WARRANTY

Canberra–Manufactured Equipment

Equipment manufactured by Canberra Industries, Inc. is warranted against defects in materials and workmanship for a period of twelve months from date of shipment, except that the equipment has been used in a proper manner as detailed in the instruction manuals. During the warranty period, repairs or replacement will be made at Canberra’s option, but the transportation, at to and from Canberra is the responsibility of the Customer. For defects covered upon initial operation, shipping expense to Canberra is to be paid by the Customer: shipping expense to return the repaired equipment will be paid by Canberra.

The Customer must obtain shipping instructions, including an Authorized Return Number (ARN), before returning any equipment to the Canberra factory. Compliance with this provision by the Customer shall be a condition of this warranty. In giving shipping instructions, Canberra shall not, therefore, assume any responsibility for any loss or damage to the equipment in shipment. The cost of all transportation and set of repairs at the then prevailing Canberra repair rates shall be paid by the Customer.

This warranty shall not apply to equipment that has been modified or serviced by other than Canberra service personnel, or to failures caused by defective equipment not supplied by Canberra.

This warranty applies only to equipment manufactured by Canberra. On other equipment supplied by Canberra, the full warranty, and only that warranty offered by the original manufacturer, will be passed on to the customer.

WARRANTY ON EQUIPMENT NOT MANUFACTURED BY CANBERRA

Canberra’s basic one-year warranty applies only to equipment manufactured by Canberra. Although Canberra may occasionally supply, as part of systems, equipment manufactured by other companies, the only warranty that shall apply to such non-Canberra equipment is that warranty offered by the original manufacturer.

Canberra will, upon request, state what warranties are offered by the original manufacturers of such items as computers, teletype machines, printers, plotters, and other non-Canberra equipment which may be supplied as part of a Canberra system. In no case, however, will Canberra assume any liability for such equipment other than to pass on to its customer whatever warranty is supplied by the original manufacturer.

WARRANTY ON SOFTWARE

Canberra will warrant system operation with Canberra Laboratory Automated Software Systems (CLASS) only. If the customer decides to use software other than CLASS, Canberra assumes no responsibility. Engineering assistance, however, for non-CLASS software is available to the user and should be contracted separately if desired.

ON-SITE WARRANTY OPTION

The basic Canberra warranty applies only to equipment manufactured by Canberra which is returned to the factory. If equipment must be repaired at the customer’s site, the actual repair labor and parts will be provided at no charge during the warranty period. However, travel expenses and parts will be provided at no charge during the warranty period. However, travel expenses to and from the customer’s site, and living expenses while on site, shall be paid by the customer unless an on-site warranty option has been purchased. This option may only be purchased prior to shipment of the equipment to the customer.

The on-site warranty option provides for free on-site warranty work (Canberra pays all travel and living expenses) within the first 60 days after delivery of equipment to the customer. If installation is ordered from Canberra, the 60 day period commences on completion of the initial installation. After the 60 day period, labor and materials used on site will still be covered by the basic warranty, but the customer shall pay for all travel and living expenses incurred for any on-site service.

The on-site warranty option is available only within the contiguous forty-eight (48) United States and Canada.

After the 60 days on-site warranty period, or after initial installation of the equipment, a maintenance contract may be purchased. This is to be contracted through Canberra’s Customer Service Department. Contact the factory for details concerning warranty options and maintenance contracts.

INSTALLATION

Installation of equipment purchased from Canberra shall be the sole responsibility of the customer unless it is specifically contracted for at the prevailing Canberra field service rates. To ensure timely installation after receipt of equipment, it is recommended that installation be contracted for at the time the equipment is ordered.

REPAIRS

Any Canberra-manufactured instrument no longer in its warranty period may be returned, freight prepaid, to our factory for repair and realignment. When returning instruments for repair, contact the factory for shipping instructions and an Authorized Return Number (ARN).

All correspondence concerning repairs should include Model Number and a description of the problem observed.

Once repaired, all equipment passes through our normal pre-shipment checkout procedure, and will meet or surpass its original specifications when returned. Return shipping expense on out-of-warranty repairs will be charged to the customer.

For instruments out of warranty, the customer must supply a purchase order number for the repair before the item will be returned.

SHIPPING DAMAGE

Shipments should be carefully examined when received for evidence of damage caused by shipping. If damage is found, immediately notify Canberra and the carrier making delivery, as the carrier is normally responsible for damage caused in shipment. Carefully preserve all documentation to establish your claim. Canberra will provide all possible assistance in damage claims.
CONTENTS

1 INTRODUCTION ... 1-1

2 SPECIFICATIONS

2.1 Inputs .. 2-1
2.2 Outputs ... 2-1
2.3 Controls .. 2-1
2.4 Performance ... 2-1
2.5 Power Requirements 2-2
2.6 Physical ... 2-2

3 INPUT REQUIREMENTS

3.1 Signal .. 3-1
3.2 Input Delay Line 3-1

4 OPERATION

4.1 General ... 4-1
4.2 Threshold ... 4-1
4.3 C/O ADJ ... 4-1
4.4 Outputs .. 4-1
4.4.1 Slow Outputs 4-1
4.4.2 Fast Outputs 4-1
4.5 Three Position Mode Switch 4-3
4.5.1 CFRR (Constant Fraction with Rise Time Rejection) 4-3
4.5.2 CF (Constant Fraction) 4-3
4.5.3 L.E.T. (Leading Edge Timing) 4-3
CONSTANT FRACTION DISCRIMINATOR
Model 1428

Section 1

INTRODUCTION

A constant fraction discriminator (CFD) is used to extract time information from radiation detectors. It can be used with semi-conductor or scintillation detectors. In the case of a semiconductor detector system the input signal for the CFD is derived from the output of the preamplifier via a Timing Filter AMP or a Differentiation (usually a coupling capacitor from the preamplifier output of 1 pF to 10pF to the input of the CFD is sufficient) if signal polarity is negative. In a scintillation detector system it is derived from the anode of the photo-multiplier tube. In a CFD, timing is obtained by triggering at a constant fraction of the amplitude of the input signal so, if the shape of the risetime does not change, a time signal is produced that is independent of amplitude and risetime. The constant fraction triggering is achieved by subtracting the delayed input signal from a fraction of the original input signal, thereby developing a non-symmetrical bipolar waveform. The zero crossing of the bipolar waveform is at a constant fraction of the input signal. The 20% fraction used in this particular design is a compromise between different kinds of detectors and uses. It can be changed on request. A block diagram of the CFD is shown in Figure 1.
Section 2

SPECIFICATIONS

2.1 INPUTS

NEGATIVE

5mV to -5V linear signal; $Z_{in} = 50$ ohms; risetime 1nsec. or longer; front panel BNC, protected to -100V (limited by input resistor dissipation)

2.2 OUTPUTS

INSPECT

displays output signal of Zero Cross discriminator; is used to set Zero Cross discriminator with walk ADJUST potentiometer

DELAY (Rear Panel)

2 BNC connector; for a 50 ohm delay cable must be connected to match risetime of input signal; $t_{delay} \approx 0.2tr$ for Germanium Detectors; $t_{delay} \approx 0.8tr$ for other detectors

FAST OUT

two independent fast NIM outputs 20nsec wide and 18mA into 50 ohms; risetime 5.0nsec.

SLOW OUT

independent output positive signal 2 volts on 50 ohms; risetime 10nsec typical; Slow output width is equal to internal dead time

2.3 CONTROLS

THRESHOLD

variable from -5mV to -1V

WALK ADJUST

sets the Zero Cross discriminator

MODE

sets LET, Leading Edge Timing; CFT, Constant Fraction Timing; CFRR, Constant Fraction with Slow Risetime Reject

WIDTH

controls width of slow output which is equal to the deadtime of the 1428 (screwdriver adjust)

2.4 PERFORMANCE

INPUT AMPLITUDE RANGE

-5mV to -5V linear

WALK

(CF Mode) for a dynamic range of 1:500, < 1ns; for 1:100, < 200psec

for LE < 300psec from X2 to 20 times threshold

COUNTING RATE

> 10MHz; limited by deadtime setting

PULSE PAIR RESOLUTION

< 80nsec; limited by deadtime setting

THRESHOLD STABILITY

0.1% per °C for 24 hours
TEMPERATURE RANGE
LINEARITY
TYPICAL DELAY CABLE LENGTH (50 Ohms, RG58/U)

0 to 50°C
0.25%
plastic, NaI and Si(Sb) cable 1.5′ to 3-1/3′ (45.72cm to 40.64cm)
for planar Germanium cable 3−1/3′ to 7′ (40.64cm to 213.36cm)
for coax. Ge(Li) cable 7′ to 14′ (213.36cm to 426.72cm); allow ≈ 1.5ns/foot for time delay

2.5 POWER REQUIREMENTS

2.6 PHYSICAL
SIZE
NET WEIGHT
SHIPPING WEIGHT

+12VDC − 130mA
-12VDC − 450mA

single width NIM module (1.35 inches wide) (3.43cm) per TID-20893(Rev.)

2 lb (0.9 kg)
3 lb (1.35 kg)
SECTION 3
INPUT REQUIREMENTS

3.1 SIGNAL

The input is dc coupled and internally terminated in 50 ohms. The signal should be a fast rising negative pulse less than three volts in amplitude. Correct operation of the discriminator depends on the signal baseline being near ground potential (± 15mv).

3.2 INPUT DELAY LINE

A short length of coaxial cable (50Ω) should be connected between the input delay line IN-OUT BNCs on the front panel. The delay chosen should depend on the type of detector and application. If the risetime and shape of the detector signal is constant (e.g. scintillators, or a thin silicon detector) a delay equal to about 0.8 times the signal risetime should be used. If the risetime changes, as in thick germanium detectors, a delay equal to about 0.1 or 0.2 times the detector’s collection time should be used for all cases where the signal/noise ratio is large. A longer delay and a bigger fraction may be needed for low energies where the signal/noise becomes small.
4.1 GENERAL

The purpose of this section is to familiarize the user with the operation of the Model 1428 Constant Fraction Discriminator and to check that the unit is functioning correctly. Since it is difficult to determine the exact system configuration in which the module will be used, explicit operating instructions cannot be given. However, if the following procedures are carried out, the user will gain sufficient familiarity with this instrument to permit its proper use in the system at hand.

4.2 THRESHOLD

The THRESHOLD control is a 10-turn helipot mounted on the front panel. It provides a range of adjustment from 5 mV to -1.0V. It should be adjusted so that the leading-edge discriminator is triggering just above noise.

4.3 C/O ADJ

The crossover trigger level is adjusted by a screwdriver control on the front panel. It sets the threshold of the crossover discriminator. The front end of the Model 1428 has a DC coupled input, therefore the C/O adjustment can only be made correctly when its input is connected to the signal source. If the signal source has an offset greater than ±6mV the C/O ADJ. cannot be set correctly. The adjustment is performed by observing the C/O inspect BNC (terminated in 50 ohms) on an oscilloscope and adjusting the C/O ADJ.

When using the Model 1428 with an attenuator and pulse generator, it may be necessary to readjust the WALK ADJUST if the resistance of attenuator changes with each of its settings. Care must be taken using the pulse generator that its zero offset is small and does not change for different attenuator settings.

The normal adjustment for the inspect BNC is to see noise between two evenly saturated lines on the oscilloscope (Figure 2). For better walk using fast detectors a setting where the noise just disappears into the bottom line should be used (Figure 3). This will cause some loss in counting efficiency.

4.4 OUTPUTS

Other than the L.E. and C/O inspect output, the CFD has three outputs. There are one slow (wide) and two fast (clipped) outputs.

4.4.1 SLOW OUTPUTS

The slow output is on the front panel and T.T.L. compatible (+3V into 50 ohms) with a width equal to the width of the internal up-dating dead-time one-shot. The dead-time range is from about 50 ns to 1.0μs, and is adjustable internally with a control on the circuit board. The risetime of the slow output is less than 10 nsec.

4.4.2 FAST OUTPUTS

There are two independent negative outputs (-0.8 V into 50Ω). The fast outputs are clipped pulses that occur at the beginning of the dead-time pulse. The fast out pulses are clipped by a built in 20 ns clipper. The risetime of the fast output is less than 2 ns. The two fast negative outputs are on the front panel.
Figure 2. C/O inspect waveform using a fast oscilloscope with normal adjust. connected to a Ge detector.

Figure 3. C/O inspect waveform using fast detectors.
4.5 THREE POSITION MODE SWITCH

4.5.1 CFRR (Constant Fraction with Rise Time Rejection)

This position of the mode switch is used to prevent outputs resulting from input signals that are too slow to obtain a correct constant fraction. Since the leading edge discriminator triggers at a higher level than the crossover discriminator it is possible for a slow risetime signal to cause the leading edge discriminator to trigger after the crossover discriminator. This effect will cause tailing or a satellite peak in a time spectrum. This is avoided by setting the switch to this position.

4.5.2 CF (Constant Fraction)

In the OFF position the slow risetime rejection circuit is disabled and the CFD produces an output for all input signals above the discriminator threshold.

4.5.3 L.E.T. (Leading Edge Timing)

In the L.E.T. mode the module is used as a leading edge discriminator with the same threshold as discussed in the CFD description, (-5mV to -1.0 V).