Operating Manual
16-channel preamplifier CPA16
Rev.B

multichannel systems

Multi Channel Systems
MCS GmbH
Markwiesenstrasse 55
D-72770 Reutlingen
Germany
phone: +49 (0) 71 21 / 50 30 10
fax: +49 (0) 71 21 / 50 30 11
info@multichannelsystems.com
www.multichannelsystems.com
Imprint

All rights reserved
© Copyright by: Multi Channel Systems MCS GmbH
Markwiesenstrasse 55, D-72770 Reutlingen, Germany

Printed in Germany, April 2002
This manual may only be printed or otherwise reproduced with the expressed written approval of Multi Channel Systems MCS GmbH.
Any reproduction, distribution or storage on data carriers not authorized by Multi Channel Systems MCS GmbH of any description, represents a contravention of the applicable law of copyright and is subject to prosecution. Technical modifications for the purpose of improving the device described or increase the safety of operation are strictly reserved - even without special notification.

Publisher responsible for the contents:
Multi Channel Systems MCS GmbH
Markwiesenstrasse 55
D-72770 Reutlingen
Germany
info@multichannelsystems.com
www.multichannelsystems.com

Editing and layout:
Multi Channel Systems MCS GmbH
Germany

Foreword
This manual will help you to become acquainted with the 16-channel CPA16 and its proper use. Important safety instructions and warnings will help you to operate the 16-channel preamplifier CPA16 safely and competently.
The right to make technical modifications is reserved.
# Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DESCRIPTION</td>
<td>6</td>
</tr>
<tr>
<td>PHYSICAL DIMENSIONS</td>
<td>8</td>
</tr>
<tr>
<td>DEVICE SPECIFICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>ELECTRICAL CONNECTIONS &amp; POWER SUPPLY</td>
<td>10</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td>10</td>
</tr>
<tr>
<td>SIGNAL CONNECTIONS</td>
<td>11</td>
</tr>
<tr>
<td>POINTS OF MEASUREMENTS</td>
<td>14</td>
</tr>
<tr>
<td>TEST MEASUREMENT OF PA3300 &amp; CPA16</td>
<td>15</td>
</tr>
<tr>
<td>HARDWARE AND SOFTWARE</td>
<td>16</td>
</tr>
<tr>
<td>SERVICE</td>
<td>16</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>17</td>
</tr>
<tr>
<td>PRINCIPLE ELECTRONIC DESIGN OF CPA16</td>
<td>18</td>
</tr>
<tr>
<td>ELECTRONIC DESIGN OF PREAMPLIFIER MODULE PA3300</td>
<td>19</td>
</tr>
<tr>
<td>PRINTED CIRCUIT LAYOUT OF PA3300</td>
<td>20</td>
</tr>
<tr>
<td>PRINTED CIRCUIT LAYOUT OF MAIN BOARD</td>
<td>21</td>
</tr>
<tr>
<td>CHECK OF PREAMPLIFIER MODULES PA3300 / TESTVERSION</td>
<td>22</td>
</tr>
<tr>
<td>TO DO – STEPS FOR CHANGING OF CPA16 PARTS</td>
<td>23</td>
</tr>
<tr>
<td>LIST OF SERIAL NUMBERS OF PA3300 &amp; CPA16</td>
<td>24</td>
</tr>
</tbody>
</table>
CPA16 with 16 channels, low bias up to 500 volts, bias & test input
preamplifier module
PA3300

the device CPA16, housing & printed circuit board
Short Description

The Multi Channel Systems device CPA16 is a complex electronic equipment for analog signal processing of (multi-channel) detectors like microstrip silicon detectors (MSSD), proportional counter (arrays) or position-sensitive detectors (PSD). The main parts consist of an analog board with the precision pre- & shaping amplifier modules PA3300 and a high voltage de-coupling network. The device includes a power supply stage stabilizing the voltages need for operation. The modules PA3300 are low noise and high stability preamplifier with internal pole-zero cancellation. Key parameters of PA3300 have been specified by the customer; i.e. decay time, gain, shaping time, signal width.

In a first stage of the preamplifier PA3300, the current signal of a detector will be transformed in a voltage signal. The following stage of PA3300 modifies and amplifies the signal with the aim to create the analog signal with a timing specified by the customer. The total analog conversion of the high gain stage is set to about 2 V / pC, the conversion of the low gain is set to about 0.1 V / pC. The shaped analog pulse has a width of about 3 μs. Therefore, a high counting rate of at least 100 kHz can be applied without pulse pile-up. The outputs are able to drive a 50 Ω cable with an amplitude of ±2 V.

The detector signals are delivered to the device using a multiple pin connector on the front side of the housing consisting of aluminium. A test input connector of BNC type is installed on the front. For signal output, a multiple pin connector is mounted on the housing’s rear side.
On the rear side of the equipment’s housing, 2 green LED's are installed indicating the correct working power. The customer delivers the raw voltages need for working of the equipment parts. These voltages can range from ±6.0 V to ±12.0 V. Due to the fact, that each of the preamplifier consumes about 0.05 amperes of the positive and of the negative rail, it causes a lot of power loss dissipation. Therefore, a supply voltage of about 6 V is recommended. The temperature of the environment should be limited to about 40 °C. The stabilization stage is mounted on a heat sink. The power supply has a short-circuit protection and is protected against over-temperature. The advantage of the used linear regulation technique is the low noise compared to a switched mode power supply. The power is delivered to the electronics using a 3-pin LEMOSA connector.

The high voltage will be in-coupled using a SHV male connector mounted on the front side of the housing. The maximum rate should not exceed 500 V if the customer uses the multiple pin connectors. Otherwise you risk to damage the equipment.
Physical Dimensions

CPA16

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total width:</td>
<td>169 mm</td>
</tr>
<tr>
<td>total length:</td>
<td>200 mm</td>
</tr>
<tr>
<td>total height:</td>
<td>52 mm</td>
</tr>
</tbody>
</table>

Weight

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>net:</td>
<td>2.0 kg</td>
</tr>
<tr>
<td>ship:</td>
<td>5.0 kg</td>
</tr>
</tbody>
</table>

Important note!

For safety use and for your own health, do not remove the cover of the housing before switching off the high voltage. Wait for discharge of high voltage capacities before opening the housing!
Device Specifications

CPA16
  channel number 16
  preamplifier PA3300, modular
  HV network installed

Connectors
  signal input 34pin 2-row connector, Au plated
  HV input SHV
  test input BNC
  signal output 34pin 2-row connector, Au plated
  power supply 9pin Sub-D connector (supply side)
  power supply 3pin LEMOSA, type 1S (device side)

PA3300 (intern)
  low gain stage 0.09 V / pC
  high gain stage 1.63 V / pC
  decay time 220 μs (only internal observable)
  shaping time 100 ns
  e' noise equivalent about 1200
  power supply voltage ± 5.0 V
  power supply current ± 50 mA each module
  input protection network built of clamping diodes

POWER SUPPLY
  external
    supply voltage from ± 6.0 V to ± 12.0 V
  internal
    positive rail voltage: + 5.0 V
    current: + 0.8 A
    negative rail voltage: - 5.0 V
    current: - 0.8 A

OPERATING TEMPERATURE
  air temperature: $T_a = 10^\circ C$ to 40°C
Electrical Connections & Power Supply

Power Supply

The supply voltage ranges from ±6.0 V to ±12.0 V.

The internal power supply voltages are 5.0 V, positive and negative polarity. The stabilization is made using the linear regulation technique. The power loss dissipated is distributed to the environment using heat sinks.

Internal power supply:
- positive rail:
  - supply voltage: + 5.0 V
  - supply current: + 0.8 A
- negative rail:
  - supply voltage: - 5.0 V
  - supply current: - 0.8 A

⚠️ Attention: Do not mismatch the polarity of the external power supply. False connection will harm the unit permanently.

Pin layout of the power supply connector, type LEMOSA 1S

![Pin layout diagram]

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>positive rail</td>
<td>U &gt; + 6.0 V</td>
</tr>
<tr>
<td>2</td>
<td>negative rail</td>
<td>U &lt; - 6.0 V</td>
</tr>
<tr>
<td>3</td>
<td>ground connection</td>
<td></td>
</tr>
</tbody>
</table>

The power cable connector on the supply side is a male 9pin SUB-D connector. The pins used are: pin 1 & 2 for ground, pin 5 for positive voltage and pin 8 for negative voltage. These pins are used due to the fact that the pins 4, 6, 7 and 9 deliver the NIM standard voltages of ±12 V and of ±24 V. Be careful, wrong connections may be damage power supply bin.
Signal Connections

Several signal connections have to be made before using the device. On the front side of CPA16, the connectors for input signals, for the high voltage and, optionally, for testing the device are located. The output signal connector, the power supply connector and 2 LEDs are mounted on the rear side.

Each of the connections are described now briefly.

Front Panel Connection

- SHV - high voltage input. Note: if the input signal connector is not from a HV type, please use only voltages up to about 500 V.

![Diagram of SHV connection]

- BNC – test input (terminated by 50 ohms internally)

![Diagram of BNC connection]
- input signal connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>channel 1</td>
</tr>
<tr>
<td>3</td>
<td>channel 2</td>
</tr>
<tr>
<td>5</td>
<td>channel 3</td>
</tr>
<tr>
<td>7</td>
<td>channel 4</td>
</tr>
<tr>
<td>9</td>
<td>channel 5</td>
</tr>
<tr>
<td>11</td>
<td>channel 6</td>
</tr>
<tr>
<td>13</td>
<td>channel 7</td>
</tr>
<tr>
<td>15</td>
<td>channel 8</td>
</tr>
<tr>
<td>17</td>
<td>channel 9</td>
</tr>
<tr>
<td>19</td>
<td>channel 10</td>
</tr>
<tr>
<td>21</td>
<td>channel 11</td>
</tr>
<tr>
<td>23</td>
<td>channel 12</td>
</tr>
<tr>
<td>25</td>
<td>channel 13</td>
</tr>
<tr>
<td>27</td>
<td>channel 14</td>
</tr>
<tr>
<td>29</td>
<td>channel 15</td>
</tr>
<tr>
<td>31</td>
<td>channel 16</td>
</tr>
</tbody>
</table>

All other pins are connected to ground!
Rear panel connections

The power connector is mounted on the rear side of the housing. The pin layout is described above. Two green LED's are also installed on the rear panel. They indicate the stabilized 5 V of both polarities. A non-permanent illumination indicates a failure of the power stage: an over-temperature, a short-circuit or a voltage reduction. The next section shows the pin layout of the output signal connectors which is from 34pin 2-row type with Au plated contacts.

- output signal connectors

```
pin 1.2
pin 3.4
```

```
1) channel 1
3) channel 2
5) channel 3
7) channel 4
9) channel 5
11) channel 6
13) channel 7
15) channel 8
17) channel 9
19) channel 10
21) channel 11
23) channel 12
25) channel 13
27) channel 14
29) channel 15
31) channel 16

All other pins are connected to ground!
```

The outputs are delivered using 2 connectors having the same pin layout. The difference consists of the signal amplification: one delivers the low gain signals, the other one the high gain signals.
Points of Measurements

Analog signals
The signals delivered by the preamplifiers PA3300 can be checked using the free pads on the main board shown in the next figure. The pads are on the output side of PA3300. Note: Please use only the professional measuring tools to check the individual preamplifier signals yourself.

Power supply
The supply voltage can be measured on some points on the main board. Be careful, short circuits of the power supply input line can destroy the external power stage! The measuring point are situated in front of the regulator IC’s.

The measuring point are indicated using the following markers:
- ALxx: low gain output of channel xx
- AHxx: high gain output of channel xx
- PS_P: positive internal voltage
- PS_N: negative internal voltage
- PS_GND: ground
Test Measurement of PA3300 & CPA16

Each of the 16 PA3300 modules has been checked for proper work. The figure on the right is an example of such measurement.

The line (depicted by 1 on the left) is a typical preamplifier pulse response of a square wave signal on the test input. The signal has an amplitude of about 4 V, the line (depicted by 2) has 200 mV.

On the right column of the figure, the width and the rise time of the two signals are indicated. CH1 is the test signal.

All modules have been checked using the settings as described above. The notes of the measurements are available in the appendix.

Several checks have been done after mounting the printed circuit board of the analog part into the housing. One of there concerns the power distribution to the main board. The voltages have been measured and found to be correct. A next step has checked the power consumption with all installed PA3300 modules.

After mounting the analog main board into the housing, the high voltage stability has been tested using a HV power supply. All the detector inputs have been connected to a test circuit simulating a detector capacity of about 100 pF.

The figure on the right gives an example of the high repetition frequency of PA3300. The input signal is a square wave with an amplitude of about 105 mV.
Hardware and Software

1) 16-channel preamplifier device CPA16 incl.
   • 1 analog board
   • 16 units preamplifier module PA3300
   • 1 3-wire power supply cable
   • 1 flat band cable with a 34pin connector

2) 2 spare unit preamplifier module PA3300
3) this manual

Service

Multi Channel Systems offers a fast factory repair service with quality check. Please contact Multi Channel Systems or your local representative before shipping your device. Please include a detailed description of the malfunction and send it to the address indicated on the front page of this manual.
Appendix

1) principle electronic design of CPA16
2) electronic design of PA3300
3) printed circuit board of PA3300
4) printed circuit board of main board
5) PA3300 module check
6) to do – steps for installing / changing of CPA16 parts
7) list of serial numbers of PA3300 & CPA16
Principle electronic design of CPA16
Electronic design of preamplifier module PA3300
PA3300 inverting mode
MCS - Project: MSU 08 / 2000
Ser. No. 00xx...00xx
Printed circuit layout of main board
Check of preamplifier modules PA3300 / testversion

<table>
<thead>
<tr>
<th>Channel 1</th>
<th>Channel 2</th>
<th>Channel 3</th>
<th>Channel 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
</tr>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
</tbody>
</table>

Diagram showing waveforms and data points.
To do – steps for changing of CPA16 parts

This subsection describes the steps for replacing preamplifier modules. The customer should pay highest attention to exclude electrostatic discharges during the work. Please use only the right mechanical tools for screws and nuts. Please be careful if you change preamplifier modules. Do not bend the module pins.

Changing PA3300 modules

- switch off the power supply
- disconnect all external connections
- open the device on the rear side
- disconnect the internal power supply connector
- remove the rear panel
- open the device on the front side
- take out the main board
- change the module of interest
- take the steps described vice versa to close the device
List of serial numbers of PA3300 & CPA16

device CPA16 SN021
   non-inverting mode
   PA3300 with SN from 0191 to 0206

device CPA16 SN022
   non-inverting mode
   PA3300 with SN from 0207 to 0222

device CPA16 SN023
   non-inverting mode
   PA3300 with SN from 0223 to 0238

spare units non-inverting mode SN from 0075 to 0080

device CPA16 SN024
   inverting mode
   PA3300 with SN from 0141 to 0156

device CPA16 SN025
   inverting mode
   PA3300 with SN from 0157 to 0172

device CPA16 SN026
   inverting mode
   PA3300 with SN from 0173 to 0188

spare units inverting mode SN from 0135 to 0140