NIM MODELS 380 & 380A
MULTIPICITY LOGIC UNITS

WARRANTY

All LRS instruments are guaranteed to operate within their specifications for one year from the date of purchase. Under this warranty, any unit which fails to perform within specifications, as a result of defects in workmanship or materials, will be restored to specified operating condition free of charge except for shipping costs involved in the return of the unit to the factory.

In order that this warranty be considered valid, it is necessary that the LRS Warranty Card which accompanies the unit on delivery be completed and returned to the factory within 30 days of receipt of equipment.

All questions concerning repairs or replacement parts should be addressed directly to factory’s Quality Control Manager. This procedure will insure the fastest possible service. Please include the Model Type, Serial Number, and ECN (Engineering Change Number) with all requests for parts or service.

ENGINEERING DEPARTMENT
LeCroy Research Systems Corp.
Spring Valley, New York
NOTE TO THE USER

LeCroy Research Systems is committed to providing unique, reliable, state-of-the-art instrumentation in the field of high-speed data acquisition and processing. Because of this commitment, and in response to information received from the users of our equipment, the Engineering Department at LeCroy is continually seeking to refine and improve the performance of our products.

While the actual physical modifications or changes necessary to improve a model's operation can be implemented quite rapidly, the corrected documentation associated with the unit usually requires more time to produce. Consequently, this manual may not agree in every detail with the accompanying unit. There may be small discrepancies that were brought about by customer-prompted engineering changes or by changes determined during calibration in our Test Department. These differences usually are changes in the values of components for the purposes of pulse shape, timing, offset, etc., and only rarely include minor logic changes. Where any such inconsistencies exist, please be assured that the unit is correct and incorporates the most up-to-date circuitry. Whenever original discrepancies exist, fully updated documentation should be available upon your request within a month after your receipt of the unit.

If you have any questions about the performance or operation of this unit, rapid assistance may be obtained from our Engineering Services Department in Spring Valley, NY, telephone 914-425-2000, or from your local distributor in countries other than the U.S.A.

LeCROY RESEARCH SYSTEMS
See pocket in back of manual for schematics, parts lists, and additional addenda with any changes to manual.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title Page and Warranty</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Photograph and Front Panel Features</td>
<td></td>
</tr>
<tr>
<td>Technical Data Sheet</td>
<td></td>
</tr>
<tr>
<td>General Description</td>
<td>1</td>
</tr>
<tr>
<td>Specifications</td>
<td>1</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>Logic Input Characteristics</td>
<td>2</td>
</tr>
<tr>
<td>Inhibit Input</td>
<td>2</td>
</tr>
<tr>
<td>≥N Outputs</td>
<td>2</td>
</tr>
<tr>
<td>>N Outputs</td>
<td>2</td>
</tr>
<tr>
<td>Double-Pulse Resolution</td>
<td></td>
</tr>
<tr>
<td>Pulsed and Latched Modes</td>
<td></td>
</tr>
<tr>
<td>Linear Sum Output</td>
<td></td>
</tr>
<tr>
<td>Functional Description</td>
<td>4</td>
</tr>
<tr>
<td>Standard LRS Drafting Symbols</td>
<td></td>
</tr>
<tr>
<td>Schematics</td>
<td>Rear Pocket</td>
</tr>
</tbody>
</table>
NIM Model 380A

Multiplicity Logic Unit

The LRS Model 380A Multiplicity Logic Unit for the first time allows easy generation of higher order multiplicity decisions from a large number of counter or chamber logic signals. The unit produces an output whenever \(N \) (or \(> N \)) out of \(M \) input pulses are present, where \(N \) is switch-selectable from 1 to 6, and \(M \) is any number up to 32. Two sets of outputs are provided, one set for the \(= N \) condition and one set for the \(> N \) condition. An additional analog summing output is provided giving an amplitude of \(-50\) mV into 50 \(\Omega \) for each coincident input pulse and a duration equal to the overlap time of the coincident input signals. Since the unit can operate in an ungated mode, and does not require a master strobe signal, it is very useful in trigger pulse generation systems. In systems where a master trigger already exists (e.g., with wire chambers), the Model 380A may be operated in a strobéd mode with either pulse or latched outputs. Input speed is compatible with normal 100 MHz logic and maximum output rate is determined by output width.

In the pulse mode, the duration of the \(= N \) outputs is preset to 20 ns, but is internally adjustable up to 50 ns. The duration of the \(> N \) outputs is front-panel adjustable from 25-100 ns and must be set equal to the maximum possible overlap time of the logic inputs. The \(> N \) outputs are generated approximately 12 ns after the \(> N \) condition is satisfied. The \(= N \) outputs appear somewhat later, approximately 8 ns after the end of the \(= N \) input condition, because of the logical necessity of waiting to insure no \(> N \) condition occurs.

A clear input is provided to reset the unit in the latched mode. For strobéd operation, the veto is driven by a complementary logic signal which goes to zero volts during the strobe interval.

December 1975

Innovators in Instrumentation
SPECIFICATIONS
NIM Model 380A
MULTIPICLITY LOGIC UNIT

INPUT CHARACTERISTICS

Logic Inputs: 32; reflections < 7% for inputs of 2 ns risetime; input range – 650 mV to – 900 mV (NIM level); minimum input width 6 ns.

Veto: Common to all channels; direct-coupled; – 600 mV or greater inhibits; impedance 50 Ω; reflections < 7% for inputs of 2 ns risetime. Veto must overlap logic inputs.

Slow (Bin) Gate: Via rear connector, with rear-panel On-Off switch; risetimes and falltimes approximately 20 ns; quiescently above + 4 volts, clamping to ground inhibits; direct-coupled.

Clear: NIM level; minimum duration 10 ns.

OUTPUT CHARACTERISTICS

> N Outputs: 2 bridged negative outputs (quiescently 0 mA, – 32 mA during output); one complement (quiescently – 16 mA, 0 mA during output); duration variable from 25-100 ns by means of front panel-multiturn potentiometer in pulsed mode, dc level in latched mode. Must be set ≥ maximum possible overlap time of the logic inputs (since it serves to inhibit the = N outputs when present).

= N Outputs: 2 bridged negative outputs (quiescently 0 mA, –32 mA during output); one complement (quiescently –16 mA, 0 mA during output); duration 20 ns (internally adjustable) in pulse mode, dc level in latched mode.

Risetimes and Falltimes: 3 ns.

Analog Summing Output: One; amplitude – 50 mV into 50 Ω for each coincident input pulse; duration equal to the overlap time of the coincident input signals; impedance approx. 6 Ω.

GENERAL

Coincidence Level Control: From 1 to 6 plus “off”; front-panel switch.

Input Double-Pulse Resolution: < 10 ns.

Output Double-Pulse Resolution: < 30 ns.

Modes: Pulse or latched; controls output duration.

Delay: Input-Output, 12 ns for > N output, 8 ns following end of = N condition for = N output.

Packaging: In conformance with AEC standard for nuclear modules (AEC Report TID-20893); RF shielded AEC #1 module fitting 12/bin; dimensions 1.375 x 8.75 x 10 inches deep.

Current Requirements: + 6 V at 95 mA
– 6 V at 400 mA
+ 24 V at 45 mA
Logic Input Characteristics

Because of the large number of inputs and the high multiplicity level offered by the 380, there are important constraints on input amplitude and width. These are particularly important at the higher N settings, and can be relaxed somewhat if the unit is to be used only for lower multiplicities. These constraints can be summarized by saying that the input signals should be between -650 and 900 mV in amplitude and remain above -650 mV for more than 4 nsec. Under no circumstances should double-amplitude signals be used. Normal standard amplitude outputs from LRS discriminators and logic units satisfy these requirements provided output widths are set sufficiently long (in general, a few nsec larger than absolute minimum).

The specified reflection coefficient applies for standard amplitude NIM inputs. Larger than normal inputs (and in particular, double-amplitude inputs) will be clamped by an input-limiting diode and produce very large reflections which can interfere with subsequent events. Again, input amplitude requirements of the unit should be observed.

Inhibit Input

The inhibit input should arrive no later than coincident with the leading edge of the ≥N condition, and should be at least as long in duration as the largest possible ≥N condition. If all the multiplicity inputs are of the same duration (the most usual case), this means simply that the inhibit input should be coincident and of the same duration. If, however, some of the multiplicity inputs are shorter than others, and these short pulses are required to achieve an =N condition, then the inhibit input need only overlap the short pulses. In all situations, the inhibit pulse must be long enough to cover the time dispersion in the inputs in addition to the above minimums. The inhibit input may also be used as an enable by driving it with a complementary (quiescently negative) logic level.

=N Outputs

These outputs are internally preset to approximately 20 nsec. They may be set to other widths from approximately 7 to 100 nsec by changing internal components, as described in the Functional Description section of this manual. These outputs occur approximately 8 nsec after the end of the =N input overlap condition. The =N outputs cannot be produced more promptly, because they
must be inhibited if a >N condition occurs at any time during the coincidence; and this information is not available until the coincidence is over. So =N outputs are produced by triggering from the trailing edge of an >N condition during which no >N condition occurs either early or late.

>N Outputs

These outputs must be set at least as large as the maximum possible =N overlap condition (see the Functional Description section of the manual). Otherwise, >N conditions that occur early in a coincidence will fail to inhibit the =N discriminator, resulting in the production of both =N and >N outputs. Whenever this symptom is observed, the first thing to check is the duration of the >N outputs. If increasing this duration eliminates the effect, then either the duration of, or the time dispersion between, the multiplicity inputs must be reduced, or the >N output duration setting must simply be maintained long.

Double-Pulse Resolution

The maximum permissible rate on any multiplicity input is approximately 110 MHz, limited by the bandwidth of the input limiter circuitry, the rather stringent input width requirements imposed by the high multiplicities and input count of the 380, and the DPR of the >N LD601 discriminator input stage. The output DPR of the 380 is limited by the =N and <N LD601's. The output DPR for =N outputs is approximately 5 nsec plus the =N output width setting, or nominally 25 nsec. Similarly, the DPR for >N outputs is 5 nsec plus the >N output width setting, or roughly 30 to 100 nsec.

Pulsed and Latched Modes

The Model 380 is normally used with outputs of preset duration as described above. However, it is also compatible with register or "DC logic" systems through inclusion of a latch mode in which outputs remain on a DC basis until they are reset by means of the front panel "Clear" input.

Linear Sum Output (Model 380A only)

In addition to all the features of the Model 380, the Model 380A includes linear output proportional to the number of inputs present. Its output is
low impedance, and the proportionality constant is -50 mV per active input. Risetimes and falltimes are approximately 2 nsec. This output permits external variable threshold discriminators to be used to determine several simultaneous multiplicity levels, or, with care, to extend the maximum multiplicity obtainable above 6.
In the following discussions, reference will be made to the Block Diagram above and, occasionally, to the Circuit Diagram. All comments apply to both the 380 and the 380A unless the 380 is specifically excluded.

Logic input signals are first voltage limited at about -700 mV by means of a diode to ground at the input. This limiting is intended to reduce the effects of overshoots or small overloads. It will not take care of double amplitude NIM inputs and such inputs must not be used because of danger of leading edge feedthrough and consequent failure of the coincidence level selection logic, particularly at higher coincidence (N) settings. Also, double amplitude inputs will produce large inverted reflections which will not be absorbed at the source and may cause subsequent valid events to be lost.

After voltage limiting (to about -600 mV) the logic input signals drive precision diode current switches. Each switch delivers -1.00 mA into a 15 Ω summing resistor, resulting in 15 mV developed across this resistor for each active input. This summed voltage is applied to two LD-601 discriminators.
one of which is biased to trigger at \((N-\frac{1}{2}) \times 15\) mV and the second at \((N+\frac{1}{2})\) \(x\) 15 mV. The first gives an output for \(\geq N\) simultaneous inputs and the second for \(\geq N + 1\) (or equivalently, \(>N\)).

The second \((>N)\) discriminator drives directly an output stage which delivers the \(>N\) outputs at the front panel. The duration of these outputs is presettable at the front panel by means of a potentiometer which controls the pulse width of the LD601 discriminator.

The first \((\geq N)\) discriminator produces a positive-going time-over-threshold output that is applied to the input of a third LD601 discriminator. Because this \(>N\) output is positive-going, the LD601 that it drives triggers on its trailing (negative-going) edge. This edge occurs, of course, at the end of the \(>N\) condition of the inputs. If during this time there was no \(>N\) condition, so that the \(>N\) discriminator did not fire, the \(\geq N\) discriminator triggers, delivering an \(=N\) output pulse to the front panel via an output stage. If, however, a \(>N\) condition occurred, the resulting output of the \(>N\) discriminator holds the \(=N\) discriminator inhibited, and there is no \(=N\) output. Note that the \(>N\) output must be long enough to completely overlap the entire \(>N\) time in order to assure inhibition of the \(=N\) output. In practice, this means that the \(>N\) output duration must be set no less than the duration of the longest possible \(=N\) overlap time, usually equivalent to the duration of the input pulses. This is the reason for the adjustable output duration for the \(>N\) output provided on the Model 380.

The width of the \(=N\) outputs is internally set to about 20 nsec. It may be altered by changing the resistor to +6 V and/or capacitor to ground at pin 3 of the \(=N\) LD601. The resistor should be kept in the range from 3 to 15 K, and the capacitor from 13 to 100 pf.

The bias levels for the first two LD601's (\(>N\) and \(\geq N\)) are set by a unity gain op amp whose input is connected to taps on a precision voltage divider by the front panel N-select switch. An internal trimmer pot for each LD601 permits compensation for offset voltages in the op amp and in the 601's themselves. In addition, the trimmer pot for the \(>N\) LD601 is used to offset its threshold setting approximately -15 mV from the reference voltage.

In the Latch mode, the width circuits of the \(>N\) and \(=N\) discriminators are biased off, so that once triggered these discriminators remain locked on until they are reset by application of a pulse to the Clear input.
NPN TRANSISTOR

PNP TRANSISTOR

FIELD EFFECT TRANSISTORS (FET)

JUNCTION GATE
N CHANNEL
DEPLETION TYPE

INSULATED GATE
P CHANNEL
DEPLETION TYPE

INSULATED GATE
N CHANNEL
ENHANCEMENT TYPE

INSULATED GATE
P CHANNEL
ENHANCEMENT TYPE

JUNCTION GATE
P CHANNEL
DEPLETION TYPE

Vmos (INSULATED V GATE)
N CHANNEL
ENHANCEMENT TYPE

INSULATED GATE
N CHANNEL
DEPLETION TYPE
- "AND" gate
- (Equivalent)
- "OR" gate
- "NAND" gate
- "NOR" gate

- Exclusive OR gate
- Non-inverting buffer
- Inverter or inverting buffer

- 4-input NAND
- 4-input NOR

- Asterisk drawn inside device refers to open-collector output.

- TL
 Hysteresis symbol indicates Schmitt trigger

LeCroy RESEARCH SYSTEMS

<table>
<thead>
<tr>
<th>DRAWN</th>
<th>STANDARD DRAFTING SYMBOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. MALM</td>
<td>DIGITAL I.C.S - TTL</td>
</tr>
</tbody>
</table>

CHECKED: GALLANT

DATE: 3/13/79

DRAWING NUMBER: SHEET 4 OF 6 ECO NO DATE
POS. EDGE-TRIGGERED CLK.
INPUT

NEG. EDGE-TRIGGERED CLK.
INPUT

TO INDICATE INVERTED SIGNAL,
USE EITHER THE BAR OVER
THE SIGNAL NAME, OR THE
INVERSION "BUBBLE", BUT
NOT BOTH.

SHOW THE NORMAL (STD.)
POSITION OF A JUMPER
OPTION AS A SOLID ARC.
OTHER POSITIONS ARE
SHOWN AS DASHED ARCS.

DIP RESISTOR ARRAYS AND SWITCHES
ARE SHOWN AS ONE DEVICE.

THIS LABEL INDICATES THAT A HIGH STATE
ENABLES THE SHIFT MODE, AND A LOW
STATE ENABLES THE LOAD MODE.

MEMORY ARRAYS (OR OTHER I.C.'S)
WITH COMMON CONNECTIONS
MAY BE SHOWN IN THIS COMPRESSED
FASHION.
D-TYPE FLIP-FLOP

J-K FLIP-FLOP

4-BIT UP/DOWN COUNTER

MONOSTABLE MULTIVIBRATOR

BCD TO DECIMAL DECODER

These are examples of commonly used symbols for TTL devices.

Positive logic convention is observed. The high state (logical "1") is more positive than the low state.
101 246 **2 PC STOCK DBL SIDED 1 OZ
102 245 103 CAP CERA DISC 25V .01 UF 20% Y5F
102 444 560 CAP CERA DISC 100V 56 PF 10% S3N
102 944 **75 CAP CERA DISC 1KV 7.5 PF 10% S2L
103 327 103 CAP CERA MONO 50V .01 UF 20% GENERAL PURPOSE
105 228 103 CAP MUCON RIBB LD .01 UF SUPER-K CERA 25V 30%
116 515 101 CAP DIP MICA DM10 100 PF
116 515 270 CAP DIP MICA DM10 27 PF
142 124 476 CAP TANT DIP CASE 47 UF 6.3 VOLT 20%
142 824 685 CAP TANT DIP CASE 6.8 UF 35V 20%
158 819 **1 CAP VARI CERA 3.2-18 PF
161 335 27 RES COMP 1/4W 5% 2.7 OHMS
161 335 101 RES COMP 1/4W 5% 100 OHMS
161 335 102 RES COMP 1/4W 5% 1 K
161 335 105 RES COMP 1/4W 5% 1 MEG
161 335 111 RES COMP 1/4W 5% 110 OHMS
161 335 122 RES COMP 1/4W 5% 1.2 K
161 335 152 RES COMP 1/4W 5% 1.5 K
161 335 153 RES COMP 1/4W 5% 15 K
161 335 162 RES COMP 1/4W 5% 1.6 K
161 335 182 RES COMP 1/4W 5% 1.8 K
161 335 200 RES COMP 1/4W 5% 20 OHMS
161 335 202 RES COMP 1/4W 5% 2 K
161 335 240 RES COMP 1/4W 5% 24 OHMS
161 335 241 RES COMP 1/4W 5% 240 OHMS
161 335 301 RES COMP 1/4W 5% 300 OHMS
161 335 302 RES COMP 1/4W 5% 3 K
161 335 331 RES COMP 1/4W 5% 330 OHMS
161 335 332 RES COMP 1/4W 5% 3.3 K
161 335 391 RES COMP 1/4W 5% 390 OHMS
161 335 471 RES COMP 1/4W 5% 470 OHMS
161 335 510 RES COMP 1/4W 5% 51 OHMS
161 335 560 RES COMP 1/4W 5% 56 OHMS
161 335 562 RES COMP 1/4W 5% 5.6 K
161 335 621 RES COMP 1/4W 5% 620 OHMS
161 335 821 RES COMP 1/4W 5% 820 OHMS
161 335 822 RES COMP 1/4W 5% 8.2 K
168 531 201 RES PREC RN55D 10.0 OHMS
168 531 209 RES PREC RN55D 12.1 OHMS
168 531 247 RES PREC RN55D 30.1 OHMS
168 531 326 RES PREC RN55D 200 OHMS
168 531 338 RES PREC RN55D 267 OHMS
168 531 403 RES PREC RN55D 1.27 K
168 531 460 RES PREC RN55D 4.99 K
168 531 477 RES PREC RN55D 7.50 K
168 531 481 RES PREC RN55D 8.25 K
168 531 518 RES PREC RN55D 20.0 K
168 531 535 RES PREC RN55D 30.1 K
168 531 554 RES PREC RN55D 47.5 K
181 447 103 RES VARI CERMET 10 K 1/2W 10% 3/8" SQ .150 WIDE TOP ADJUST
181 457 103 RES VARI CERMET 10 K 1/2W 10%
181 457 501 RES VARI CERMET 500 OHMS 1/2W 10%
182 527 103 RES VARI CERMET 10 K 3/4W 10%
208 *11 **1 IC SINGLE OP AMP UA741C DIP-8
208 *11 **3 IC SINGLE OP AMP LM301AN DIP-8
208 *74 **2 IC DIFF AMPL CA3049 DUAL PKG/12-LEAD "TO" CAN
210 *40 **2 IC AMPLITUDE DISCR LD601C DIP-16
230 110 **3 DIODE SWITCHING FD 777
230 110 **5 DIODE SWITCHING 1N4448
235 *10 **5 DIODE RECTIFIER 1N4005
240 225 703 DIODE ZENER 3.45V 1N703A 250MW
240 225 705 DIODE ZENER 4.85V 1N705A 250MW
253 *10 835 DIODE HOT CARRIER HP2835 H-P CASE 15
270 130 401 TRANSISTOR NPN A401 TO-72
270 150 **1 TRANSISTOR NPN 2N3053 TO-5
275 150 **3 TRANSISTOR PNP 40319 TO-5
275 170 **2 TRANSISTOR PNP 2N5771 TO-92 SEE 275-170-004(MPS3640)
300 *10 **1 BEAD SHIELDING FERRITE
300 *50 **1 CHOKE FERRITE SINGLE LEAD
400 *10 **8 SOCKET IC ST DIP-8 BONDED TIN CONTACTS/COPP-NICKEL PINS
400 *30 **16 SOCKET IC ST DIP-16 BONDED TIN CONTACTS/COPP-NICKEL PINS
402 *30 **0 CONNECTOR CO-AXIAL LEMO
402 *30 **2 SPANNER NUT SMALL DD LEMO
402 *30 **3 GROUND LUG NONLOCK LEMO
405 112 **1 CONNECTOR BLOCK (PIN) 42 "MIXED"
405 212 **2 GUIDE PIN (MALE) CADMIUM PLATED BRASS
405 213 **1 GUIDE PIN (MALE) BRASS
405 312 **1 GUIDE PIN (FEMALE) CADMIUM PLATED BRASS
405 410 **16 CONNECTOR PIN (MALE) A/R
405 613 **1 CONNECTOR HOOD CADMIUM PLATED STEEL/INT CLOSED END
410 112 102 SWITCH TOGGLE SPDT ON-NONE-ON/2 POS LOCKING
412 111 **1 SWITCH ROTARY 1P7T 36 DEGR
500 120 **2 TRANSIPAD "LARGE"
536 111 **1 KNOB, SKIRTED W/POINTER ALU KNUERLED FOR 1/8-INCH SHAFT
540 102 **1 FRONT PANEL NIM SIZE #1
540 103 102 SIDE COVER NIM LEFT
540 103 103 SIDE COVER NIM RIGHT
540 104 101 WRAPAROUND NIM SIZE #1 WITH BIN GATE
540 105 **1 BRACKET NIM WRAP SIZE #1
555 611 **1 CAPTIVE SCREW 6-32
555 621 **2 CAPTIVE SCREW RETAINER STAINLESS STEEL (FORMERLY PLATED BRA
555 632 **1 SET SCREW HEX 6-32X3/16 USED W 536 111 001/STAINL/CUP POINT
567 256 **4 SCREW FLAT PHIL 2-56X1/4
585 141 237 RIVET "POP" ALU 1/8X.237 BUTTONHEAD 1/8 DIA .237 LONG
710 380 *13 PC BD PREASS'Y 380A
710 380 *23 PC BD PREASS'Y 380A-1
720 380 *13 FRONT PNL PREASS'Y 380A 540102001(1)555621002(2)
740 **0 **2 WRAPAROUND NIM 1 BIN GATE 540104101(1)

NOTES 1 USES TWO PC BOARDS
NOTES 2
NOTES 3
NOTES 4
NOTES 5
NOTES 6
NOTES 7
NOTES 8
NOTES 9
NOTES 10
NOTES 11
NOTES 12
NOTES 13
<table>
<thead>
<tr>
<th>ECO No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>975</td>
<td>11-19-75</td>
<td>PARTS LIST CHANGES ONLY</td>
</tr>
<tr>
<td>008</td>
<td>12-22-75</td>
<td>PARTS LIST ONLY: ALL 430 TRANSISTORS CH. TO A401</td>
</tr>
<tr>
<td>018</td>
<td>1-5-76</td>
<td>PARTS LIST CORRECTION ONLY</td>
</tr>
<tr>
<td>022</td>
<td>1-7-76</td>
<td>PARTS LIST CORRECTION ONLY: .01 ERIE REDCAP ADDED</td>
</tr>
<tr>
<td>091</td>
<td>3-19-76</td>
<td>ALL 10 MDB 101 DIODES CHANGED TO HP2835/ PARTS LIST ONLY: HARDWARE CORRECTION.</td>
</tr>
<tr>
<td>233</td>
<td>9-15-76</td>
<td>LD601D CHANGED TO LD601C</td>
</tr>
<tr>
<td>325</td>
<td>2-16-77</td>
<td>CORRECTED ASSEMBLY DRAWING</td>
</tr>
<tr>
<td>396</td>
<td>5-18-77</td>
<td>CORRECTED ASSEMBLY DRAWING AND PARTS LIST</td>
</tr>
<tr>
<td>399</td>
<td>5-20-77</td>
<td>CHANGED 33 pF TO 50 pF ON SMALL BOARD/ REMOVED WIRE WITH 3 BEADS AND REPLACED WITH 50 OHM RESISTORS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT IC'S A&B PIN 11/ ADDED 7.5 pF CAP TO TOP SIDE OF BOARD NEAR IC'S A&B PIN 11 TO GROUND AS SHOWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON CHART SHORTEST POSSIBLE LEADS/ REPLACED WIRE WITH 3 BEADS WITH SHORT BUS WIRE ON SMALL WIRE.</td>
</tr>
<tr>
<td>449</td>
<td>8-26-77</td>
<td>ADDED 6.8 μF CAP TO ASSEMBLY DRAWING ONLY</td>
</tr>
<tr>
<td>503</td>
<td>10-18-77</td>
<td>ASSEMBLY CORRECTION ONLY</td>
</tr>
<tr>
<td>563</td>
<td>1-9-78</td>
<td>CORRECTED PARTS LIST ONLY</td>
</tr>
<tr>
<td>1001</td>
<td>2-2-78</td>
<td>CHANGED 1N4001 DIODE TO 1N4005.</td>
</tr>
<tr>
<td>1002</td>
<td>5-5-78</td>
<td>REPLACED 43.2K ±1% RESISTOR(IN SEREIS WITH THE 10K POT FROM PIN3 IC TO PIN 2 IC E (SHEET 1 OF SCH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AFFECTED).</td>
</tr>
<tr>
<td>1003</td>
<td>8-9-78</td>
<td>PARTS LIST UPDATED ONLY</td>
</tr>
<tr>
<td>1004</td>
<td>6-1-79</td>
<td>PARTS LIST CORRECTED ONLY. (PRIORITY 4)</td>
</tr>
<tr>
<td>1005</td>
<td>6-24-80</td>
<td>REPLACED ALUMINUM SET SCREW WITH STEEL ONE Part #555-632-001</td>
</tr>
</tbody>
</table>

Remarks:
- On Priorities
 1. Recall, field retrofit
 2. Rework shippable units
 3. Rework units in fabrication, assembly or test
 4. Improvements for future MO's

LeCROY RESEARCH SYSTEMS CORPORATION
WEST NYACK, NEW YORK

ENGINEERING CHANGE ORDERS

<table>
<thead>
<tr>
<th>DRAWN</th>
<th>CHECKED</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>380A</td>
</tr>
</tbody>
</table>

DATE

DRAWING No.