to 1 Pixel 57780 5228 240 7 33066 4384 209 3
14 1-1 Match to 0 Pix-

els
1669 2774 269 7 1428 1712 243 12

15 >1 Pixels to 1
Matched

1419 4269 394 8 883 2446 317 9

16 >1 Pixels to >1
Matched

1313 811 81 4 524 453 62 0

Table 3.3: A table representing different situations for two sample crystals in the pixelation
routine.

here for a telescope that had only one bad strip on the front, none on the back, had all good

CsI crystals and was not shadowed by any apparati. The checks that were completed use

two crystals in this telescope, one with all good strips in front (crystal 0) and one with one

bad strip in front (crystal 1). We complete these checks for one data run from the 112Sn

data at 50 MeV/A.

Table 3.3 contains much of the information for these checks for crystal 0 on the left and

crystal 1 on the right. Each column for the respective crystals represents the multiplicity

of crystals measuring energy in the telescope when that particular crystal measured a

particle. For example, when two crystals measure a particle, crystal 0 was one of the hits
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in 19,000 events and crystal 1 (the more backward crystal) in 14,300 events. Each row

below that will specify how many of those events fit the criteria of the row.

Row 2, labelled 0-0, shows events in which the crystal was hit but no front strip or

back strip in front of the crystal measured a particle. These events mainly occur when a

neutral particle (almost exclusively neutrons) interacts with the CsI and thus deposits no

energy in the silicon. The following row (3) labelled 0-x/x-0 Events, have several possible

sources. For crystal 1 where there is a bad strip in front this would be a relatively common

occurance (about 1/8 of events). Other possible sources are a neutron interacting with

a CsI while a neighboring CsI was hit by a charged particle. Another option is when a

particle stops in the Silicon in front of a neighboring CsI. It is possible that some of these

events come from the inefficiency of the Silicon caused by noise in a strip as discussed

later in 5.1.2 however this is a nearly negligible effect ( 1%) in this data run. Row 4,

labelled 1-1 Events, indicates events with only one front strip and one back strip in front

of the crystal that fired, with Row 5 measuring any other combination.

Continuing down the table, the next three rows (6-8) provide the number of pixels, that

is, combinations of front and back strips in front of the crystal, where both measure energy,

without any consideration for energy matching. The next three rows (9-11) provide the

number of pixels in front of the crystal where the energy between the front and back is

within tolerance provided by equation 3.12.

The next row (12) is different than all the others. In this row we are describing the

multiplicity of fired CsI when this crystal did not measure a particle (all the others show

only events where that crystal did measure a particle). Moreover, these are the events that

contain the number of pixels that are energy matched when this occurs. This type of event
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is generally dominated by particles that stop in the silicon detector or mylar foil in front

of the CsI and never make it to the CsI crystal. This row provides an interesting check

on Row 3. In this particular telescope, the front and back strips have an inefficiency of

about 1%. This implies that about 2% of Row 4 (1200 events) would fall into this category.

We can assume a comparable amount would stop over the crystal directly beneath it.

Combine this from the stopped particles over its neighbor, crystal 1, as well as the 1200

events from the inefficiency and we might expect something around 5500 events in Row 3

for the multiplicity 1. These calculations are relatively back of the envelope and in many

cases it is difficult to verify just how many counts fall into what category, this at least

provides a reason for the relatively large amount of counts in Row 3 for a crystal with all

good strips in front.

The last four rows are more complicated. Row 13 provides the number of events in

Row 4 that were energy matched, while Row 14 provides the number of events in Row

4 that were not within the energy tolerance. This is quite expected, suggesting that over

97% of events that have only one possible front and back that correspond to a measured

energy in the CsI are matched in energy. It should be noticed as well that the sum of Rows

13 and 15 add up to Row 10 as they should. Rows 15 and 16 provide the number of events

from row five that give exactly 1 matched pixel (15) or more than 1 (16).

The events in Row 16 are some events that cause issue. In general we cannot tell which

of the pixels in these events are the ones to keep. In principle, if one particle were to

stop in the silicon and the other pass into the CsI we would be able to measure those.

If two particles were to both penetrate into the CsI however, it would be impossible to

accurately distinguish them, even though the combination would likely have an artificially
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high enough energy in the CsI to push each other out of a particle identification curve.

This is one option for filtering out these particles.

The first check on the pixelation routine is to confirm that the number of pixels in

the newly made primary file for events where there is only one combination of pixels in

front of a particular crystal matches the prediction. In this case, for crystal 0, the number

of pixels found in the primary file is 69345. This matches the sum of the values of row

ten in the table as anticipated. All of the events in the last row create, in the example of

this crystal, around 4500 more pixels. There are a myriad of explanations for what types

of events these can be. Two or more particles could hit the same CsI, or they could hit

neighboring crystals and deposit a similar amount of energy in the Silicon. A study of

how many of these pixels get filtered out will be described later in this chapter.

One of the issues that arises is when there are bad strips. One would assume that the

fraction of events lacking a pixel in front of the crystal would increase by the fraction of

nonusable pixels. For example, 29.07 % of events in crystal 0 are part of row six. Crystal

1 has one bad strip and so we might expect an increase of 12.5 % of that rate, with a slight

tolerance for a lower particle hit rate in that crystal. Crystal 1 has 33.5 % of events in row

six, consistent with 29.06 ∗ 1.125 = 32.70%.

At this point, one should be concerned about the number of events in which there are

more than one possible pixel that are energy matched represented in row eleven. In the

next section as well as in Chapter 5 I will detail what contribution those particles make

into the final spectra.
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3.2.1 Particle Identification

Particles in LASSA are usually identified using the measured ∆E and E energies from the

silicon and CsI, respectively. These curves provide good separation as illustrated in Figure

2.7. Typically this is enough to allow gates to be drawn minimizing the contamination

of wrongly identified particles. However, in high energy cases it becomes difficult to

determine the particle type due to punch through effects. For example, the tritons that

punch through the CsI deposit less energy in both the silicon and CsI detectors than those

that stop in the CsI. When this happens the triton curve stops and crosses back across

the deuteron and proton lines. In addition, the separation between 3He and 4He requires

better resolution than can be achieved through this form. For this purpose, a new PID

variable is created of the form,

PID = b ∗ Ln(300) − Ln(b ∗ ∆E) − (b − 1)Ln(E + 0.5 ∗ ∆E) (3.14)

b = 1.825 − 0.18 ∗
∆E
25

(3.15)

This PID variable allows for a better utilization of the good resolution in the silicon and

CsI to identify the isotopes of the particles measured in LASSA. Figure 3.5 illustrates the

CsI energy versus PID to identify hydrogen and helium isotopes while Figure 3.6 displays

the Si energy versus PID to identify the small range of lithium and beryllium isotopes.

In general, not every particle that enters the telescope will be visualized within these

curves. There are some small effects that cause some background as seen in Figure 2.7. It

is helpful to know how many particles are being detected that are part of this background.

The primary effects that cause this to happen are when two particles enter the same strip
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Figure 3.5: A plot showing an example of the gates used for hydrogen and helium isotopes.
Each crystal has an individual set of gates drawn. Hydrogen isotopes are the cluster on
the right, with helium on the left, with increasing mass moving from right to left.

Figure 3.6: A plot showing an example of the gates used for lithium and beryllium
isotopes. Each crystal has an individual set of gates drawn. Again increasing mass moves
from right to the left with lithium on the right and beryllium on the left.
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Crystal 0 Crystal 1
1 1 Matched Pixel 69345 41292
2 1 Matched Pixel in a PID line 66735 39636
3 Fraction of Pixel in a PID line to Pixels 0.962 0.960
4 Events with >1 Matched Pixel 2209 1039
5 Pixels from >1 Matched Pixel 4931 2257
6 Pixels in PID lines 3419 1717
7 Fraction of >1 in PID line to exactly 1 in a PID 0.0512 0.0433

Table 3.4: A table comparing the respective contributions of created pixels from events
with only one possible energy matched combination and many combinations.

or same CsI crystal. If two particles hit the same strip, the silicon energy will be shifted

up and in the same crystal the CsI energy will be shifted up as well. We use this process

to filter out some of the events that have more than one possible matched pixel in front of

a CsI. Table 3.4 displays some of the information for the same two test crystals as in 3.3

from the pixelation routine verification.

This table provides several pieces of important information. Row 1 shows the number

of events in which there was only one possible energy matched combination of pixels,

the sum of the four columns in Table 3.3. This is very important in confirming that the

routine is correctly producing all of the pixels that we expected. The next row (2) shows

the number of those pixels fall within the particle identification gates. The third row then

shows the fraction of events that get identified. The next three lines show the contribution

of events that produced more than one matched pixel. Rows 4 and 5 provide the number

of events and produced pixels from those events, respectively. Row 6 provides the number

of those matched pixels in Row 5 that fall within a particle identification gate. Finally,

Row 7 shows the that in this crystal about 5% of pixels created from the routine are from

events that contain more than one possible matched pixel in from of a crystal.

In general a 5% contribution from these types of events is probably acceptable. It is
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important to remember however, that this telescope is at relatively backward angles where

the amount of multiple hits and particle bombardment is not very high. At the forward

angles this contribution increases. In the 120 MeV/Areaction this proportion increases

even more, up to a 35% effect in the forward angles. In Section 5.1.2 we attempt to

compensate for multiple hits in the CsI and so we therefore choose to omit any pixels that

have more than one possible matched pixel in front of the same crystal.

While a relatively small effect, it is possible that two neighboring crystals each have

only one matched pixel in front of it, with those matched pixels sharing either the front or

back strip with the other pixel. Since the gates across the silicon energy are relatively broad,

these types of events are not as likely to boost each other out of a particle identification

gate and so we choose to elminate these types of events as well.

3.2.2 Foil Correction

There are a number of thin foils at different locations along the flight path to the silicon

and CsI detectors. These foils cause a slight amount of energy loss for charged particles

passing through them. We describe the energy loss as proceeding through 7 steps: the

energy loss in (1) half the thickness of the target, (2) in a set of SnPbSb foils, (3) in a layer

of aluminized mylar foil, (4) in the dead layer of the Si, (5) in the active Si detector, (6) in

another layer of aluminized mylar and finally, (7) in the CsI. In Table 3.5 is a list of the foil

thicknesses. These thicknesses were input in LISE in order to generate a correction. This

correction moves through the following path. Using the energy in the CsI, the energy lost

in the mylar foil can be calculated. The energy in the CsI is added to the energy lost in

the silicon and the mylar to calculate the energy lost in the dead layer of the silicon. This
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Material Thickness(mg/cm2)
Half 112Sn target 2.785
Half 124Sn target 2.65

SnPbSb 16.69284
Al 0.02

Mylar 0.24543
Si Deadlayer 0.2321

Table 3.5: Thickness of all the components of the foils in the experiment.

running sum is then used to calculate the energy lost in the first mylar foil. This process

continues back to the target. The target’s thickness must be adjusted slightly to account

for the target being aligned normal to the beam axis and not normal to the front of the

detectors. As such, the thickness used for the target is t/(2 cosθ) where t is the thickness

and θ is the laboratory angle of the center of the pixel the particle was detected in. This

thickness is chosen under the assumption that collision takes place at the exact center of

the target.

3.3 Elastic Scattering

A series of data runs were completed using a beam of 16O at E/A = 29.4 and 16.8 MeV on

a 9.2 mg/cm2 CH2 target. These data runs were intended to measure elastically backscat-

tered protons in LASSA. The scattering should have a very precise energy deposition in

the CsI based on the laboratory angle. If possible, inelastic scattering peaks would have

also been used. During the experiment a mistake in the FPGA firmware programming

caused data to only be read out when there were at least 3 strips in the LASSA system with

data. This glitch would make it look like data was being measured but not actually being

read out to the DAQ. This issue was not fully understood until the calibration beamtime

had run out and so the low statistics during these data runs made it difficult to use for
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extra calibration purposes. We were fortunate that the rest of the experiment was focused

on high multiplicity, central events, as those data runs were unaffected by this glitch. This

is especially true considering the normal LASSA data was run as a slave system with

thresholds near the level of the noise. The elastic scattering trigger used a much higher

threshold for event detection.

3.4 Miniball Calibration

3.4.1 Energy Calibration

The energy calibrations of the Miniball were completed for the tail and slow components

only. The fast component had a significant amount of electronics channels that were not

functioning properly and so they were omitted from calibration. By looking at the raw tail

versus raw slow signal we can find the punch through of each of the hydrogen isotopes

for both signals which can be seen in Figure 3.7. Using LISE++, we can calculate what

the punchthrough energy should be in the 2 cm crystal. By assuming a linear relationship

between energy deposition and ADC channel for the three hydrogen isotopes, the pedestal

channel and three punchthrough channels can be linearly fit for both the slow and tail

components. This must be done by hand on a telescope by telescope basis. In this

experiment, we choose the calibrated energy from the slow signal to be the energy in the

lab. We use the slow signals because they are the most reliably measured signals in the

Miniball over the course of the experiment.
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Figure 3.7: The raw tail versus raw slow signal zoomed around the hydrogen punch
throughs. Here the proton punch through is near channel 460 in the slow and channel 625
in the tail.
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3.4.2 Particle Identification

As mentioned previously, each Miniball element is composed of a phoswich detector read

out by a photodiode. Figure 2.10 showed an example of the pulse shape generated by

a particle in a Miniball telescope. The shape is defined by three distinct parts. The fast

part comes from the light generation in the fast plastic scintillator which has a signal

that extends from 2-30 ns. The slow and tail parts come from the CsI crystal with time

constants on the order of 100 ns and 1.5 µs respectively.

We can take advantage of the difference in pulse shapes in a variety of ways. The

relationship between the fast signal and the slow signal is sensitive to the charge of the

particle being detected. By plotting the charge collected in the fast gate versus the charge

collected in the slow gate as shown for an example telescope in Figure 3.8 which displays

the various elements detected by the Miniball with gates drawn around each. In the figure,

hydrogens are the lowest gate moving counterclockwise until aluminum in the case of

this detector. This example comes from a forward detector. As you move backwards in

rings fewer elements can be seen.

The relationship between slow and tail signals are sensitive not only to charge but also

to mass. Figure 3.9 shows an example of a plot of the tail signal versus the slow signal

in a Miniball telescope. If you were to zoom in on different regions, you would be able to

see different isotopes in the Figure, however, drawing gates around each one is difficult

to do cleanly. For this, a variable called PDT is created where,

PDT = Tail +
m1 ∗ Slow + b1

(m1 −m2) ∗ Slow + (b1 − b2)
, (3.16)
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Figure 3.8: A plot of the raw fast signal versus the calibrated slow signal. Gates repre-
senting different elements.
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Figure 3.9: A plot of the raw tail signal versus the raw slow signal. The lines drawn
represent the lines used in order to create the PDT variable in Equation 3.16.

where m1(2) and b1(2) are the slope and offset from the upper(lower) red lines in the

Figure. If we instead plot the PDT value versus the slow signal as shown in Figure 3.10,

the different isotopes are easier to identify and gate. For this particular telescope, different

hydrogen and helium isotopes are identified. In both elemental and isotopic selection, the

gates are drawn individually for each telescope in the Miniball.
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Figure 3.10: A plot of PDT versus the calibrated slow signal. Gates are drawn for hydrogen
and helium isotopes. The 2αgate represents twoαparticles coming from the instantaneous
decay of 8Be
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3.5 Cross Section and Impact Parameter

Like most experiments a measurement of the reaction cross section is important. In this

experiment we measure the cross section for a range of multiplicities in the Miniball

and use that to assign impact parameters to values of Miniball multiplicity. While the

Miniball measures the charged particle multiplicity the Downstream Scintillator measures

the amount of incident beam particles.

For each combination of beam energy and target a series of minimum bias runs were

completed. In general the trigger for data runs required a minimum number of hits in the

Miniball. For these minimum bias runs only one Miniball hit was required to trigger the

system. The series consisted of all four combinations of Downstream Scintillator in place

and out with the target in and out.

The run with the combination of scintillator in and target out provides a background

measurement for the run with the combination of scintillator in and target in. Both data

sets were taken for the same amount of time so the background spectrum was subtracted

from that of the data. This same process took place for the combinations with scintillator

out. In all cases there was a nonphysical peak at multiplicity equal to one likely due to the

effect of noise. It is unclear where this data is coming from and as such only data using

multiplicity of at least two is used for the remaining procedures.

The measurement with the Downstream Scintillator out and target in mimicks the

running conditions of the normal data runs. In this setup however, it is impossible to

measure the number of incident beam particles, so data was taken using the scintillator in

and target in. This configuration has a limitation that the beam rate cannot be as high as a

standard running configuration because of the possibility of flooding the scintillator’s PMT
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and damaging it. Also, the scintillator contributes some low multiplicity contamination in

the Miniball through backscattering, however the high multiplicity region of the spectrum

is unaffected.

Using this concept, the integrated number of counts for multiplicities in the Miniball

of at least 7 are compared from the background corrected spectra between the scintillator

in and scintillator out runs. Equation 3.17 shows how the beam rate for the scintillator

out run is calculated from the scintillator in run.

Iout = Iin

∑
NC≥7

countsout∑
NC≥7

countsin
(3.17)

In this equation, out represents the value from the scintillator out data set and in represents

the value from the scintillator in data. By using the calculated number of incident beam

particles we have everything needed to calculate the cross section. The cross section for a

given value of NC is then calculated using the formula,

σ(Nc) =

∞∑
Nc

events

Ii × t
. (3.18)

Here the Ii is the number of incident particles calculated in Equation 3.17 and t is the

thickness of the target in particles/cm2 which can be found in Table 3.5. From the cross

section, an impact parameter can be determined. The formula for the impact parameter,

σ(Nc) = πb2, (3.19)

uses the concept of a geometric probability to calculate b. Instead of using the raw impact
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Figure 3.11: The cross section for all four beam and energy systems as a function of charged
particle multiplicity in the Miniball. In this plot, the cross section is not the cross section
of a given NC but for all NC of at least that amount.

parameter alone to make selections on the data, one can also compare data using a reduced

impact parameter, b̂. This allows a more direct comparison between central collisions in

systems of different size. The reduced impact parameter is calculated using,

b̂ =
b

bmax
, (3.20)

where bmax is the value of the impact parameter at Nc = 2. Figures 3.11 and 3.12 show

the dependence of the cross section, impact parameter and reduced impact parameter on

the charged particle multiplicity.

The exact same treatment can be explored using the total transverse energy measured
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Figure 3.12: The impact parameter and reduced impact parameters for all four beam and
energy systems as a function of charged particle multiplicity in the Miniball. Here the
impact parameter at a given NC is the maximum impact parameter given that multiplicity.
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in the Miniball instead of the charged particle multiplicity. Those results can be seen in

Figure 3.13.
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Figure 3.13: The impact parameter and reduced impact parameters for all four beam and
energy systems as a function of total transverse energy in the Miniball.

91



Chapter 4

pBUU analysis

4.1 Introduction

As introduced previously, pBUU is a transport simulation code that uses a large amount of

parameters in order to simulate a collision between two nuclei. Many of these parameters

are physical in nature, such as the impact parameter, mean field compressibility, in-

medium cross section, incident energy, and symmetry energy parameters to name a few.

Others are purely computational such as grid size, length of time of the simulation, and

the number of test particles.

It is imperative that the code should produce results insensitive to the computational

parameters as long as certain conditions are met as the variables are changed. For instance,

as long as the large residues from a collision remain on the grid, the size of the grid should

also not affect the observable. As long as the large residues have finished interacting with

the rest of the system, the observable should not be too sensitive to the increase in time of

calculation since secondary decay time scales tend to be very long. Finally, there should

be enough test particles used in the simulation so that increases in the number of test
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partcles do not change the physical conclusions.

4.2 Computational Parameters

Several simple tests were completed using the pBUU code at the beginning of this study.

To begin all simulations were run with an incident energy of 50 MeV/A. The first check

was to verify that the grid size is large enough. Figure 4.1 shows an example pBUU

simulation without cluster production using a grid size of 45.08 fm along the positive

beam axis and 18.4 fm in both positive transverse directions. The simulation progresses

over time and by around 300 fm/c the large residues have stopped interacting and are

still on the grid. It would be expected then that if the grid size were changed, the results

would not. Figure 4.2 shows the spectra of protons and neutrons that were emitted from

the central source in the range of 70 ≤ θC.M. ≤ 110 degrees as indicated schematically by

the lines in the bottom right part of Figure 4.1. It is important to note that the angular

range is in momentum space, not coordinate space. All four spectra are nearly identical,

indicating that as long as the main residue stays on the grid, the grid size does not have an

effect on the results. This also confirms that all grid sizes are large enough for this system.

A similar set of calculations was done with 120 MeV/Acollisions. Since the residues

are certainly not going to leave the grid in the transverse direction, only the two different

longitudinal lengths were compared. Figure 4.3 shows that in a higher energy system,

the large residues leave the grid. In an unexpected result, the spectra for the standard

grid and expanded grid are nearly indistinguishable. This is a consequence of the fact

that the particles of interest, especially at high energy, come from the participant region

of the interaction. Once the two residues have passed through each other very few free
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Figure 4.1: An example of the collision of two 112Sn nuclei from a 50 MeV/Areaction with
an impact parameter of 2 fm. The time of each panel is 0 (upper left), 54 (upper right), 108
(lower left) and 162 (lower right) fm/c.
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Figure 4.2: An example of the neutron (top) and proton (bottom) spectra for varying
grid sizes. 2x longitudinal indicates that the grid was doubled in size for the beam axis,
2x transverse indicates that both the transverse axes were doubled in size and 2x both
indicates that all three axes were doubled.
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particles will contribute to the spectra in the angles of interest. This indicates that as long

as the grid is large enough to finish the main collision, the grid is large enough for the

observables of interest to this work.

Next, the simulation was run for varying lengths of time for a 50 MeV/Areaction. The

code proceeds through the simulation in time steps of 0.36 fm/c. Five different calculations

were completed out to 416, 624, 832, 1040 and 1248 time steps which correspond to 150,

225, 300, 375 and 450 fm/c. Figure 4.1 shows that at the two earlier times the residues

are not completely done interacting. Even at 300 fm/c the residues are still connected

by a neck region but are very weakly interacting. Figure 4.4 shows the spectra for each

time length. At the very low energies, less than 20 MeV, the different times show very

different results. At the higher energies however, the spectra are very similar. The higher

energy particles are emitted at the earliest times of collision where the interactions are

strongest and most numerous. As such we are confident that the effects of probing the

dense, central source can be seen through the emission of particles at energies larger than

20 MeV and in simulations run to anytime after the residues have stopped their primary

interaction. From this result we are confident in simulations run out to 300 fm/c, for all

incident energies.

Finally, a series of calculations were completed with different amounts of test particles.

For the duration of this dissertation when the number of test particles is given, it implies

the number of test particles per nucleon. Simulations were run with 50, 100, 200, 400,

600, 800, 1200 and 1600 test particles. It is anticipated that the results would depend on

the amount of test particles until a certain amount where pBUU can accurately represent

the phase space and the results converge. Figure 4.5 shows the spectra for several of
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Figure 4.3: An example of the collision of two 112Sn nuclei from a 120 MeV/Areaction at
an impact parameter of 2 fm. In the case of the higher energy system, the main residues
leave the grid when it has a length of 45.08 fm. The time of each panel is 0 (upper left), 54
(upper right), 108 (lower left) and 162 (lower right) fm/c.
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Figure 4.4: An example of the spectra for protons (top) and neutrons (bottom) with the
simulation run out to different lengths of time.
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the different calculations. As predicted the spectra continue to change, and in particular

decrease, until 600-800 test particles where all simulations with more test particles give a

consistent result. With this understanding, a value of 800 test particles was chosen to be

the standard for which all further calculations would be completed.

4.3 Mean Field

This BUU model uses two separate options for calculating the mean field potential, a

momentum dependent and momentum independent model. The momentum dependent

model utilizes more proper treatments of nucleon effective mass and mean field inter-

actions, however requires much more time consuming simulations. In addition to the

momentum dependence, the code allows for the variance of the isoscaler mean field com-

pressibility, commonly defined as K. In this treatment, the two values for K that are used

are a soft compressibility, 210 MeV, and a stiff compressibility, 380 MeV.

Figure 4.6 shows the double ratio for all four combinations of compressibility and

momentum dependence. As with all spectra in this chapter unless otherwise stated, the

angular range of the particles in question are from 70 ≤ θC.M. ≤ 110 degrees. The spectra

from the momentum dependent calculations show a slight increase in particle production

in the region above 40 AMeV, while lesser production below that level. Above 10 AMeV,

the stiff mean field also causes an increase in particle production. The effects are all

reasonably similar for neutrons and protons however, as the double ratio does not show

significant changes with these variations as shown in Figure 4.6. Unless otherwise stated,

for the remainder of this treatment, momentum independent calculations will be used

with compressibility of 210 MeV. This compressibility is reasonably similar to an accepted
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Figure 4.5: The spectra for neutrons (top) and protons (bottom) for varying numbers of
test particles. As the number of test particles increases the spectra converge to a consistent
value. Around 600-800 test particles the spectra are all consistent to within the variance
of different random seeds.
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Figure 4.6: An example of the double ratio as the momentum dependence and mean field
compressibility are varied. These double ratios show little sensitivity to these variables.

value of 231 ± 5 MeV [42]. The use of momentum independent calculations is to account

for the faster calculation time.

4.4 Physical Parameters

Once the main computational parameters were chosen, a long campaign of simulations

was completed to learn how different physical parameters affect certain observables,

primarily spectra as well as single and double spectral ratios. Since this work is going

to be used primarily for comparing to experimental results, the first parameter that was

investigated was the dependence on γ from Equation 1.5. One of the simplest cases was
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Parameter Value
Momentum Dependence Independent

Beam Energy 50
Cluster Production Off

Compressibility K=210 MeV
Impact Parameter 2 fm

In-Medium Cross Section Screened
Sint 19

Angular Range 70 ≤ θC.M. ≤ 110

Table 4.1: A table of typical values for transport variables in pBUU simulations. Unless
otherwise stated, studies throughout this treatment will use these specifications.

chosen as the starting point. The parameters used in the simulation are contained in Table

4.1.

The particles that are chosen for these particular observables are ones that are emitted

between 70 and 110 degrees in the center of mass. Figure 4.7 shows the spectra of protons

(top) and neutrons (bottom) as a function of angle from a 112Sn reaction at 50 MeV. Each

set of data contains all particles in a 10 degree range centered on the labeled value. As can

be seen, the spectra shows almost zero sensitivity to emission angle as might be expected

from the most central collisions. Figure 4.8 shows the same information for a simulation

at 4 fm impact parameter. This figure shows that the particles are emitted symmetrically

about 90 degrees as well as with an increase in magnitude the farther from 90 degrees

the particles get. The largest enhancement occurs near θ = 0 and 180 degrees, which

corresponds to the region of projectile/target like fragments (PLF/TLF). However, in the

region from 70 to 110 degrees the spectra are reasonably isotropic. This gives confidence

that particles the PLF and TLF are being minimized in this range. Naturally there will be

a slight contribution from later collisions but this is negligible at energies above 20 MeV.

Once the selection of data was determined to be valid, a comparison of the spectra as

a function of γ was made. Since the effect of the symmetry energy is very small, it is not
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Figure 4.7: Spectra of protons (top) and neutrons (bottom) of a 112Sn reaction at a 0.1 fm
impact parameter and γ = 1 gated every ten degrees.
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Figure 4.8: Spectra of protons (top) and neutrons (bottom) of a 112Sn reaction at a 4 fm
impact parameter gated every ten degrees.
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expected that a clear difference would be seen in just the spectra. Instead, the spectral

ratio of neutrons to protons is expected to show a difference. Figure 4.9 shows the single

ratios,

dM(n)
d(EC.M./A)dΩ

/
dM(p)

d(EC.M./A)dΩ
, (4.1)

for both 112Sn (left) and 124Sn (right) as a function of γ. The force from the symmetry

energy ejects neutrons from the system with a stronger symmetry energy encouraging

a larger n/p ratio. Since this energy range probes densities at subsaturation energy, the

larger γ gets, the smaller the force from the symmetry energy. This figure clearly shows

this effect with γ=1/3 producing the largest value of a spectral ratio and γ=2 producing the

lowest with a continual trend in between. Also included on each plot is a line representing

the n/p ratio of the system pre-collision. If there was no sensitivity to the symmetry energy

one would anticipate a flat distribution even with this line. The 112Sn collision, having a

much smaller value of δ, shows the expected result of being less sensitive to γ.

One surprising result is that the ratio is almost completely less than one. On first

thought, it would be expected that since this collision is neutron rich, the ratio would be

greater than one. The Coulomb force effects the protons such that the lowest energy bins

are actually vacated of most protons so the n/p ratio is very large. A simpler but less

informative ratio where the sum of all emitted neutrons to protons in the area of interest is

indeed greater than one. Table 4.2 contains the ratio of integrated neutrons to integrated

protons for different values of γ.

The biggest issue behind measuring an n/p ratio experimentally is that accurately

determining the neutron detection efficiency to a necessary confidence level is difficult.

There are also other issues such as determining the Coulomb effects in these ratios. An-

105



Figure 4.9: The n/p single ratios for 124Sn (top) and 112Sn (bottom).
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γ n/p 112Sn n/p 124Sn
1/3 1.29784 1.83995
1/2 1.27808 1.79859
1 1.21812 1.67046
3/2 1.16072 1.56517
2 1.12473 1.49398

Table 4.2: The integrated neutron to integrated proton ratios for five different values of γ.
As expected, the ratio continues to decrease with increasing γ.

other possible observable that would be able to rid the effects of efficiency is to develop an

n/n or p/p ratio where the spectra from the 124Sn collision is compared to the 112Sn spectra.

Figure 4.10 shows these independent particle ratios with several interesting qualities. As

can be expected, the p/p ratio shows very little sensitivity to the symmetry energy since

the amount of initial protons in both collisions is similar. What residual sensitivity there

is reflects that the chemical potential for protons is higher in the 112Sn system than the

124Sn system. The n/n ratio shows much more sensitivity due to the large change in the

number of neutrons between the system.

These ratios are not necessarily a better option than the single ratios. While there

is sensitivity, it would not necessarily instill much confidence to measure simply these

observables since the symmetry energy is related to the difference between proton and

neutron densities. Instead, if the benefits of both sets of ratios are combined and a double

ratio is created of the form,

DRn/p =
SR124(n/p)
SR112(n/p)

, (4.2)

a new observable is provided, which is displayed in Figure 4.11.

Based on the single ratios one can expect the trend of a stronger symmetry energy

resulting in a larger value of the double ratio, that is, having a stronger effect of pushing
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Figure 4.10: The ratio of protons from the 124Sn system to that of the 112Sn system are
displayed on top as a function of γ. The corresponding neutrons are on the bottom.
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Figure 4.11: The n/p double ratio as a function of γ.
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out the neutrons instead of protons in the 124Sn system over the 112Sn system. It would

be expected then, that if the coefficient Sint were modified (changing the value of the

symmetry energy at saturation density), a similar effect would occur. In this case however,

the double ratio should increase with increasing value of Sint. Figure 4.12 shows examples

of the dependence on Sint while leaving all other properties constant.

A number of interesting effects are immediately noticeable in Figure 4.12. The first of

which is the confirmation of the prediction that a larger Sint produces a larger double ratio.

The second is that as γ is increased, the sensitivity to Sint decreases. Simple calculations

will show that when using a sample density of 0.6ρ0 (the density region around which

we are probing), the difference in the value of the symmetry energy from Sint=15 to

Sint=24 is almost 8 MeV when γ=1/3 yet only 3 MeV when γ=2, explaining the difference

in sensitivity. A similar study shows that when Sint increases the sensitivity to γ also

increases as one would anticipate.

There are three different cross sections that are introduced in pBUU, free, screened and

Rostock, each of which was described in Section 1.2. The free cross section should have the

largest amount of collisions, with the Rostock slightly less and the screened much lower.

Figure 4.13 shows the proton and neutron spectra for the three different cross sections.

Despite the differences in the shape of the spectra from the different cross sections the

double ratio for all three cross sections is almost identical as displayed in Figure 4.14.

This occurs since the shape change in the proton spectra is similar to the shape change in

the neutron spectra.
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Figure 4.12: The n/p double ratio as a function of Sint. The top plot has simulations where
γ=1/3 and the bottom with γ=2.
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Figure 4.13: The neutron (top) and proton (bottom) spectra for the three different cross
sections available in pBUU for a 112Sn reaction. Contrary to what is expected, the screened
produces more particles than Rostock.
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Figure 4.14: The double ratio for the three different cross sections available in pBUU.
Despite the difference in the behavior, the double ratios are rather similar showing that
the choice of in medium cross section does not have a strong influence on the results.
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Figure 4.15: Example spectra of all five light particles that are created in the BUU when
the cluster production option is activated.

4.5 Cluster Production

As discussed in Section 1.2, the unique aspect of this particular BUU code is the ability

to create light clusters, which one would expect to have an impact on the dynamics and

results of the spectra as well as other observables. An example of the spectra for all five

produced particles is included in Figure 4.15.

Figure 4.16 shows the spectra for neutrons and protons for an example comparison.

The plot shows three different results, all of which use the same parameters except that

cluster production is not included in one set and is in the other two. The two results
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with clusters are formed two different ways. The first is simply taking the free neutrons

and protons from the reaction. The second way, described as coalescence invariant, sums

up the neutrons and protons from all free particles. In this model, a deuteron would be

counted as both a neutron and proton, a triton would be a proton and two neutrons, and

so on. One would obviously expect a decrease in the number of free protons and neutrons

when clusters are included since many of those free particles would be taken up by the

clusters, which is certainly what is observed in this figure. The coalescence invariant

would then be closer to what was predicted by the simulation without cluster production.

However, one may expect some difference between the two calculations resulting

from the energetics of cluster formation. Cluster formation takes into account the binding

energies of the clusters, which upon creation heats up the rest of the source. This causes

the resulting spectra to display an increase in temperature at energies greater than 40

MeV/A, which can be seen in Figure 4.16.

Some evidence for the utility of the coalescence invariant spectra and ratios comes

from the independent particle ratios. Figure 4.17 shows the independent particle ratios

for protons, neutrons, tritons and 3He. These ratios show a trend where the neutrons

behave similar to the neutron-like tritons and the protons behave like the proton-like 3He

at larger emission energies. While the trend agrees reasonably, the magnitudes do not

agree until above E/A=35 MeV. In contrast, we will see in Chapter 5 that the measured

independent particle ratios will agree across the entire energy range instead of only at

large energies. One should at this point wonder what the result would be if the simulation

did not truncate at mass A=3 and included heavier particles. Chapter 5 will attempt to

address this.
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Figure 4.16: A comparison of the spectra for a non cluster producing, cluster producing
and coalescence invariant spectra for protons (top) and neutrons (bottom).
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Figure 4.17: The independent particle ratios showing coalescence between proton-like
and neutron-like particles in 50 MeV/Areactions.
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Figure 4.18 shows a similar comparison for the single ratios for 112Sn and 124Sn

reactions withγ = 1. After around E/A=80 MeV the coalescence invariant and the standard

cluster producing n/p ratios are identical since deuterons are negligibly produced at that

energy. From E/A=60 MeV to 80 MeV the deuterons lower the ratio closer to a value of

one, but due to their lower production numbers, their effect is not large. Below 60 AMeV,

the tritons and 3He particles have a much larger effect. Both cluster producing simulations

provide an n/p ratio that is increased closer to what would be initially expected, that is

larger than 1 and larger than the N/Z ratio of the system. This arises partly from the

neutron and proton number conservation. The A=2 and A=3 clusters are more symmetric

than the protons and neutrons. As such, if a large number of clusters are produced the

asymmetry of the rest of the system must increase in order to conserve mass and charge.

The double ratio shows a similar increase in effect as shown in Figure 4.19.

The single and double ratios vary with γ in a similar way to the simulations without

clusters. In simulations with a smaller γ which result in a stronger the symmetry energy,

the larger the n/p ratio for an asymmetric system. The free n/p double ratio even shows a

similar sensitivity to γ. The coalescence invariant model shows a decrease in sensitivity

below around E/A=30 MeV, but in general is similar in sensitivity at higher energy to

previous calculations as shown in Figure 4.20

Multiple sources have suggested that instead of simply looking at the n/p ratio which

is difficult to measure, the ratio of any two particles that are mirror nuclei and are a

beta decay separated from each other, can also be investigated, such as t/3He or 7Li/7Be.

The lithium and beryllium are outside the scope of this code, but the t/3He ratio is an

interesting option. One might expect that comparing measured and calculated t/3He

118



Figure 4.18: The single ratios from γ = 1 with and without cluster production as well as
the coalescence invariant model. 112Sn is on top with 124Sn on the bottom.
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Figure 4.19: The double ratios from γ = 1 with and without cluster production as well as
the coalescence invariant model.
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Figure 4.20: The double ratio as a function of γ in a cluster producing (top) and coalescence
invariant (bottom) model. The behavior of the coalescence invariant calculation is very
similar to that of the non cluster producing simulation.
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Figure 4.21: The dependence of the t/3He double ratio on γ. Due to the small range of
energies that this ratio is measured, it is difficult to get a large amount of statistics at above
45 AMeV.

ratios would explore some of the important questions of the clusters in simulations. One

such investigation is whether tritons behave as neutron-like particles and 3He as proton-

like particles. If so, this ratio should then be sensitive to the symmetry energy like the n/p

ratio is. Figure 4.21 shows the sensitivity to γ for the double t/3He ratios. At this point

in the investigation, we are statistically limited above 40 MeV, however have enough to

show that there is sensitivity to the symmetry energy. A more statistically significant

calculation is shown in Chapter 5 in order to compare to experimental data.
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4.6 Higher Energy Range

So far I have only shown simulations using collisions at 50 MeV/A. This energy provides

a range of densities in the subsaturation region. A brief study was also conducted to see

the effects of the symmetry energy on the single, double and independent particle ratios

at higher energies. This study consisted of simulations using the superstiff and supersoft

limits of γ =2 and 1/3, respectively, at the energies of 120 and 200 MeV/A. At these

energies we probe density regions around saturation density for the 120 MeV/Areaction

and at supersaturation density for the 200 MeV/Areaction.

Figure 4.22 shows a comparison of the n/p double ratios in cluster forming simulations

for the extrema of γ for the 50 and 120 MeV/Areactions. In the range around saturations

density, the variance in the strength of the symmetry energy from γ = 1/3 to γ = 2 is

much smaller than it is in subsaturation densities. As such, it might be expected that in

the 120 MeV/Areaction the n/p double ratio would have a reduced sensitivity to γ than in

the 50 MeV/A. Another effect that might be anticipated is that in the 120 MeV/Areactions,

the collision will take place much faster, allowing the mean field (and subsequently the

symmetry energy) less time to have an effect. This would lead to a double ratio closer to

the 1.19 N/Z limit of the system. Both of these effects are indeed observed in Figure 4.22.

As with the previous figure comparing 50 and 120 MeV/Areactions, Figure 4.23

compares 120 and 200 MeV/Areactions. In this case the n/p double ratio for the 200

MeV/Areaction is even closer to the nonsensitivity limit and shows less sensitivity to γ.

Upon close inspection it appears that the trend of a softer γ providing a larger double

ratio has flipped, which might be expected at supersaturation densities. In those regions

where ρ/ρ0 > 1, values of γ > 1 would lead to larger forces ejecting neutrons from the
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Figure 4.22: An example of the reduced sensitivity to both γ and the symmetry energy for
120 MeV/Areactions.
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Figure 4.23: An example of the reduced sensitivity to the symmetry energy in 200
MeV/Areactions and possible reversal of trend in sensitivity to γ.

system instead of values of γ < 1 as in subsaturation densities. It is difficult to say this

for certain as there is little sensitivity even at this energy. It is possible that a larger beam

energy would enhance this trend. On the other hand, it is probable that the shortened

interaction time at higher incident energies could be a more dominant effect and prevent

an increase in sensitivity to γ. All of these trends are reproduced in the t/3He double ratios

as displayed in Figure 4.24. The only possible exception to this is the reversal of trend in

the 200 MeV/Areaction between the two γ values, however they are nearly identical.

In general, one expects the role of clusters to decrease at higher energies. More

specifically, if heavier clusters can be neglected, the calculations for nucleons and A<3
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Figure 4.24: Comparison of the t/3He double ratios at three different beam energies.
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clusters should be more accurate. Consequently, the agreement between the neutron and

triton independent particle ratios may improve as the beam energy is increased. Similarly,

the agreement between the proton and 3He independent particle ratio may also improve.

Figure 4.25 displays these ratios for the 120 and 200 MeV/Areactions. In similar fashion

to the 50 MeV/Areactions, the neutron and triton ratios (and similarly the proton and 3He

ratios) do not agree at low emission energy but do at higher energies. The discrepancy

between the ratios at low energy does decrease as the beam energy is increased.

The intention behind this study was to see how different transport variables in pBUU

influence observables that are sensitive to the symmetry energy, primarily n/p and t/3He

double ratios. We find that many of the variables, such as in-medium cross section or

mean field compressibility have a smaller influence in the dynamics than the symmetry

energy does. In Chapter 5, I will make direct comparisons between experimental data

and specifically chosen simulated results. Details of those comparisons will be described

there.
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Figure 4.25: The independent particle ratios for 120 MeV/A(top) and 200 MeV/A(bottom)
reactions. As the beam energy increases the coalescence agreement improves, noticeable
at low energies.
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Chapter 5

Experimental Results

Once the calibration of the Miniball and LASSA were completed, a select few observables

were investigated. Before they could be investigated, several efficiency corrections must

be addressed. We will begin with a discussion of efficiency corrections needed for spectra

in the lab frame. There are several corrections that need to be made in order to produce

reasonable spectra. Since LASSA is arranged only in six telescopes and not covering the

full azimuthal range, a correction dubbed εgeo, or geometric efficiency, is generated to

compensate for the missing solid angle. This correction assumes azimuthally symmetric

emission around the beam axis. Since we do not determine the reaction plane for these

collisions, this is probably reasonable assumption. The next correction, the detector

efficiency or εdet, accounts for several additional effects that reduce the efficiency for the

measurement of particles that hit the LASSA detectors.
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5.1 Laboratory Frame

5.1.1 Azimuthal Efficiency Correction

In order to obtain a precise measurement of the effective multiplicity of charged particles

from the reaction, the azimuthal coverage efficiency of LASSA was calculated and the data

were corrected for the lack of azimuthal angular coverage in the lab frame. To calculate

the geometric efficiency, we decided to bin the data every 1/2 degree in the lab which is

on the same order as the size of one pixel. Each pixel has a solid angle of A/r2 where A is

the area of a pixel, 9 mm2, and r is the distance from the target to the center of that pixel.

This distance is measured to be around 21 cm for each pixel, for which this approximation

of the solid angle is valid. To obtain a corrected number of counts we create an efficiency

relative to full 2π coverage, εgeo(θ). For a given angular bin, the solid angle is summed

up for all pixels whose center is located in that angle bin. The formula for this is,

εgeo(θLab) =
∑

pixels

A
r22π sinθLab∆θLab

, (5.1)

where θLab is the central value of the half degree wide bin in the lab frame and ∆θLab is

8.73 mradians (0.5 degrees) for the width of the bin. The geometric efficiency as a function

of θLab can be found in figure 5.1.

Figure 5.2 shows the locations in θLab and φLab active pixels that contribute to the

geometric efficiency, in contrast with 2.5 which shows the optimum coverage if all strips

and crystals and their respective electronics were working properly. Several different

reasons arose for the removal of various pixels from the analysis. Certain strips of the
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Figure 5.1: A plot of the geometric efficiency as it varies with θLab
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Figure 5.2: A plot of the angular coverage for what has been determined to be the working
pixels in the experiment.

silicon had broken wirebonds inhibiting the ability to measure the energy of particles

that passed through that strip. Several crystals and sets of strips were removed because

they were partially or completely shadowed by either a Miniball element or an element

of the Forward Array. In addition, the two most forward crystals were bombarded at a

high enough rate that a particle identification technique was difficult to perform and since

these two crystals provided very little coverage for the data of interest they were ignored.

Finally, a small number of silicon preamplifiers stopped working part of the way through

the experiment and so they too were identified and removed for the entire experiment.

5.1.2 Detector Efficiency

There are three types of detector efficiency that needed to be taken into account. The

first of which is the multihit occupancy in the CsI crystals. This correction is required
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because the CsI crystals have a limited granularity, i.e. if there were smaller crystals, this

effect would be lessened. In general, it is only possible to properly identify particles when

there is exactly one real particle in a CsI crystal. Multiple hits in a crystal typically cause

the energy measured in the silicon or CsI to lie outside of a PID gate. This correction

estimates the fraction of particles that cannot be properly identified because of this effect.

Within general uncertainty, Poisson statistics imply that the probability for having exactly

k number of particles in a crystal during a typical event is

P(k) =
λke−λ

k!
, (5.2)

where λ is the average number of particles that hit that crystal per event. The hit fraction,

r, or fraction of events in which that crystal measured at least one particle, is given as

r = P(k ≥ 1) =

∞∑
k=1

λke−λ

k!
. (5.3)

Using the relationship P(k ≥ 0) = 1, one can quickly find that.

e−λ = 1 − r. (5.4)

Since λ is the average number of particles that should be detected in a given event and r

is the fraction of events in which at least one particle is measured, then the efficiency is

εCsI = P(k = 1)/λ = e−λ, which one can then derive that εCsI = 1 − r.

The hit rate r is calculated independently for each crystal and each data run. More

specifically, the hit rate is calculated for both central and peripheral collisions indepen-
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Figure 5.3: The fraction of events that a forward angle (red) and backward angle (black)
crystal was hit by at least one particle.

dently and it is assumed to be the same value for all isotopes. Figure 5.3 displays the hit

rate per event for a very forward (red) and very backward (black) crystal as a function of

run number. This plot displays the extreme values for this correction. The efficiency for a

given run would then be one minus the occupancy of that run.

There is another source of inefficiency in LASSA related to the effect of noise in the

silicon readout. In particular, it is essential to set the discriminator on the ASIC readout

to a low value in order to be able to trigger on energetic light particles. At such a low

value it is possible for digital noise to trigger the ASIC electronics. When this happens the

switch capacitor array stores the charge in the readout. If we don’t supply a trigger the
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charge is then cleared within about 2 µs. It is then possible that a later event comes along

before the charge is cleared. Instead of reading out the event, the stale data is read as if

it were part of the real event. Typically this does not occur often enough to be a problem

resulting in the silicon electronics having a nearly 100% efficiency of collecting charge

from the real signals instead of the stale data. In this particular experiment, however,

there was a higher level of noise with the higher energy beam, possibly due to the high

amount of particle bombardment into the detector. As a consequence, there was a slightly

lower efficiency than was expected. We know this loss of efficiency stems from noise that

is not correlated with an event. If a noise event occurs previous to when an actual event

occurs, the noise would have already opened the switched capacitor array and stored the

energy of the noise event instead of the real one. As seen in Figure 2.23, a 2 Hz pulser

was run as an alternate trigger. The size of this pulse was designed to correspond to a hit

well above the threshold of each channel. Every channel on the front and back of each

telescope was pulsed during this process. By comparing the amount of pulses detected

by each channel to the amount of pulses fired, we get an estimate of the efficiency of each

front and back strip, εf and εb respectively. Figure 5.4 displays four examples of this

efficiency. A front and back strip in telescope 5 (very forward angle) are shown in blue

and black respectively, and a front and back strip in telescope 0 (very backward angle) are

shown in green and red respectively. The back strips are generall quite efficient, however

the fronts become increasingly less efficient the more foward in lab angle. The back strips

are reasonably representative of the whole system. The front efficiencies in the figure

show the range of efficiencies in the system.

Since the pulser was not put in place until a short while into the experiment the
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Figure 5.4: Example efficiencies for sample silicon strips. A front and back strip in
telescope 5 (very forward angle) are shown in blue and black respectively, and a front and
back strip in telescope 0 (very backward angle) are shown in green and red respectively.
The back strips are generally quite efficient, however the fronts become increasingly less
efficient the more foward in lab angle.
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runs prior to run 281 cannot have efficiencies calculated this way. Since the efficiency

is generally consistent over the course of an entire energy and target combination, an

average efficiency for each strip was built using the runs from 281 to 300 and applied to

the previous runs.

In general, it is assumed that detected events come from the center of the target,

however, since the beam has a finite spread it is possible that events would take place

slightly off from center. As such, it is possible that particles that would be detected in the

center two strips (7 and 8) of either the front or back of the LASSA silicon might penetrate

into the neighboring CsI instead of the one directly behind it. Similarly particles that

hit in the edge strips (0 and 15) could hit the silicon and not hit a crystal. Neither of

these effects are very likely due to the telescopic nature of the CsI crystals, however, since

several of these strips are the only strip that cover a particular laboratory angle range, it

is important to quantify the efficiency loss. To visualize this, it is simple to look at how

the hits vary from strip to strip as in Figure 5.5. As seen with a linear fit line included,

strip 8 is underdetecting particles. To correct for this, the number of counts in that strip

is compared to the number of hits predicted by the fit line. The ratio of these two is

included as an efficiency correction for these strips. Strip 9 of this detector was a bad strip

as indicated by the lack of events.

Finally two corrections stemming from the course granularity of the telescopes are

used. The first is a subtraction for the ”blue haze”, or randoms that can be seen in

the PID spectrum in Figure 3.5. This blue background does have some slight energy

dependence, that is as the CsI energy increases, the background decreases. Because there

isn’t a significant number of statistics in order to do a fine energy dependent calculation in
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Figure 5.5: A plot showing the counts as a function of strip number in the front strips in
Telescope 5. A line has been fit to the points showing the slight lack of production in strip
8. Strip 9 of this detector was a bad strip as indicated by the lack of events.
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this treatment, we assume that the background is constant through the energy range from

the energy of punch through of one particle to the next. More specifically, an efficiency

reduction is created for the range of energies up to 150 MeV (protons), another from 150

to 195 MeV (deuterons), from 195 to 230 MeV (tritons) and a final for the high energy

heliums above 230 MeV. Each crystal is treated independently and Figure 5.6 shows an

example crystal at forward angles in a 50 MeV/Areaction for energies below 150 MeV. In

this figure, we fit a flat background in the region that is known to be completely free from

true charged particle lines. This fit is given by the red line. We then use this value to

create an correction factor for the random background, Cblue using the formula,

Cblue =
counts − background

counts
. (5.5)

The peaks in the figure reasonably correspond to the gates for different isotopes. The

general contribution from this effect is less than 5%.

The final correction to laboratory spectra that must be made is a punch through cor-

rection. Particles that are energetic enough to punch through the CsI crystal will leave a

distinctive ∆E-E signature. The particles will leave less energy in both the CsI and silicon

than if it had stopped. This causes an extra line that, in the case of tritons, crosses the

deuteron and proton lines, incorrectly increasing those particle multiplicities.

In order to compensate for this, a Monte Carlo simulation was written using data from

LISE++ for each of the hydrogen isotopes. Helium isotopes do not reach high enough

velocity to noticeably create a contamination in this experiment. The simulation assumes

center of mass kinetic energy spectra similar to that of experimental data and calculates

many events for a finely binned range of energies larger than that typically measured. In
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Figure 5.6: (top) The counts as a function of PID value for a 50 MeV/Areaction from a
forward crystal. (bottom) For the same crystal, the ratio of real events to total events as a
function of PID value providing the background correction factor.

140



each event the particle is assigned a random vector in the center of mass and is transformed

back to the lab coordinate frame. If the lab vector corresponds to the lab angular region

covered in our experiment the energy is then compared to the LISE energy deposition

calculation for both the silicon and CsI. The silicon energy value is also given a randomly

assigned Gaussian weighted variation to simulate the experimental resolution.

Since the simulation knows the lab energy of the particle, we fill two different plots of

silicon energy versus CsI energy. If the particle is stopped by the CsI it fills the ”under”

plot and if not, it fills the ”over” plot. We can then compare the number of particles in the

two regions and create an estimate of the amount of stopped particles to total particles for

a given silicon and CsI energy value using the equation,

Cpunch =
under

over + under
, (5.6)

where Cpunch is the correction factor that would be used to subtract events from the spectra.

When referencing this equation for use with the data, we need to use the corrected CsI

energy from 3.1.3 since the simulation does not have those ionization effects included.

We create an independent Cpunch every five degrees in the lab in an attempt to follow

the lab distribution trends. Figures 5.7 and 5.8 show the three plots used for the most

forward laboratory angles. The top plot in the first Figure shows the ∆E-E curves for

particles that are stopped by the CsI, with those that are not stopped by the CsI on the

bottom. Figure 5.8 shows the ratio of stopped particles over total particles for those silicon

and CsI energies.

As would be expected, the more forward angles in the lab have a higher concentration

of particles that are not stopped by the crystals. It is particularly difficult to simulate all of
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Figure 5.7: LISE simulation of the spectra that create the punch through correction factor.
These plots represent the most forward angles in the lab frame. The top plot represents
stopped simulated spectra. The bottom are spectra of particles that punch through the
CsI.
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Figure 5.8: The correction factor due to the particles that punch through the CsI for a given
pair of silicon and CsI energies.
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the effects that go on in the ∆E-E curves, particularly the threshold effects and consistent

resolution. This correction is one of the largest sources of systematic uncertainty in the

whole analysis. Systematic errors will be discussed later this chapter. Figure 5.9 shows

an example of the effect of the punch through correction for the 112Sn system in the 120

MeV/Acollision at forward angles. The top part of the figure shows original uncorrected

∆E-E curves, with the bottom showing the corrected spectra. The dominant noticeable

feature of this correction factor in the figures is the removal of the strong punch through

line to the lower left of the proton line. Also, the continuation of this line between the

protons and deuterons is reduced. There is an effect that the simulation does not correct

for which is the increased spread across the silicon energy as the particles near the punch

through point. This results in a small contamination of protons in the deuteron gate and

an even smaller contamination of deuterons into the triton gate.

Lastly, due to the extreme forward angles of several of the detectors, Poisson statistics

were insufficient to compensate for the inefficiency in the pixelation routine. Hydrogen

isotopes, and in particular protons, were affected a great deal by multiple hits. As de-

scribed in Chapter 3, the routine requires that each front strip has only one possible back

strip that has a comparable energy. However, due to the behavior of the energy deposition

and the physical resolution of the detector, two high energy particles (primarily protons)

can deposit an energy within the tolerance of each other despite a significant difference in

kinetic energy. If we were to take all possible combinations with comparable energy we

would add 5-10% more pixels in the 50 MeV/Areactions varying over the angles covered in

the lab, which at backward angles is reasonably comparable to the multi hit correction. In

120 MeV/Areactions, this effect can add between 10% and 35% more pixels. At backward
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Figure 5.9: The effect of the punch through correction on data from the 120 MeV/Areactions
on the 112Sn system.
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angles the Poisson statistics are still comparable to those of our multihit correction. At

forward angles the effects are much larger than that predicted by the CsI multiple hit

efficiency correction. The multiple hit correction assumes that double hits end up outside

the particle identification gates for legitimate particles. With the extra number of matched

pixels we need to evaluate whether we are correctly measuring the number of particles, if

we are overcorrecting or if we are throwing away too many legitimate particles. If there

were a defect in the process we would expect that a correction would be similar for all

particles.

In an attempt to check the accuracy of the pixelation routine at forward angles, we

visually investigated the two dimensional plots of transverse momentum versus center

of mass rapidity, yr, where the rapidity is defined as,

y =
1
2

log
E + pzc
E − pzc

, (5.7)

and the transverse momentum is given by,

Pt = PC.M. sinθC.M.. (5.8)

Figure 5.10 shows an example of these plots. All plots in this figure represent protons

from the 112Sn reaction at 50 MeV/A. These plots include all corrections discussed through

this point The bottom plot has interpolated the gaps where the is no coverage at that lab

angle. The top plot in Figure 5.11 is a reflected and averaged version of the bottom plot

in Figure 5.10. The bottom of Figure 5.11 shows the same data without a correction of

15% to increase the data in the most forward 2 crystals. Under the assumption that the
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backwards crystals have a correct production (which is very likely because of the low

multiple hit probability), we chose to increase the production for these crystals for all five

isotopes reflecting the problem of correctly determining the proper number of pixels in

this detector. In the 120 MeV/Areaction it was rather difficult to create a compensation

for this effect and so we omitted the most forward three crystals for those energies. Since

these crystals only contributed at low energy in the center of mass this is an acceptable

loss of data. The top plots in this figure represent pure data, with the middle plots being

the same with an interpolation routine used to fill the gaps. The solid black lines represent

lines of constant center of mass angle and energy. For reference, the final Pt versus rapidity

distributions can be found for all particles and both energies from the 112Sn collisions in

Figures 5.12 (protons), 5.13 (deuterons), 5.14 (tritons), 5.15 (3He) and 5.16 (alphas).

5.1.3 Laboratory Spectra

Laboratory spectra have a number of uses, primarily as cross checks. In some very mass-

asymmetric cases it can be useful to investigate spectra in the lab frame however, here

the symmetric nature of this experiment allows for more natural comparison of spectra

in the center of mass frame. Nonetheless, lab spectra are pivotal in confirming efficiency

corrections and investigating trends. Figure 5.17 shows the lab protons in the 50 (top)

and 120 (bottom) MeV/Areactions from 112Sn+112Sn. These plots are pure spectra with

all the corrections made in the lab. Figure 5.18 shows the same data with the different

angular regions scaled to separate them out.

If all corrections to the spectra are accurate and the angle bins evenly spaced one would

expect to see a similar difference from angle to angle at high energy. The angle ranges
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Figure 5.10: Pt versus rapidity plots for protons from the 112Sn reactions at 50 MeV/A.
The top plot is data with all lab corrections. The bottom row has interpolated the gaps in
the coverage.
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Figure 5.11: Pt versus rapidity plots for protons from the 112Sn reactions at 50 MeV/A.
The bottom plot is data before the 15% increase to the forward crystals while the top plot
includes the scaling.

149



Figure 5.12: Final Pt versus rapidity plots for protons from 112Sn at 50 (top) and 120
(bottom) MeV/Areactions.
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Figure 5.13: Final Pt versus rapidity plots for deuterons from 112Sn at 50 (top) and 120
(bottom) MeV/Areactions.
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Figure 5.14: Final Pt versus rapidity plots for tritons from 112Sn at 50 (top) and 120 (bottom)
MeV/Areactions.
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Figure 5.15: Final Pt versus rapidity plots for 3He from 112Sn at 50 (top) and 120 (bottom)
MeV/Areactions.
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Figure 5.16: Final Pt versus rapidity plots for alphas from 112Sn at 50 (top) and 120 (bottom)
MeV/Areactions.
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Figure 5.17: Lab spectra for protons from 112Sn+112Sn at 50 (top) and 120 (bottom) MeV/A.
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Figure 5.18: Lab spectra for protons from 112Sn+112Sn at 50 (top) and 120 (bottom) MeV/A.
The different angular regions have been scaled to separate them out.
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in the lab were chosen to avoid gaps in the coverage and maximize statistics in each

bin. While the angles are not evenly spaced the trend of the data reasonably reproduces

expectation. In the 120 MeV/Areaction, the expectation of a more isotropic set of spectra

is reproduced until the most backward angles. Figures 5.19 (deuterons), 5.20 (tritons),

5.21 (3He) and 5.22 (alphas) show unseparated data for the other measured particles for

50 MeV/Aon the top and 120 MeV/Aon the bottom. Only data from the 112Sn reactions are

shown. The 124Sn systems are quite similar.

5.2 Center of Mass Frame

In the conversion from the laboratory frame to center of mass frame, several binning

effects must be accounted for. In the case of infinitely fine binning, one lab energy and

angle bin would correspond to one center of mass lab and angle bin. Since this can also

cause statistical inconsistencies a certain bin width is chosen which means that multiple

lab bins can contribute to the same center of mass bin. As will be shown later, the region

from 70 ≤ θ ≤ 110 in the center of mass is rather isotropic. We decided in our analysis

approach to assign each center of mass bin the same weight. This allows for an easier

evaluation of data near the edges of the detectors. An efficiency, εEdge, for bins near the

edge of the covered regions was created to address the fact that the edges of the detectors

do not correspond to a fixed center of mass scattering angle. Similarly, at many center

of mass energies we do not cover the full angular range from 70 ≤ θ ≤ 110. In order

to correct for this, a coverage correction, εCov is created to compensate for this lack of

coverage.
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Figure 5.19: The lab angular distributions for deuterons. Data from 50 MeV/Ais on the
top and 120 MeV/Aon the bottom. The different points represent the same angles as those
in Figure 5.17.
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Figure 5.20: The lab angular distributions for tritons. Data from 50 MeV/Ais on the top
and 120 MeV/Aon the bottom. The different points represent the same angles as those in
Figure 5.17.
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Figure 5.21: The lab angular distributions for 3He. Data from 50 MeV/Ais on the top and
120 MeV/Aon the bottom. The different points represent the same angles as those in Figure
5.17.
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Figure 5.22: The lab angular distributions for alphas. Data from 50 MeV/Ais on the top
and 120 MeV/Aon the bottom. The different points represent the same angles as those in
Figure 5.17.
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5.2.1 Edge Efficiency Correction

Due to the unfortunate issue with having gaps in the coverage in LASSA there are effects

that need to be considered in the conversion from lab to center of mass angles and energy.

Initially, every particle that is detected in LASSA is assigned a vector in the lab that points

from the center of the target to the center of the pixel it was detected by. Of course this

does not correspond to what would be the true distribution of particles. To account for a

more true distribution, the vector is adjusted to maintain the same lab φ but be randomly

distributed across the half degree θ bin that it lies in.

While this compensates for discrete effects, it does not fix the problem with edge effects.

As the conversion from lab to center of mass vector occurs, bins in a plot of center of mass

angle versus center of mass energy near these gaps in coverage are only partially filled

compared to what would occur if there were no gap. Since the center of mass angle is

important to constructing spectra it is important to compensate for this loss. In order

to compensate for this a Monte Carlo simulation was completed for each isotope that

is detected in LASSA. The simulation assigns 100 million particles a random lab vector

varying θ from 15 to 60 degrees and φ from -50 to 50 degrees, which represents a physical

space similar to that of our real system. The particles were then randomly given a lab

energy in a range that was based on a threshold and maximum detectable energy specific

to each isotope. For protons this energy range was from 15 to 130 MeV, the upper limit

chosen to avoid contamination from deuterons and tritons that punch through the CsI.

Figure 5.23 shows the coverage for θ and energy in the center of mass for protons in the

Monte Carlo simulation on top. The plot on the bottom shows the same simulation that

is selected only on particles that have a nonzero value for the geometric effeciency from
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above, i.e. particles that are designated good data. The top of Figure 5.24 shows the ratio

of the two. As expected, bins in the region where there is full coverage have an efficiency

of exactly one and then it falls off as it nears the edge. The bottom plot of that Figure

zooms in to better view the effects at the edge.

This process is necessary for each isotope, and to have it match experimental binning

and energy ranges. Only data bins that have an edge efficiency of at least 30% are

considered.

5.2.2 Coverage Correction

The last correction that must be made in the center of mass is to account for the lack of full

solid angle coverage from 70 to 110 degrees. This correction assumes that the spectra in

this region are reasonably isotropic. This was suggested to be true by pBUU simulations

in Figure 4.8 and was experimentally confirmed. Since the experimentally binned data

is sparsely filled at high energies, we use the Monte Carlo simulations from the edge

efficiency calculation in the previous section to calculate the coverage correction. The

calculation loops through all θ bins for a given energy and compares the solid angle for all

bins with an edge efficiency of at least 30% to the full solid angle from 70 to 110 degrees.

The formula for the coverage correction simplifies to,

εcov(E) =

∑
θ(εedge≥0.3)

sin(θ)

∑
θ

sin(θ)
, (5.9)

where the summation is over the theta bins for a given energy. Figure 5.25 shows the

correction for protons for the 50 MeV/Areaction as a function of energy as an example.
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Figure 5.23: The plot on the top shows an example of the coverage in the center of mass
from a monte carlo simulation for protons from a 50 MeV reaction. The bottom plot is the
same with a geometric filter accounting only for θ coverage in the lab.
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Figure 5.24: The top plot shows the ratio of the two plots of Figure 5.23 providing an edge
efficiency correction for each bin. The bottom zooms in on a small region to better see the
effects at the edge.
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Figure 5.25: The correction for protons in a 50 MeV reaction for the lack of solid angle
coverage in the center of mass.

Only data that has a coverage ratio of at least 3% is considered for final spectra.

5.2.3 Effects of Efficiency Corrections

Each efficiency correction has varying strengths of contribution. The lab azimuthal cor-

rection for example has the largest effect, roughly an order of magnitude, for the whole

energy spectrum. Others such as the edge correction are much smaller, in this case a 1%

correction. Figure 5.26 shows the effect that each correction has compared to the raw

spectrum. Each of the nine plots in the figure represent the ratio of corrected data to

raw data in the center of mass for protons from the 50 MeV/Acentral reactions gated in
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the midrapidity region. Corrections for 112Sn are in black and 124Sn are in red. Moving

from left to right across the top row, the plots are, (a) the ratio of fully corrected data to

raw data, (b) the ratio of the azimuthal corrected data to the raw data and lastly, (c) the

ratio of the silicon corrected data to the raw data. The middle row shows (d) the ratio

of data corrected for double hits in the CsI, (e) the ratio of edge corrected data to raw

data and finally (f) the data correceted for center of mass coverage over the raw data.

The bottom row shows the effects of (g) the blue background correction, (h) the punch

through correction and (i) the correction for inefficiency in the pixelation routine. Figure

5.27 shows the same set of corrections to the data for the 120 MeV/Acentral reactions.
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Figure 5.26: The effect of different efficiency corrections on protons in the 50 MeV/Areactions. Corrections for 112Sn are in
black and 124Sn are in red. The corrections in order from left to right and then top to bottom are: (a) All corrections, (b) lab
azimuthal, (c) silicon, (d) CsI, (e) edge, (f) center of mass coverage, (g) blue background, (h) punch through, and finally (i)
pixelation routine inefficiency.
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Figure 5.27: The effect of different efficiency corrections on protons in the 120 MeV/Areactions. Corrections for 112Sn are in
black and 124Sn are in red. The corrections in order from left to right and then top to bottom are: (a) All corrections, (b) lab
azimuthal, (c) silicon, (d) CsI, (e) edge, (f) center of mass coverage, (g) blue background, (h) punch through, and finally (i)
pixelation routine inefficiency.
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Correction Predicted Systematic Uncertainty
Azimuthal 0.1%
Silicon 2%
CsI 0.5%
Edge 1%
Coverage 1%
Blue Background 2%
Punchthrough 15%
Pixelation Routine 10%

Table 5.1: Prediction for the systematic uncertainty stemming from each efficiency correc-
tion.

These represent the best estimation for these efficiencies and corrections. Table 5.1

shows an estimation of the uncertainties in these corrections. For instance, the locations of

the pixels in comparison to the target were measured through a very precise method and so

we believe that the azimuthal correction is accurate to within 0.1% of the displayed value.

On the other hand, the correction for punch through have several avenues for discrepancy

from the real data and so we believe that the correction is reasonable to within about 15%.

We develop our systematic uncertainty in two ways. The worst case scenario is if all

the corrections are correlated, which we do not inherently believe. Only the edge and

center of mass corrections have a correlation. In order to develop a worst case systematic

uncertainty for the spectra, we adjust all of the corrections in a direction to increase the

value of the spectra. We also assume that the systematic uncertainty is symmetric. The

more realistic situation is when the systematic uncertainties are uncorrelated which is

where they are all added in quadrature. The magnitude of the systematic uncertainty will

be shown later this chapter.
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5.2.4 Center of Mass Spectra

Like the lab spectra, center of mass data is selected through the process of pixelation, all

of the efficiency corrections, impact parameter cuts and the selection of particles that are

emitted in the 70 to 110 degree range in the center of mass. Shown in Figures 5.28, 5.29,

5.30 and 5.31 are the spectra for each of the isotopes detected for hydrogen and helium in

LASSA for the four target and energy combinations. The spectra in each of these plots is

built the following way:

dM
dEdΩ

=
N(C/ε)

∆E
∫ 110
70 2π sinθdθ

. (5.10)

Here ∆E is the width of the energy bins. This differential multiplicity is calculated event by

event taking into account the efficiency, ε, and correction factor, C, that is unique to each

particle in consideration. This efficiency is the product of all efficiencies discussed thus

far. Similarly the correction factor is the product of all the correction factors previously

discussed.

Figure 5.32 shows the evidence of the symmetry energy’s effect on these collisions. In

the top plot, only symmetric deuteron and alpha spectra are shown from the 112Sn and

124Sn reactions at 50 MeV/A. Since these particles are symmetric, the symmetry energy

should have little effect, which is indeed the case with these particles. The bottom plot,

however, shows protons, tritons and 3He which are asymmetric. If the symmetry energy

has an effect, we would expect the neutron rich tritons to have boosted production in

the 124Sn reaction and the neutron deficient protons and 3He to have reduced production

in the same reaction. Both of these expectations are confirmed in this data. In the 120

MeV/Areaction, these effects are smaller but still visible as seen Figure 5.33.
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Figure 5.28: The spectra for the hydrogen isotopes measured in LASSA for the 50
MeV/Areactions. The top plots are from the 112Sn reaction and the bottom are from
the 124Sn reaction.
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Figure 5.29: The spectra for the helium isotopes measured in LASSA for the 50
MeV/Areactions. The top plots are from the 112Sn reaction and the bottom are from
the 124Sn reaction.
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Figure 5.30: The spectra for the hydrogen isotopes measured in LASSA for the 120
MeV/Areactions. The top plots are from the 112Sn reaction and the bottom are from
the 124Sn reaction.
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Figure 5.31: The spectra for the helium isotopes measured in LASSA for the 120
MeV/Areactions. The top plots are from the 112Sn reaction and the bottom are from
the 124Sn reaction.
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Figure 5.32: Spectra from 50 MeV/Areactions comparing the yields of symmetric (top) and
asymmetric (bottom) particles.
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Figure 5.33: Spectra from 120 MeV/Areactions comparing the yields of symmetric (top)
and asymmetric (bottom) particles.
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As mentioned previously the systematic uncertainties are generally on the same order

or less than the statistical uncertainties. Figure 5.34 shows the comparison between

correlated (worst case scenario) and uncorrelated systematic uncertainty and statistical

uncertainty. The figure shows the low energy (top) and high energy (bottom) range of

protons from 50 MeV/A.

The coverage correction discussed earlier this section makes the assumption that the

distribution of particles between 70 and 110 degrees in the center of mass is isotropic. In

order to confirm this, we built different spectra for different angular regions, specifically

five degree wide bins centered on 90 degrees and moving outward in both directions.

Figure 5.35 shows this angular distribution for protons from the 112Sn reactions at both

energies. In this plot the solid black circles represent the 90 ± 2.5 degree region. The

solid red squares represent the next five degree bin on either side of 90. For each step

backward(forward) in angle, the spectra was scaled up(down) by an additional factor

of two. The black line represents the data from the whole 70 ≤ θ ≤ 110 degree region.

Evidenced primarily by the forward regions, since the backward has little coverage, it

is easily seen that most spectra out through at least 70 degrees lines up almost exactly

with the lines near 90. The only discrepancies occur at forward angles and high energies.

If there was contribution from other sources, or a lack of isotropy in general, we would

expect deviation from the black line for any of these regions. Farther away from 90

degrees, we do indeed see an increase in production as would be expected especially in

the tritons and heliums. In the 120 MeV/Areactions we see a slight underproduction at

the most forward angles in comparison to the average. In general the contribution from

these regions is statistically small compared to the angular range of interest. This effect
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Figure 5.34: The comparison of statistical uncertainty to correlated and uncorrelated
uncertainties. The top plot zooms in on spectra from Figure 5.28 for low energy protons
in the 124Sn reaction at 50 MeV/A. The bottom plot shows the high energy protons from
the same reaction
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may be caused by a lack of significant coverage in this angular region.

The full set of data for the 112Sn for all particles and both energies can be found in

Figures 5.36, 5.37, 5.38 and 5.39.

5.3 Coalescence

The idea of coalescence was initially brought up in Chapter 4. The coalescence model

is a theory extensively studied in the past to describe the spectra of clusters of particles

from those of neutrons and protons [43–55]. This model assumes that clusterization is

a comparatively gentle process that occurs during the expansion stage of the reaction.

It involves nucleons moving at nearly the same velocity and occupy the same volume.

Collisions between the nucleons in the final cluster and nucleons outside the cluster

nudge the particles into the same phase space to create the final cluster. These clusters

can be anything from deuterons or tritons up through alphas or even larger clusters.

Experimentally, we don’t know the coordinate space density in the fragment production.

Instead we can investigate the momentum space density. In this approximation the energy

distribution of particles with N neutrons and Z protons can be described by a simple phase

space volume. An experimental formula to describe this has been provided by Awes et.

al. in Ref. [47] and has the form,

γ
d3M(Z,N)

dk3 =
2s + 1

2A
1

N!Z!

(4π
3

P3
0

)A−1
(5.11)

×

(
γ

d3M(1, 0)
dk3

)Z(
γ

d3M(0, 1)
dk3

)N
,
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Figure 5.35: Angular distribution of protons from 112Sn at 50 (top) and 120 (bottom)
MeV/A. The solid black circles represent the 90 ± 2.5 degree region. Each step up(down)
represents moving 5 degree backward(forward) in angle. The 90 degree region has not
been scaled while each step away is scaled by an additional factor of two.
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Figure 5.36: Angular distribution of deuterons (top) and tritons (bottom) from 112Sn at 50
MeV/A. The solid black circles represent the 90 ± 2.5 degree region. Each step up(down)
represents moving 5 degree backward(forward) in angle and is scaled up(down) by a
factor of 2 for each step.
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Figure 5.37: Angular distribution of deuterons (top) and tritons (bottom) from 112Sn at 120
MeV/A. The solid black circles represent the 90 ± 2.5 degree region. Each step up(down)
represents moving 5 degree backward(forward) in angle and is scaled up(down) by a
factor of 2 for each step.
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Figure 5.38: Angular distribution of 3He (top) and 4He (bottom) from 112Sn at 50 MeV/A.
The solid black circles represent the 90±2.5 degree region. Each step up(down) represents
moving 5 degree backward(forward) in angle and is scaled up(down) by a factor of 2 for
each step.

184



Figure 5.39: Angular distribution of 3He (top) and 4He (bottom) from 112Sn at 50 MeV/A.
The solid black circles represent the 90±2.5 degree region. Each step up(down) represents
moving 5 degree backward(forward) in angle and is scaled up(down) by a factor of 2 for
each step.
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where all k are given by the momentum per nucleon of the particles. There is only one

parameter in this equation that can change the resulting spectra, P3
0. All other quantities

are fixed by the either the cluster of choice or the spectra of protons or neutrons. In

theory, the volume 4πP3
0/3 represents the momentum space available for Z protons and

N neutrons to create a cluster. However, the lack of relevant information about the

configuration space volume of the cluster in this equation means that P3
0 will also reflect

the configuration space volume as well as the variation of the nucleon density within

that configuration space volume which can be a function of the final cluster energy. In

the seminal model of Butler and Pearson [56], the radius relevant to cluster formation is

sensitive to the size of the final cluster and the range of the nucleon-nucleon force.

Instead of overtly interpretting the coalescence radius, we simply choose to measure

it experimentally. This experiment actually has an added benefit of having measured free

neutron spectra, where previous studies into this process did not. Instead, the previous

studies chose to simulate neutron spectra by using Coulomb corrected proton spectra that

were scaled by the neutron to proton ratio of the system, (Nt + Np)/(Zt + Zp). We can test

the accuracy of this method and investigate its validity.

Because we have already built our spectra in terms of center of mass kinetic energy we

can transform Equation 5.11 to,

dMc
dΩd(E/A)

=
2sc + 1
Nc!Zc!

√
2m3

c E
(4πP3

0
3

)X−1 X∏
i=1

Ni!Zi!
2si + 1

1√
2m3

i E

dMi
dΩd(E/A)

, (5.12)

where all dM/dΩd(E/A) have been Coulomb corrected by 10 MeV for each Z of the particle.

The model assumes that a neutron and a proton moving at the same velocity can be

approximated as a deuteron within a factor. Experimentally, the protons would have
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extra energy due to the Coulomb boost from the barrier to the detector. This 10 MeV

correction was chosen to be consistent with previous measurements on systems with

similar total charge. In this equation, c represents the cluster being formed, s is the spin

of the particle and E is still the energy per nucleon. There are several approaches to using

Equation 5.12. One, used in [47], is to find a ”best” value that describes the entire spectra

of that cluster. Another is to adjust P0 for each energy in order to exactly replicate the

spectra of the cluster. As a first step, we adopt the latter approach to find P0 or more

specifically, log P0. Figure 5.40 shows the calculated value of log P0 as a function of center

of mass energy per nucleon from the constituent protons and neutrons.

It is immediately obvious that there is indeed a strong energy dependence to the

calculated P0, however the spectra does seem to plateau at high energies. In addition we

see that P0 is dependent on the particle type. This figure showed the clusters if they were

made from neutrons and protons. If we instead use the method of previous investigations

and use scaled protons instead of neutrons we get the difference displayed in Figures 5.41

for hydrogen isotopes and 5.42 for helium isotopes.

While it is reasonable to assume a method such as scaling the proton spectra to replace

the missing neutron spectra, this method shows that it is incomplete for asymmetric nuclei

due to the symmetry energy. The 112Sn system shows moderate agreement for P0 as a

function of energy if only at high energies, but the 124Sn system shows vastly different

results. It has been shown previously that coalescence models actually behave better at

high energies. It is interesting to show that the while there is indeed better agreement

in the 120 MeV/Asystem for P0, the scaled proton method is still unable to reproduce the

results using the actual neutron spectra as seen in Figures 5.43 for hydrogen isotopes and
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Figure 5.40: The dependence of log P0 on energy for different light clusters in the 112Sn
(top) and 124Sn (bottom) systems at 50 MeV/A.
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Figure 5.41: Creating hydrogen isotopes from neutrons and protons as given by the solid
points. The open points are taken from protons and scaled protons as would have been
performed in the past. 112Sn is provided on top and 124Sn on the bottom.
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Figure 5.42: Creating helium isotopes from neutrons and protons as given by the solid
points. The open points are taken from protons and scaled protons as would have been
performed in the past. 112Sn is provided on top and 124Sn on the bottom.
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5.44 for helium isotopes.

It is curious that the spectra of free particles were chosen to create the spectra of

clusters. In principle, free protons and neutrons do not partake in coalescence and so a

more accurate representation might to be use the coalescent invariant proton and neutron

spectra. We build these spectra using the formula,

dMcip

d(E/A)dΩ
=

∑
i

dMi
d(E/A)dΩ

× Zi, (5.13)

for protons. Neutrons use the same equation replacing Ni for Zi. By using these spectra,

we are able to achieve much better agreement between the true method and scaled proton

method as shown in Figures 5.45 for hydrogen isotopes and 5.46 for helium isotopes.

In principle since we have the coalescence radius and we have high energy protons

and neutrons, we should be able to fit the energy dependence and extrapolate the triton

spectra to higher energies. This is useful since we are only able to measure tritons to about

45 MeV/Adue to the punch through point in the CsI crystals and we can measure 3He to

much higher energies, especially in the 120 MeV/Areaction. In order to stay consistent,

we use the P0 from using free particles. Since the spectra flatten out we use a linear fit in

the high energy regions. The fit and extended spectra can be found in Figure 5.47 for the

50 MeV/Areaction.

This dissertation will limit its treatment of this coalescence model to extend the spectra

of tritons to higher energies in order to widen the range of comparison of tritons to 3He.

191



Figure 5.43: Creating coalescence radius for hydrogen isotopes in 120 MeV/Areactions.
112Sn is provided on top and 124Sn on the bottom.
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Figure 5.44: Creating coalescence radius for helium isotopes in 120 MeV/Areactions. 112Sn
is provided on top and 124Sn on the bottom.
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Figure 5.45: The coalescence radius for hydrogen isotopes in 50 MeV/A(top) and 120
MeV/A(bottom) for the 124Sn system. The 112Sn system shows a very similar trend with
slightly better agreement.
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Figure 5.46: The coalescence radius for helium isotopes in 50 MeV/A(top) and 120
MeV/A(bottom) for the 124Sn system. The 112Sn system shows a very similar trend with
slightly better agreement.
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Figure 5.47: (Top) The 3 log P0 for 112Sn tritons. (Bottom) The extended triton spectra
using the high energy neutrons and protons.
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5.4 Independent Particle Ratios

Now we want to look at the dependence of the emission of various members of isospin

multiplets with regard to the asymmetry of the system. We start by looking at the

independent particle ratios similar to what was done in Chapter 4. Figure 5.48 shows

the independent particle ratios, i.e. Y124(X)/Y112(X) where X is a given isotope, for both

energies. Details of the neutron analysis can be found in [1].

Several trends arise in this figure. Firstly, the symmetric deuteron and alpha particles

show almost identical spectra between the two systems, i.e. their particle ratio is one. This

may be expected since these particles would be unaffected by the symmetry energy. At

high energies these ratios increase slightly, which may be due to the larger neutron number

in the 124Sn system and the fact that neutron emission removes excitation energy from the

system and has been known to effect the spectra of charged fragments. We find that the

proton and 3He ratios are nearly identical. This seems to coincide with the prediction that

the 3He behaves similar to a proton reflecting that difference in the chemical potential of

3He between the two systems is equal to that of protons. In the coalescence model from

Section 5.3, this ratio would have been predicted to be,

3He124
3He112

=
n124
n112

p124
p112

p124
p112

=
d124
d112

p124
p112

=
p124
p112

, (5.14)

assuming that the deuteron ratio was 1. The triton ratio is similar, though not equal, to

that of the neutrons at either energy. The discrepancy is on the order of 15% which is

comparable to the present uncertainties in the neutron efficiency. The fact that the triton

and neutron (as well as 3He and proton) ratios agree over the full energy range while the
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Figure 5.48: The independent particle ratios for 50 (top) and 120 (bottom) MeV/Afor impact
parameters less than 3 fm.
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simulated results from Chapter 4 disagree at low energies is rather interesting. It appears

that the chemical potentials of those particles not represented as equally in the theoretical

prediction as they are in experiment.

The nearly identical values over the entire energy spectrum of the independent particle

ratios for protons and 3He as well as neutrons and tritons was not observed in the pBUU

calculations in Chapter 4. Only at high energies did these ratios agree.

5.5 Spectral Ratios of Mirror Nuclei

Investigating ratios across systems provides some information about the symmetry energy

but more sensitivity can be obtained from the ratios and yields involving the particles that

have t3 , 0 and are more strongly sensitive to the symmetry energy. For example, the

neutron to proton ratios have such sensitivity and were studied in [1]. Here, we will

examine complementary information from charged particle ratios. Information that is

very complementary to the n/p ratios can be obtained by constructing ratios of the spectra

of neutron-like tritons and proton-like 3He. These t/3He spectra can be seen in Figure 5.49

for both beam and energy combinations.

Instead of creating ratios of spectra for one particle type measured in two different

systems, we examine the ratio of triton to 3He yields in the same system. Figure 5.50

shows the t/3He ratios for both the 112Sn and 112Sn systems for both beam energies. The

top plot in the figure shows the ratios for these two systems at particle energies where

we have measured tritons and heliums. Later we will construct coalescence invariant

neutron to proton ratios. There we would like to explore the effect of extending the triton

spectra to higher energy. For this purpose, we have used the asymptotic behavior of the
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Figure 5.49: First step spectra for building the t/3He ratios. 50 MeV/Areaction data is on top
and 120 MeV/Adata on the bottom. Included in the 120 MeV/Aspectra are extrapolations
using the coalescence model up through the region where there is reasonable 3He as well.
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coalescence radius to extend the tritons to energies comparable to the measured 3He using

the process described in Section 5.3. The bottom plot shows the ratios where we have

extrapolated the tritons to higher energies.

As we discussed in the efficiency section, different particles have different efficiency

corrections, primarily due to the influence of punch throughs, and from some effects that

vary from system to system such as the ”blue haze” correction or the silicon and CsI

corrections. We find that magnitude of these effects are still quite similar between the

two systems at the same energy. In this case, constructing double ratios ensures that the

associated systematic corrections in these effects largely divide out in the ratio and its

associated uncertainty is reduced. The t/3He double ratio is shown in Figure 5.51. The

top panel shows the ratios constructed from the measured tritons and heliums while the

bottom plot shows the ratios with extrapolated tritons. At first glance we can see that

the trend between the two systems is relatively similar to that between the neutrons and

protons in [1]. Later in this chapter we will compare both these ratios to simulation from

Chapter 4. In similar fashion to the results from pBUU and the n/p ratios the data from

the 120 MeV/Asystem is lower in value, suggesting less of an effect from the symmetry

energy than the 50 MeV/Areaction.

5.6 Effects of Impact Parameter Determination

All the results displayed so far have used events with an impact parameter of b<3 fm where

the determination was selected using multiplicity in the Miniball. This was chosen to keep

the protons consistent with those used in [1] for n/p ratios. We would like to test the effect

of determining the impact parameter through transverse energy in the Miniball instead
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Figure 5.50: The single t/3He ratios for all four systems and energies. The top plot shows
only measured tritons, whereas the bottom plot includes extrapolated tritons using a
constant value for the coalescence radius at high energies as described in Section 5.3
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Figure 5.51: The double t/3He ratios for both energies. The top plot includes only measured
tritons, whereas the bottom plot includes extrapolated tritons using the coalescence model.
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of multiplicity. The transverse energy determination allows us to more finely select the

impact parameter. To make sure that we compare the same region, we select the minimum

transverse energy to coincide with the same b̂ as with charged particle multiplicity. As

an added comparison, we also include data that are deemed central by both multiplicity

and transverse energy. In this section we will investigate the differences between the

spectra of both central and mid peripheral collisions as well as the differences between

the different impact parameter selection procedures. Figure 5.52 shows the comparison

of proton spectra from 112Sn using different choices of centrality determination method.

There is relatively little sensitivity (less than 10% effect) to this choice of centrality. The

t/3He single and double ratios show even less sensitivity as displayed in Figure 5.53.

While the determination of centrality through transverse energy does seem to suggest a

selection of events with larger transverse momenta and higher temperature, it has little

influence over the ratios. In order to make comparisons to data in [1] we choose to use

charge particle multiplicity for the rest of this treatment.

5.6.1 Mid Peripheral Spectra and Ratios

Our previous discussions have focused on data from central collisions, b ≤ 3 fm. We

also measured more peripheral events at impact parameters ranging from 3 < b ≤ 6

fm. Due to the restrictive nature of the trigger in the experiment which was chosen to

maximize statistics of central events, low multiplicity events that would correspond to

more peripheral events were not measured.

We recall that the results of spectra in the midrapidity region predicted by pBUU

simulations in Chapter 4 did not display a strong sensitivity to impact parameter. We do

204



Figure 5.52: Effects of impact parameter determination. Spectra from 50 MeV/Aare on the
top and 120 on the bottom. Proton spectra from 112Sn are shown. The different particles
provide a similar comparison.
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Figure 5.53: Effects of impact parameter determination. t/3He single ratios from 124Sn
are shown on top with the t/3He double ratios on the bottom. Both are from the 50
MeV/Areaction.
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anticipate a decrease in the magnitude of the spectra with increasing impact parameter,

but the shape to be quite similar. Figures 5.54 and 5.55 compare the measured spectra

of protons and alpha particles from the central and peripheral collisions using charged

particle multiplicity as the selected method of impact parameter determination. In the

figures, protons are provided on the top with alphas on the bottom. The heavier particles

are affected more by the centrality dependence than the lighter protons. Similarly, the

centrality cut has a larger effect at the higher beam energy.

The t/3He single and double ratios are also relatively unchanged by the determination

of impact parameter. Figure 5.56 shows the single ratios from the 124Sn reaction (top)

and the double ratios (bottom) from the 50 MeV/Areaction. The 120 MeV/Areaction can

be found in 5.57.

5.7 Comparison to Previous Data

The objective of this dissertation is of course to compare the data to simulation and attempt

to constrain the symmetry energy. Before proceeding to that end, it is prudent to compare

the current results to previous measurements. The 120 MeV/Areaction was chosen because

it was a new energy regime for this measurement, however the 50 MeV/Areaction was

measured at least twice previously in [24, 31]. Figure 5.58 shows the comparison of the

single ratios between the three experiments while Figure 5.59 shows the double ratio

comparison. The three experiments show good agreement in the double ratio with this

experiment being able to achieve significantly better statistics than either of the previous

measurements and even increase the energy range at which they were measured. It is

curious that the single ratios between the Liu data (red squares) deviate from the other
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Figure 5.54: A comparison of the mid peripheral and central cuts for protons (top) and
alphas (bottom) at 50 MeV/Ain the 112Sn reaction. The other particles behave in a similar
fashion.
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Figure 5.55: A comparison of the mid peripheral and central cuts for protons (top) and
alphas (bottom) at 120 MeV/Ain the 112Sn reaction. The other particles behave in a similar
fashion.
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Figure 5.56: The single t/3He (top) and double (bottom) from the 50 MeV/Areaction. The
single ratios come from the 124Sn reaction.

210



Figure 5.57: The single t/3He (top) and double (bottom) from the 120 MeV/Areaction. The
single ratios come from the 124Sn reaction.
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two while the double ratios show excellent agreement between all three measurements.

Where available, we were also able to show good agreement between the independent

particle ratios from the previous experiments and our current data as seen in Figure 5.60.

So it appears that the only discrepancy is seen in the single t/3He ratios.

In an attempt to understand the discrepancy in the single ratios between the Liu data

and the new data, we investigated the original spectra for tritons and 3He which can

be found in Figure 5.61. The trend is that the previous data has a larger differential

multiplicity at low energy and then falls off significantly faster than the new data. This

is either due to a difference in the energy calibration or the efficiency between the two

experiments.

At this point, a few comments regarding the previous experiment of Liu are prudent.

That particular experiment was optimized for Intermediate Mass Fragments (IMF) in the

range of 3 ≤ Z ≤ 10 which required running the silicon electronics at relatively low gain

resulting in efficiencies of hydrogen isotopes significantly less than one. Calibrations in

that experiment used a cocktail beam which provided very good calibration for the IMFs.

The calibration of the light particles were less extensive and the inefficiency in the silicon

electronics are expected to produce too few hydrogen (and possibly helium) particles at

high energy in the lab frame. The non-linear effects in the light output of the CsI crystals

were parameterized in that experiment and were used previously in the energy calibration

of the current experiment.

Assessments of the consistency of the energy calibrations should, in principle, be

performed through comparisons in the lab frame. At present, only data in the center

of mass frame is available from that experiment which renders interpretations of the
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Figure 5.58: The single ratios for 112Sn (top) and 124Sn (bottom) of this experiment’s data
compared with two previous measurements.
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Figure 5.59: The double ratios of this experiment’s data compared with two previous
measurements.

Figure 5.60: The independent particle ratios comparing current data to previous experi-
ments where available.
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Figure 5.61: The comparison of the new tritons and 3He with previous data. Tritons are
represented in the top plot with 3He in the bottom.
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descrepancies somewhat tenuous. While some of the differences in the spectra could be

partly related to a problem in the energy calibration of one or the other experiments, the

large differences in the triton energy spectra at around E=8 AMeV probably originate in the

efficiency calculations used for the data of Liu. We do not currently know how carefully

the efficiency calculations were checked for light particles in this older data set. Due to the

known inefficiencies in the proton spectra, Liu did not explore this ratio extensively in his

thesis and thus a more complete checking may not have been completed. The efficiency

for the IMFs on the other hand was extensively checked.

If there was an error in the efficiency calculation for the older data set it would influ-

ence both reactions. The independent particle ratios and double ratios would have this

efficiency effect divide out and thus we would expect both of those results to match with

the current data. The t/3He results however would show this effect, and indeed this is

where the difference between the two experiments is highlighted. On the other hand, we

do see approximate agreement between the current experiment and the results of Famiano

where the statistics of the latter experiment allows [24].

Several cross checks were completed in order to check the energy calibration of the

current data. If the energy calibration were too high for example and we lowered the

energy, we might expect an increase in low energy data. As a test, the lab energy was

reduced by factors of 5, 10 and 15%. This did indeed change the spectra so that the

shape was more similar to the old data. Unfortunately it was still unable to recreate the

magnitude of the spectra, being consistently too low across the energy spectrum. Since

we have no proof that our energy calibration is off we do not go through the process of

trying to match the old data this way. Nevertheless, we will emphasize the double ratio
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and independent particle ratios in the rest of this treatment since efficiency and calibration

errors cancel out in these ratios to first order.

The other possible difference between the data could originate from differences in

impact parameter. The previous data uses a reduced impact parameter of b̂ < 0.2, whereas

the data quoted in this work uses a reduced impact parameter of something slightly larger.

We have already shown that the magnitude of the spectra have little sensitivity to the

impact parameter. There is also a negligible change in shape of the spectra as the method

of selection or centrality changes. Given these results, we believe that the discrepancy

between these data do not originate from the impact parameter selection.

5.8 Comparison to Simulation

One objective of this dissertation is to compare the data to simulations with the purpose

of better constraining the symmetry energy. Chapter 4 showed the relatively low de-

pendence of t/3He ratios on momentum dependence and in-medium cross section. We

choose momentum independent simulations with the Rostock in-medium cross section

to compare to our data. The choice of momentum independence was chosen to maximize

statistics without the expense of the time the momentum dependent calculations require.

Since the momentum dependent calculations are more physically complete, a momentum

dependent set of calculations would be used for a more realistic constraint, however, given

the diminished sensitivity of the ratios to the choice of momentum dependence in compar-

ison to the sensitivity of the symmetry energy, the momentum independent calculations

will suffice for this treatment. Since we will be looking primarily at the clusters, obviously

a cluster producing simulation is used. Comparing the spectra from experimental data
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and pBUU simulations from Chapter 4 it is immediately obvious that the two do not

match. Regardless, Figure 5.62 shows the comparison of spectra from 50 MeV/Areactions

for tritons (top) and 3He (bottom) from the 124Sn system. The 112Sn reactions provide

similar comparisons. One sees that the calculated spectra greatly exceed the measured

ones at E< 20 MeV/Ayet the data at higher energies is not dissimilar.

Despite this difference at low energy, we proceed to inspect the various ratios in

comparison between simulation and data. Figures 5.63 and 5.64 show independent

particle ratios for the charged particles (up through mass A=3) in comparison to three

different symmetry energy parameterizations. While the protons show a reasonably

similar trend and value beginning around 20 MeV/A, the tritons and 3He begin to agree

around 25 and 30 MeV/A, respectively. It is at these energies that the data seemed to match

better with the simulations from figure 5.62. We note that this low energy region is the

region where alpha particles strongly produced as seen in Figure 5.29.

The t/3He single and double ratios show discrepancies until around 35 MeV/A. Figures

5.65 and 5.66 show these ratios, again in comparison to different symmetry energy results

from pBUU. The single ratios at least show a similar trend to the experimental data, just

being much smaller in magnitude. Unfortunately, the experimental data is lacking above

about 45 MeV. It appears that it is only above 30 MeV that the simulation’s trend really

matches that of the data as evidenced by the slight increase in the 124Sn reaction and the

flat nature of the 112Sn reaction in these regions. This is the region in Figure 5.62 where

the theoretical calculations do not significantly vary from the experimental data. It would

be very interesting to have higher energy data in this energy region.

The single ratios displayed in 5.65 and the double ratios displayed in 5.66 present
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Figure 5.62: The spectra for tritons (top) and 3He (bottom) from the 124Sn system. All
spectra come from 50 MeV/Areactions.
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Figure 5.63: The independent particle ratios for protons (top) and deuterons (bottom) in
comparison to pBUU results for three different parameterizations of the symmetry energy
in 50 MeV/Areactions.

220



Figure 5.64: The independent particle ratios for tritons (top) and 3He (bottom) in compar-
ison to pBUU results for three different parameterizations of the symmetry energy in 50
MeV/Areactions.
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Figure 5.65: The single t/3He ratios in comparison to pBUU simulations from 50
MeV/Areactions for 112Sn on the top and 124Sn in the middle.
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Figure 5.66: The double t/3He ratios in comparison to pBUU simulations from 50
MeV/Areactions.
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Figure 5.67: The χ2 per degree of freedom for different simulation results of the t/3He
double ratio at 50 MeV/A.

a difficulty for the primary focus of this work. One of the primary purposes of this

experiment was to measure precisely t/3He double ratios and compare them to transport

model simulations in order to constrain the symmtery energy. If we restrict the comparison

to the regions where the cross sections for the data and the simulations do not greatly

differ, the only appropriate region to make this constraint would be from 30 to 40 MeV/A.

We have a large amount of simulated results to accrue better statistical uncertainty for six

different values of γ: 1/3, 1/2, 3/4, 1, 3/2 and 2. We compare the experimental data to the

results of these six calculations of the double ratio and provide a χ2 comparison to data in

Figure 5.67. Admittedly, the justification for this restricted comparison is relatively weak.
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Let us return to the comparison of the spectra from the experiment and the simulations

at low energies where there is a large discrepancy. One possible explanation that the

extra yield is representative of emission from regimes with high density in phase space.

Remembering that the calculation is only capable of creating clusters up through mass

A=3 it is possible, even probable, that many of these particles at low energy would

then have been a component of the production of alpha particles. If we reference the

spectra in Figure 5.29 where alpha particles are the most dominantly produced particle

at low energies (E/A<30 MeV) where the discrepancy mainly occurs. At higher energies,

where the calculated and measured spectra are comparable, alpha production is nearly

negligible. We would then like to propose a method to extend the comparison between

calculated and measured yields to lower energies.

Let us consider how the calculation produces A=3 particles. It searches for two nucle-

ons within close proximity and then calculate the probability that a third nucleon scatters

off of another nucleon (not part of the A=3 cluster) and into the phase space of the initial

two particles to form the final A=3 state. This occurs primarily within a region of high

phase space density where it is possible that there is another nucleon close to the first two

particles and would then create an A=4 cluster instead. However, the present calculation

does not consider this as a possibility and so all potential A=4 clusters will pile up in

the A=3 triton and 3He. To better match the calculations to data, we therefore take half

of our experimentally measured alpha particles and include them in our triton spectra.

We do the same treatment to the 3He data. The choice of splitting the alpha data equally

between the two particles is naturally an approximation, however, in the case of having

four particles scattered into the same phase space that would have created an alpha, there
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is no physical reason for a significant bias towards creating one particle over the other. A

comparison of this adjusted spectra is found in Figure 5.68.

Obviously this is not fully correct, but as initial proof of concept it is seems a reasonable

path to continue forward. In order to correct for the Coulomb shift we assume that the

particle gains 12 MeV (for computational ease) for each proton in the cluster as it travels

from the barrier to the detector. If we want to then represent the energy spectra for alphas

as if they were tritons or 3He we use the following formulae,

E(3He) =
3(E(α) − 2ECoul)

4
+ 2ECoul (5.15)

and

E(t) =
3(E(α) − 2ECoul)

4
+ ECoul, (5.16)

where E(X) is the energy of a particle, and ECoul is the Coulomb energy of 12 MeV. What

this corresponds to is a 2 MeV/Ashift up for 3He and down for tritons. The resulting

spectra are in Figure 5.69. This provides a much better match of the data lending

credence to the suggestion that many of the excess tritons and 3He in the simulations are

particles that would generally be used to form alphas if the alpha creation channel was

included as an option in the simulation. As expected, not only do the spectra improve

but so do the single and double ratios. The 124Sn t/3He ratios are shown in the top of

Figure 5.70 with the double ratio on the bottom. Naturally a more complete treatment

of the Coulomb effects along with proportionally adding the different spectra could be

completed, however the true effects of what alphas would do to the simulated system are

very hard to quantify without actually introducing it into the code which is outside of
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Figure 5.68: The adjusted spectra of tritons (top) and 3He (bottom) at 50 MeV/A. Half of
the experimental alpha spectra was added to each.
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the scope of this dissertation. This is just one example of how important alpha particles

are to simulating a true nuclear collision. Figure 5.71 shows the χ2 comparison between

simulation and experimental data. Even though there is good agreement at low energies

for the soft symmetry energies, we are dominating that region by our alpha correction,

which is significantly simplified over the true process. As such, we complete the χ2

analysis for the same region as that of the free t/3He analysis.

We have already discussed how the t/3He ratios were believed to be similar to the n/p

ratios which is part of what prompted the measurement in the first place. We have also just

shown that alphas are important in the comparison between simulation to experiment.

The next comparison will include a coalescence invariant n/p ratios. To accentuate the

importance of alpha particles we will construct the spectra both with and without them.

An example can be seen in Figure 5.72. Larger mass isotopes can contribute up to 15 or

20% more at energies below 15 MeV/Abut are negligible above that energy.

We would like to then compare the coalescence invariant n/p ratios to the free n/p

and t/3He ratios to identify any trends. The single ratios from both systems are shown in

Figure 5.73. The double ratios are provided in Figure 5.74. In general the trend of the

n/p and t/3He ratios are quite similar. The neutron analysis has an efficiency value which

is currently only known to with about 20%. The discrepancies between the n/p and t/3He

ratios are likely influenced by any error in the neutron efficiency. The present difference

between n/p and t/3He ratios could be due to an uncertainty in the neutron efficiency. Only

statistical uncertainties have been included in these plots. The coalescence ratios have been

strongly affected by the inclusion of the symmetric deuterons and alphas. At low energies

the ratios that include clusters, and especially alpha particles, are systematically closer to
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Figure 5.69: The adjusted spectra of tritons (top) and 3He (bottom) at 50 MeV/A. Half of
the experimental Coulomb corrected alpha spectra was added to each.
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Figure 5.70: The t/3He single ratio (top) from 124Sn and double ratio (bottom) having
included alpha data into the triton and 3He data accounting for Coulomb effects.
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Figure 5.71: The χ2 per degree of freedom for different simulation results of the t/3He
double ratio at 50 MeV/Awhen Coulomb corrected alphas were included as tritons and
3He.
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Figure 5.72: The coalescence invariant spectra for neutrons and protons from the 112Sn
reaction at 50 MeV/Awhen alpha particles are omitted (open point) or included (solid
points) in the spectra. The alpha particles represent a significant portion of the spectra
below 30 MeV/A.
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1 as one should expect given the previous results so far.

The dissertation work completed by Coupland in [1] compares his n/p ratios, which

included protons analyzed in this dissertation, to ImQMD simulations. Here we use

the pBUU simulations to compare to the experimental double ratios. These calculations

differ in many ways. We would point out that the ImQMD simulation includes cluster

production but probably underpredicts alpha particle emission in part because it does not

have correct alpha particle binding energies. Also, the ImQMD calculations consider the

influence of an isovector nucleon effective mass which makes a big difference at higher

excitation energies. Figure 5.75 shows three different comparisons of the experimental

double ratios to simulation. The top plot shows the free experimental n/p ratios to the

simulated free ratios. The lower figure shows the coalescence invariant spectra that

includes all clusters up through A=4.

Surprisingly, the coalescence invariant n/p ratios in the lower panel suggest a stiffer

equation of state, one with a γ > 2. This is contrary to what the t/3He ratios suggest which

had better agreement for equations of state with γ near 1. The inclusion of alphas does

provide an improved comparison to the theoretical calculations below about 35 MeV/A.

This conclusion is contrary to that derived from comparisons to ImQMD calculations in

the dissertation of Coupland [1]. However, that conclusion reflects the comparison to

calculation that includes an isovector nucleon effective mass which the present pBUU

calculations do not.

So far we have only compared experimental data to the simulations in the 50 MeV/Areactions.

It was suggested in Chapter 4 that the 120 MeV/Areactions did not show much sensitivity

to the symmetry energy. Nonetheless, we investigate the comparison to simulations at
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Figure 5.73: A comparison of the two different coalescence invariant n/p ratios with the
free n/p and t/3He ratios. Single ratios from 112Sn are on top with 124Sn on the bottom.
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Figure 5.74: A comparison of the two different coalescence invariant n/p double ratios
with the free n/p and t/3He double ratios.
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Figure 5.75: Three different comparisons of n/p double ratios to simulations. The top
compares free experimental particles to free particles in the simulation. The middle
shows coalescence invariant comparisons where the alphas have been omitted. The
bottom shows the comparison for when alphas are included.
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Skyrme S0 (MeV) L (MeV) m∗n/mn m∗p/mp
SkM* 30 46 0.82 0.76
Sly4 32 46 0.68 0.71
pBUU γ = 1/3 31.5 44 0.7 0.7
pBUU γ = 1 31.5 82 0.7 0.7
pBUU γ = 2 31.5 139 0.7 0.7

Table 5.2: The top two rows of the table provide some of the properties of the mean
field used in the ImQMD calculations. The lower three rows provide corresponding
information about several pBUU calculations described in this dissertation. The significant
difference in the two ImQMD calculations is the difference in nucleon effective mass
splitting for the two Skyrme interactions. As a reference, pBUU values are included for
three different values of γ.

this higher energy. We completed a similar study with the most extreme values of γ = 1/3

and 2. Figure 5.76 shows the comparison of simulation with t/3He double ratios on top.

The bottom portion of the figure includes half of the alpha spectra being treated like tritons

and half like 3He. The agreement is not as good as in the 50 MeV/Areaction but the effect

is still significant. Figure 5.77 shows the free (top) and coalescence invariant (bottom) n/p

double ratios in comparison to simulation results at 120 MeV/A.

By looking at the n/p ratios from this experiment, it is suggested in [1] that the nucleon

effective mass splitting could be a larger contributing factor to the shape of the n/p ratio

than the symmetry energy. As an exercise of investigating this effect in the t/3He ratios,

Figure 5.78 provides the double ratio from ImQMD-Sky [8] for two different Skyrme

parameterizations from 50 MeV/Areactions. These two represent relatively soft symmetry

energies with different effective mass splittings. Necessary information on the difference

between the two Skyrme’s can be found in Table 5.2. The double ratio from ImQMD

shows a very similar behavior to pBUU, starting much lower than the experimental data

and trending slightly upwards to meet the data around 30 MeV. The bottom portion of that

figure also includes the comparison to data where the alpha particles have been included
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Figure 5.76: The t/3He double ratios in comparison to simulations at 120 MeV/A. The top
contains pure tritons and 3He while the bottom includes half of the alpha spectra as part
of each.
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Figure 5.77: The free (top) and coalescence invariant (bottom) n/p double ratios in com-
parison to simulations at 120 MeV/A.
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as part of the triton and 3He spectra which shows much better agreement across the full

energy spectra similar to the study before with pBUU.

There are several distinct reactions to take away from this. This simulation shows that

the t/3He double ratios show very little sensitivity to the effective mass splitting (unlike

the single ratios displayed in Figure 5.79). Perhaps more importantly, ImQMD and pBUU

are very different style transport simulation codes, yet both fail to adequately describe the

emission of alpha particles and heavier clusters. pBUU simply does not include alphas

but uses proper binding energies while ImQMD creates alphas albeit with an incorrect

binding energy leading to an incorrect prediction of the alpha spectra.

Despite results of Chapter 4 suggesting that the ratios from 120 MeV/Areactions may

be less sensitive to the symmetry energy than in the 50 MeV/Areaction, ImQMD provides

evidence that they may be sensitive to the effective mass splitting at the higher incident

energy. Comparisons of the data to pBUU shows a very similar result to that of the

ImQMD results displayed in 5.80. pBUU shows a diminished sensitivity to the symmetry

energy while ImQMD shows a complete lack of sensitivity to the nucleon effective mass

splitting, at least up through the energies that we were capable of measuring in this

experiment. This is true for the single ratios as well. Both pBUU and ImQMD do a better

job of simulating these results than in the 50 MeV/Areactions, however both are still unable

to recreate the experimental double ratios below 30 MeV unless the alpha particles are

included as part of the triton and 3He spectra as shown in the bottom part of the same

Figure.

There are a number of reasons that investigation of the t/3He double ratios might not

match that of the ImQMD-sky results. One possible explanation is that the Binding Ener-
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Figure 5.78: The t/3He double ratio from 50 MeV/Areactions in ImQMD in comparison
to this data. The top plot shows only tritons and 3He while the bottom includes alpha
particles as part of the triton and 3He spectra.
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Figure 5.79: The t/3He single ratios from ImQMD in comparison to this data. 124Sn
reactions are on top with 112Sn reactions on the bottom.
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Figure 5.80: The t/3He double ratio from ImQMD in comparison to this data for the 120
MeV/Areaction. The top plot shows only tritons and 3He while the bottom includes alpha
particles as part of the triton and 3He spectra for both simulated and experimental results.
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gies in this code are not properly treated. Coupland also sees these results in [1] for the n/p

double ratio in comparison. However, if we investigate the coalescence invariant n/p dou-

ble ratios for both the data and simulation we see much better agreement, similar to what

is seen in pBUU. This can be seen in Figure 5.81. In this Figure, 50 MeV/Aexperimental

data shows good agreement at low energies where there is little sensitivity to the nucleon

effective mass, while at higher energies being somewhere in the middle of the two curves.

In the 120 MeV/Acase, the data shows agreement at all energies with the Sly4 model which

assumes a neutron effective mass less than that of protons.
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Figure 5.81: The coalescence invariant n/p double ratio from ImQMD in comparison to
this data for the 50 (left) and 120 (right) MeV/Areactions. [1, 8]
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Chapter 6

Conclusions

6.1 Conclusions

The intention of this dissertation work was twofold. The first was to investigate the

pBUU transport simulation code and determine how different transport variables effect

light particle ratios, in particular n/p and t/3He single and double ratios from reactions

of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/A. The second

was to run and analyze an experiment for the same collisions and measure the t/3He

ratios, and then constrain the density dependence of the symmetry energy in the Nuclear

Equation of State by comparing these ratios to the corresponding pBUU simulations.

The studies of the pBUU simulations suggested that the t/3He ratios were less sensitive

to many transport variables such as the momentum dependence of the mean field, impact

parameter and in-medium cross section, than to the symmetry energy. It did however

suggest a significant effect on the n/p ratio when cluster production is enabled. The pBUU

calculations do not include momentum dependence in the symmetry potential so the

important issue of relating the difference betwen neutron and proton effective masses was
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thereby not explored. Upon comparison to the experimental data, however, there were

many discrepancies between the two. The two sets of data trend quite differently, with

comparable values only above 30 MeV/A, however below that energy the results are very

different. We provide evidence that alpha particle production is a significant source of

discrepancy between the data and simulation. Nevertheless, a comparison to simulation

for t/3He double ratios is made. This comparison implies a softer symmetry energy, in the

range of 1/3 ≤ γ ≤ 1.

We suggested a treatment that combines the alpha particle experimental results with

that of tritons and 3He in a rather simplistic fashion. It would be a large undertaking to

properly do this, but it would be better if this could be fixed from the theory side by the

inclusion of cluster production being capable of making alpha particles. Nevertheless,

using this comparison, we find that through a χ2 analysis, γ would be in the range of

∼ 0.4 < γ <∼ 1.2.

Comparison with a different transport code, ImQMD-Sky, shows the lack of ability to

recreate the ratios of free n/p and t/3He. In addition, this code predicts little sensitivity

to the difference in the effective mass of protons and neutrons in the energy range that

we measured for t/3He ratios. At higher emission energies this code predicts a larger

sensitivity.

Both the ImQMD-Sky and pBUU calculations provide better agreement to the data

when a coalescence invariant model is used for both. While at this time the pBUU is unable

to provide a significant constraint on the symmetry energy, the ImQMD-Sky does suggest

a sensitivity to the nucleon effective mass. This is amplified in the 120 MeV/Areaction

where there is an improved agreement between the coalescence invariant experimental
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data and the coalescence invariant simulated results when the proton effective mass is

chosen to be larger than the neutron effective mass.

The t/3He single and double ratios have been measured previously for the 50 MeV/A

reaction in at least two separate experiments. The double ratios for those experiments

agree with this work, while this work improves upon those results with more statistics

and the ability to reach higher emitted energies. The single ratios show quite reasonable

agreement with one of those experiments but disagree with the other. The measurement

at 120 MeV/A is new and supports the theory that at this density region the symmetry

energy has a lessened effect on the system.

We briefly touch upon two different suggestions for coalescence, one suggesting that,

in collisions such as those studied in this work, triton emission should, in many respects,

resemble neutron emission. Similarly, 3He emission should resemble proton emission.

The independent particle ratios of protons and 3He also suggest this to be true how-

ever, there are some discrepancies between the triton and neutron ratios which may be

influenced by the current uncertainties in the neutron efficiency.

We briefly explore the coalescence model which suggests that in the presence of neutron

and proton spectra, one can create spectra of clusters. By using the combination of tritons,

neutrons and protons we are able to constrain the coalescence volume parameter of this

model which does indeed let us extend triton spectra out to higher center of mass energies

that are beyond the range of the LASSA detectors.
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6.2 Outlook

There are many experimental and theoretical results that suggest that the t/3He ratios are

sensitive to the density dependence of the symmetry energy and a good candidate for

constraining that dependence. This work provides more evidence for that. It also shows

that while the theoretical and experimental sides agree that it is a good candidate, there is

a significant source of discrepancy between the experimental data and simulated results.

Proper treatment of alpha particles in these simulations is necessary for the future of these

studies. pBUU can be improved if the alpha particle were included as another potentially

created cluster. ImQMD-Sky would benefit from a more proper treatment of the Binding

Energy which could help correct the single particle spectra and provide better agreement

with experimental results.

This experiment was a rather complicated experiment to both execute and analyze

due to the neutron detection. For t/3He measurements, a different experiment could

be designed and executed reasonably easily. Assuming these ratios are just as good a

candidate of constraining the symmetry energy as n/p ratios, one might choose to complete

more experiments specifically targeting clusters. There are three primary suggestions for

this situation should those experiments actually be completed. If similar detectors are

used for this experiment, moving the LASSA-like detector backwards in the lab, or using

more of the detectors, to more fully cover the angular region of interest in the center

of mass would be helpful. Since neutron detectors would not be needed, the inclusion

of detectors used for impact parameter dependence at forward lab angles would also be

prudent. Since the ImQMD suggest a dependence to the effective mass splitting at energies

above the ones capable of being measured in this work, it would also be recommended to
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be capable of measuring higher energy tritons and 3He. Finally, a measurement of these

ratios at an energy in supersaturation density regions could provide an interesting third

set of data for testing the reversal of trend from a soft to stiff symmetry energy.
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