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Abstract

The symmetry term in the standard semiempirical formula for binding energy

has a volume character. However, as we demonstrate, the description of bind-

ing energies for light nuclei requires an inclusion of the surface symmetry en-

ergy in the binding-energy formula. The symmetry volume and surface ener-

gies combine in the formula like energies of two capacitors in parallel. A finite

surface symmetry energy necessarily implies the existence of nuclear asymme-

try skins, describable in terms of the ratio of symmetry energy volume parame-

ter α to an analogous surface parameter β. Using available binding energy and

skin data, we constrain the parameter values, finding 27MeV . α . 32MeV

and 10.0MeV . β . 12.5MeV. We demonstrate in the Thomas-Fermi the-

ory that the emergence of surface symmetry energy is related to the drop of

symmetry energy per nucleon S with density and we constrain that drop, at

half of the normal density ρ0, to 0.56 . S(ρ0/2)/S(ρ0) . 0.81 (S(ρ0) ≡ α).

We examine modifications to the nuclear asymmetry vibrations produced by
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the emergence of surface asymmetry. We demonstrate that the giant dipole

resonance changes its nature from a surface to a volume mode as the nuclear

mass increases.
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ergy, nuclear skin, giant resonance

PACS numbers: 21.10.Dr, 21.10.Gv, 21.60.Ev, 21.65.+f

Typeset using REVTEX

2



I. INTRODUCTION

Changes in the nuclear properties and in reaction dynamics under the changing nucleon

content within a system attract attention in the context of the exotic nuclear beams [1].

Determination of the density dependence of symmetry energy, describing the rise in nuclear

energy with increasing asymmetry between neutrons and protons, could permit extrapola-

tions to the limit of neutron matter and determinations of neutron star properties [1,2]. The

nuclei with a significant excess of neutrons over protons tend to be characterized by larger

radii for the neutron than proton distributions, i.e. exhibit neutron skins. It has been noted,

within nuclear mean-field calculations [3–6], that the skin size, in particular, could provide

information on the density dependence of the symmetry energy.

Most elementary information on nuclear properties stems from the semiempirical energy

formula describing the average changes in nuclear binding energy with the nucleon content

[7,8]. The volume and surface terms in the standard formula pertain to symmetric systems.

The volume coefficient provides the binding energy per nucleon in the symmetric nuclear

matter; the surface coefficient, up to a factor, provides the surface tension. Notably, the

symmetry term in the standard energy formula has a volume character only. However,

elementary arguments indicate that the surface tension should depend on particle asymme-

try. In this paper, we explore the consequences of such dependence. We demonstrate that,

besides a modification of the energy formula to include the surface symmetry energy, the

dependence necessarily implies an emergence of the asymmetry skin. The particle asymme-

try shifts between the interior and surface to minimize the energy in the ground state. With

the addition of a single additional coefficient in the energy formula, we are able to improve

the description of nuclear binding energies and obtain a description of the skin systematics.

Our considerations are completely elementary. Similar considerations may be applied to

any macroscopic binary system with an interface, such as between two phases [9]. Notably,

the surface symmetry energy is present in the nuclear droplet model [10] where the relative

displacement of the nuclear neutron and proton surfaces is a basic model parameter and, as
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such, a starting point. However, the multitude of other details in that model, however

otherwise useful, can easily shroud the generality of results on asymmetry. Additional

difficulty is brought upon by different definitions of the surface energy there [11,12], leaving a

possible room for our basic exposition. The minimal number of parameters in our treatment

has a chance of making the quantitative conclusions robust.

As one application of our results, we show how the emergence of the surface asymmetry

excess modifies the giant resonances in nuclei. As the nuclear size changes, the nature of

the surface boundary condition for asymmetry vibrations changes. For the case of the giant

dipole resonance, the vibration changes from one that is closer to the Goldhaber-Teller type

[13] to one closer to the Steinwedel-Jensen type [14].

We constrain the symmetry volume and surface energy coefficients by using data on

nuclear masses [15] and on neutron skins [16–23]. Within the Thomas-Fermi theory, we

demonstrate that the emergence of surface symmetry energy is associated with the fall of

symmetry energy per nucleon with density. Combining our constraints and the results from

nuclear mean-field models in the literature [6], we constrain the low-density drop in the

symmetry energy.

The paper is organized as follows. In the next section, we discuss the symmetry energy

within the binding-energy formula and we analyze known masses in terms of a modified

formula to constrain the symmetry energy parameters. In Sec. III, we derive an expression

for the nuclear skin size in terms of the symmetry parameters and we analyze data on

skins to obtain additional constraints. The asymmetry oscillations are discussed in Sec.

IV. Connections to the microscopic theory are established in Sec. V. Our results are

recapitulated in Sec. VI.
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II. BINDING ENERGY FORMULA

A. Elementary Considerations

We start out with a reminder of elementary issues. The Weizsäcker nuclear energy

formula [7,8]

E = −aV A + aS A2/3 + aa
(N − Z)2

A
+ aC

Z(Z − 1)

A1/3
, (1)

separates out different contributions to the nuclear energy. The negative r.h.s. volume

term represents the energy in the bulk limit of symmetric nuclear matter in the absence of

Coulomb interactions. Proportionality to the mass number A for that largest in magnitude

term, together with an approximately constant nucleon density ρ0 = 3/(4π r3
0) ' 0.160 fm−3

in the nuclear interiors, underscore the short-range nature of nuclear interactions. The three

subsequent terms in the Weizsäcker formula represent an increase in the energy compared to

the bulk symmetric limit. Those terms are associated with the surface, with an asymmetry

in the number of protons Z and neutrons N and with the Coulomb repulsion, respectively.

Regarding the (a)symmetry term in the Weizsäcker formula, we observe that this term scales

like A when the nucleon number is changed and that we do not have a surface (a)symmetry

energy term, scaling like A2/3. The N -Z asymmetry reduces the binding because of the

enhanced role of Pauli principle and because the like-nucleon interactions are less attractive

than the neutron-proton interactions.

With the radius of the volume per nucleon r0, the size of the nuclear surface is S =

4π r2
0 A2/3, and we can write the surface energy as

ES = aS A2/3 =
aS

4π r2
0

S . (2)

The tension σ is the derivative of energy with respect to surface area:

σ =
∂E

∂S =
aS

4π r2
0

. (3)

The tension represents a work per unit area needed to create the surface. The work is

required because the nucleons at the surface are less bound than in the interior. However,
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we know that the N -Z asymmetry reduces the interior binding. Thus, with an increasing

asymmetry, the work required per unit surface, the tension, should drop. Coulomb effects

will also affect the surface, but will be dealt with later.

As a microscopic quantity, the tension should depend on a microscopic quantity associ-

ated with the particle asymmetry. The respective quantity common for different subsystems

in contact is the chemical potential. With the nucleon chemical potentials given by

µn =
∂E

∂N
and µp =

∂E

∂Z
, (4)

the potential conjugate to the asymmetry N−Z is half of the the nucleon potential difference,

µa = (µn − µp)/2, and the change in energy associated with the particle numbers is:

dE = µn dN + µp dZ = µ dA + µa d(N − Z) , (5)

with the average chemical potential µ = (µn + µp)/2.

Given that the tension should drop no matter whether a neutron or proton excess devel-

ops, the tension needs to be, in lowest order, quadratic in the asymmetry potential µa:

σ = σ0 − γ µ2
a (6)

where γ > 0. As tension is a derivative of the surface energy, the dependence of σ on

µa implies the dependence of the surface energy on µa, with serious consequences. To

demonstrate these, let us construct the thermodynamic potential generated by the Legendre

transformation from the asymmetry N − Z to the potential µa:

Φ = µa (N − Z)− E = µa (N − Z)− EV − ES , (7)

where we separated the energy into the volume EV and surface ES contributions. Partial

derivative of Φ with respect to µa gives a net asymmetry in the nucleus N−Z. Let us consider

a change in Φ as we alter the asymmetry potential at constant A. Then, the volume energy

change is dEV = µa d(NV −ZV ), where d(NV −ZV ) is the change in the particle asymmetry

within nuclear volume, expected to be equal to d(N − Z). From N − Z = ∂Φ/∂µa, we get:
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µa

(
∂(N − Z)

∂ µa

− ∂(NV − ZV )

∂ µa

)
− ∂ES

∂ µa

= 0 . (8)

From the above, we see that if the surface energy is to depend on the chemical potential,

then the nuclear interior cannot contain the whole particle asymmetry and some of it must,

consequently, reside within the nuclear surface. To tackle the issue of how the surface can

contain a particle number, we must consider how the surface quantities get to be defined.

For an interface between phases in equilibrium, Gibbs [9] suggested to take a small but

macroscopic volume surrounding an element of the interface and, besides the actual system,

to consider an idealized reference system, cf. Fig. 1. In the idealized system, the densities

of thermodynamic quantities, such as the particle density, change abruptly at the interface

from a value characterizing one of the phases away from the interface to the value for the

other phase. The surface share FS for the surface element S is then the difference between

the value of the quantity for an actual system F and the value for an idealized system Fid:

FS = F−Fid. In terms of densities, for the case of a nucleus in equilibrium with the vacuum,

this further yields for a quantity F : FS = f S = F − V fV , where fV is the density of F

characteristic for the interior and f represents the surface density. The problem is, however,

that the result for the surface depends on a precise position assumed for the interface, and

a condition may be imposed further to specify the position. For a nucleus it is natural

to assume that the surface contains no mass number and, for a spherical nucleus, this is

equivalent to taking the equivalent sharp-sphere radius for the surface of R = r0 A1/3.

Only one condition related to the particle numbers, however, suffices to localize the

surface. In a two-component system, the attempts to localize the surface using one of the

components or the other would lead to two different positions. If the surface is localized

using the net particle density, a finite surface asymmetry NS − ZS results, even though the

surface has a vanishing net nucleon number AS = NS + ZS = 0. For a spherical nucleus,

this corresponds to having two different equivalent sharp-sphere radii for neutrons Rn and

protons Rp, bracketing the sharp-sphere radius for the matter R, cf. Fig. 2.

We will now relate the surface asymmetry excess to the asymmetry potential. With the
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surface quantities obtained from the Gibbs prescription, under the variation of asymmetry

and of the volume surrounding the surface, we find

dES = σ dS + µa d(NS − ZS) . (9)

From changes in ES, when taking an increasing fraction of the surface, we find that

ES = σ S + µa (NS − ZS) . (10)

On taking a differential of the above and using the preceding relation we find

NS − ZS

S = − d σ

dµa

= 2 γ µa , (11)

where, in the last step, we employed Eq. (6).

With (11) and (6), we get from (10):

ES = σ0 S + γ µ2
a S = E0

S +
1

4γ

(NS − ZS)2

S = E0
S + β

(NS − ZS)2

A2/3
, (12)

where E0
S is the surface energy in absence of the surface asymmetry. We may note that,

while the surface tension decreases with an increase in the asymmetry, Eq. (6), the net

surface energy increases with the asymmetry. In the last step in (12), we introduced the

constant β with the dimension of energy, replacing γ, for the sake of an analogy with the

representation for the volume energy suggested by (1):

EV = E0
V + α

(NV − ZV )2

A
. (13)

In the volume energy, we use α in place of aa of (1) to make a distinction between the

symmetry constant in the bulk and the constant in use in the binding energy formula. As

will be seen, aa in use generally results from a combination of α and β.

Minimization of the net energy E under the constraint of net asymmetry,

E = EV + ES with N − Z = NV − ZV + NS − ZS , (14)

yields the condition of equal chemical asymmetry potentials for the interior and surface.

Given (12), (13) and (14), the energy, in regard to asymmetry, takes the form such as
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for connected springs, with the constants α/2A and β/2A2/3, respectively, or, even more

appropriately, such as for capacitors with the capacitances of A/2α and A2/3/2β. Equality

of the potentials demands that the asymmetries are in proportion to the capacitances:

NS − ZS

NV − ZV

=
α

β A1/3
and

NS − ZS

N − Z
=

A2/3

β

A
α

+ A2/3

β

=
1

1 + β
α

A1/3
, (15)

where in the right-hand result we use the net capacitance. The net energy is given in terms

of the net capacitance and net asymmetry as

E = EV + ES = E0 +
(N − Z)2

A
α

+ A2/3

β

= E0 +
α

1 + α
β

A−1/3

(N − Z)2

A
, (16)

where E0 stands for other, than the symmetry, terms in energy.

The symmetry energy of (16) should, generally, replace that in the energy formula (1),

with β → ∞ (γ → 0, in (6)) obviously corresponding to the standard formula. In (15),

we observe that the surface fraction of the asymmetry excess decreases as nuclear mass

increases, because the surface capacitance grows only as A2/3. It may be tempting to expand

the symmetry energy (16) in the fraction. However, whether this can be done depends on

the volume-to-surface coefficient ratio α/β. For large enough ratios and small A, we, in fact,

principally might be able to ignore 1 in the denominator and get the symmetry energy such

as characteristic for the surface storage of asymmetry. This would express the fact that, just

as the volume capacitance grows faster than surface capacitance, it also drops faster. Later

in this and in the following section we shall see what α/β values are favored by data.

B. Coulomb Effects

So far, we have not considered the effect of Coulomb interactions on the surface asym-

metry and the Coulomb and symmetry energies interplay in the net energy. The Coulomb

energy may be represented as

EC = EC
V + EC

V S + EC
S =

e2

4πε0

1

R

(
3

5
Z2

V + ZV ZS +
1

2
Z2

S

)

=
aC

A1/3

(
Z2

V +
5

3
ZV ZS +

5

6
Z2

S

)
(17)
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where the three terms correspond to the volume, volume-surface and surface interactions,

respectively, and ZV = Z − ZS.

The combination of symmetry energies (12) and (13) and Coulomb energy (17) is

quadratic in the surface excess and is easily found to minimize at:

NS − ZS =
N − Z − aC

12 α
Z A2/3

1 + β
α

A1/3 + aC

48 α
A2/3

≈ N − Z − aC

12 α
Z A2/3

1 + β
α

A1/3
. (18)

The last approximation expresses the fact the Coulomb interactions represent a very soft

spring in the energy combination, compared to the volume asymmetry spring. Compared

to (15), we see that, as might be expected, the Coulomb interactions try to tilt the surface

asymmetry towards proton excess. Quantitatively, however, the Coulomb correction to the

asymmetry excess is quite negligible for light and medium nuclei and acquires only a limited

significance for heavy nuclei.

As to the energies, even when the Coulomb correction to the surface asymmetry has a

significance, the corresponding changes in the asymmetry energy are quite ignorable. This

because around the minimum, specified by (15), the changes in the asymmetry energy are

quadratic in the asymmetry correction. On the other hand, the correction to the Coulomb

energy, from the development of the surface asymmetry,

∆EC ' ∂EC

∂ZS

∣∣∣∣
0

ZS ' aC Z2

A1/3

N − Z

6 Z

1

1 + β
α

A1/3
, (19)

may have a moderate significance and, in heavy nuclei, can reach a comparable magnitude

to the correction to the Coulomb energy from surface diffuseness.

C. Comparison to Binding-Energy Data

We now confront the above basic results with the data [15] on nuclear binding energies,

B = −E, that we fit with the formula of the form:

E = −aV A + aS A2/3 +
α

1 + α
β

A−1/3

(N − Z)2

A
+ aC

Z (Z − 1)

A1/3 (1 + ∆)
− δ . (20)
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Compared to (1), we changed the symmetry term to (16) and we added the standard pairing

term δ = ±ap A−1/2, 0. We either carry out fits with ∆ = 0 in the Coulomb term, i.e. the

energy formula modified from the standard one only by the inclusion of surface symmetry

energy, or with

∆ =
5 π2

6

d2

r2
0 A2/3

− 1

1 + β
α

A1/3

N − Z

6 Z
, (21)

including the effects of surface diffuseness and of the asymmetry skin (19) on the Coulomb

energy. In the first r.h.s. term above, d ≈ 0.55 fm is the diffuseness parameter in the Fermi

function from parametrization of nuclear charge distributions [24],

ρ(r) =
ρ0

1 + exp [(r − c)/d]
, (22)

and this term stems from an expansion of the Coulomb energy for (22) in terms of d.

Qualitatively, results of the two fits indicated above are similar but they differ in quan-

titative details. Obviously, the inclusion of the volume and surface competition in the

symmetry energy, changes the dependence of the net energy on asymmetry as a function of

mass. However, the Coulomb energy is also a source of the dependence on asymmetry and

deciding on details in one energy contribution depends on the details in the other. We believe

that more reliable results are obtained with the finite ∆ (21) in (20) as we only incorporate

information available from electron scattering or following from the intrinsic consistency of

considerations. The number of independent parameters in the fit with (21) is the same as

in the other fit, precluding, in practice, running away of the fit in the parameter space.

In the fits, we optimize the sum of absolute deviations of the theoretical from experi-

mental energies, rather than the sum of deviations squared, as the intention is to provide

an average description of nuclear features. Results, however, weakly depend on that choice.

We either let all parameters vary in an unconstrained manner or we constrain α/β or both

of the symmetry parameters.

The average per nucleus deviation of energy from experimental values exhibits a narrow

valley in the space of α/β vs α, as illustrated in Fig. 3 for the fit with (21). The valley is
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described by α ≈ (21.5+3.1 α/β) MeV. An analogous valley is found for the fit with ∆ = 0,

but the valley is shifted by about 10% to higher values in α. The strong correlation may be

understood in terms of the need to properly describe energies for the heaviest nuclei with

largest asymmetries requiring α/(1 + A−1/3 α/β) ≈ aa, for A ∼ 200.

Along the valley, the average deviation minimizes at α/β ∼ 1.7. However, the minimum

in that direction is rather flat. To understand the nature of the minimum, we carry out the

following procedure. We carry out an optimization of all parameters in the energy formula at

a fixed α/β. Then keeping all parameters fixed, including α/β but excluding α, we invert the

energy formula to deduce α from the mass of an individual nucleus. With this, we test locally

the global fit. If the formula provides a proper description, then on the average we should

get the same α from an individual mass as from the global fit. Notably, for the inversion

to be significant, the asymmetry should be large and we demand that |N − Z|/A > 0.2.

Sample results are displayed in Fig. 4, as a function of A.

First to consider are the results obtained at α/β = 0, i.e. ignoring the surface symmetry

energy, as common in the mass formulas. Represented by the diamonds in Fig. 4, the

results for α (i.e. aa in this case) group coarsely into a line. At large A, the line from

symbols oscillates, exhibiting the shell structure, around the value of α from the global fit,

represented by a straight line. However, at A . 50 the values from inversion systematically

drop below aa from the global fit. Such a drop for aa at low A is expected from a competition

between the volume and surface symmetry energies (20). If we raise the parameter ratio,

such as to the value of α/β = 2, we can get the locally restored values of α to oscillate

around the global fit value down to very low A. Regarding the restored values of α, we

may note in Fig. 4 that they locally exhibit less scatter for fits with (21) than with ∆ = 0,

suggesting that the first fit grasps the physics better. Finally, if we assume a too high value

of the parameter ratio, such as α/β = 6, we get the restored α to raise up at low A in an

opposite tendency to that for α/β = 0.

While, at the lower A, the use of an intermediate value of α/β improves the performance

of the energy formula, at the highest A the separate sensitivity to the ratio is quite reduced.
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With most of the measured nuclei of high anisotropies at the high A, the reduction in the

deviation between the formula and the experimental energies, when averaged over all A, is

just ∼ 0.40 MeV per nucleus for the absolute minimum in Fig. 3 compared to the optimal

case of α/β = 0. Considering in particular Fig. 4, we need to decide how accurate our

phenomenological theory should be in describing the nuclei. While the superiority of the

α/β = 2 case over the other cases in Fig. 4 is quite apparent, cases that might be less than a

third of the way in-between α/β = 2 and the two other would not be clearly superior, given

the scatter of the points and the lack of description of shell effects in the theory. With this,

we consider the locus of points in the (α, α/β) plane corresponding the deviation reduced

by a factor of 1/3 compared to the optimal α/β = 0 point (i.e. 0.13 MeV in Fig. 3), as the

approximate boundary of the parameter range favored by the energy formula. Have we had

a theory that could e.g. predict the shell effects, we might have been able to impose a more

stringent limit on the parameters. For reference, we further show in Fig. 3 the boundary for

the 0.40 MeV deviation passing through the optimal α/β = 0 point and in the vicinity of

the optimal α/β = 6 point.

Before we turn to the discussion of asymmetry skins, of which thickness is a primary

variable in the droplet model [10], let us make contact with the notation there. Our two

symmetry parameters in terms of those in the droplet model are [11]:

α = J and β =
4

9
Q =

4
9
H

1− 2
3
P/J

. (23)

III. ASYMMETRY SKINS

Interest in asymmetry skins has surged in the context of the general interest in asymmetry

effects, stemming from the availability of radioactive beams. Expectations were raised that

an analysis of the asymmetry skins could permit to extrapolate the nuclear matter properties

to the neutron matter [3–6]. Different features of effective interactions have been tested with

regard to their bearing on the thickness of the skins. In several works [25], a direct connection
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between the neutron skin in the spherical 208Pb nucleus and the neutron star structure was

made.

Unfortunately, experimental extraction of the neutron distributions has been difficult.

Different methods have been employed, such as analyses of nucleon scattering [16,17,22,23]

(including the analysis of polarized proton scattering and of neutron and proton scattering)

or analyses combining information from strongly interacting (p, π±, α, 12C) and electromag-

netic probes (e scattering, isotopic transition shifts) [18–21]. Recently, it has been proposed

[26] to utilize parity violations in electron scattering to determine neutron rms radii, con-

tributing to the surge of interest in the asymmetry skins.

To assess the thickness of the asymmetry skin for a given surface excess (18), let us

consider the sharp sphere radii for the neutrons Rn and protons Rp. These radii correspond

to volumes with interior densities such as for the bulk matter, i.e.

N =
NV

A
ρ0

4

3
πR3

n = NV

(
Rn

R

)3

' NV

(
1 +

3(Rn −R)

R

)
. (24)

In the last step, we use the fact that the intrinsic consistency of our considerations requires

that we can tell the surface from the interior and thus must have |Rn − Rp| ¿ R or,

equivalently, |NS − ZS| ¿ A. We next get from (24)

Rn −R

R
=

NS

3N
. (25)

With an analogous result for Rp, we find for the difference of the sharp-sphere radii:

Rn −Rp

R
=

A (NS − ZS)

6NZ
=

A

6NZ

N − Z − aC

12 α
Z A2/3

1 + β
α

A1/3
. (26)

We see that the difference between the neutron and proton radii is primarily linear in the

asymmetry and measures the symmetry coefficient ratio α/β. For a surface with no capaci-

tance for the asymmetry, characterized by α/β = 0, the asymmetry skin should vanish.

Regarding (26), the results of measurements and of microscopic calculations for the skins

are, however, not usually expressed in terms of a difference of the sharp sphere but rather

of the rms radii for neutrons and protons. The difference between the rms compared to the
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sharp sphere radii, aside from the standard reduction factor (dropping out from the ratio of

radii) and from a correction for the diffuseness, brings in a Coulomb correction additional

to that already in (26). That correction stems from a polarization of the nuclear interior by

the Coulomb forces. The polarization is schematically indicated in Fig. 2. In order to assess

the polarization effect, we represent the interior symmetry and Coulomb energies in a local

form, within the net nuclear energy. We expand those energies, respectively, to the second

and first order in the deviation from uniformity:

E = E ′ +
α

ρ0

∫
dr (δρa)

2 − 1

2

∫
drΦ(r) δρa . (27)

Here, Φ is the Coulomb potential, ρa is the neutron-proton density difference, ρa = ρn −
ρp, and we exploit the relation for the density changes δρp = −δρa/2 following from the

requirement ρn + ρp = ρ0. The energy E ′ is the remaining portion of the energy minimized

with respect to the global partition of the asymmetry between the interior and surface. The

minimization of (27) with respect to δρa, under the constraint of
∫

dr δρa = 0, yields

δρa(r) =
ρ0

4α

(
Φ(r)− Φ

)
= ρ0

aC

8α

Z

A1/3

(
1− 5

3

r2

R2

)
, (28)

where the overline indicates an average over the interior volume and where we use the sharp-

sphere potential Φ. On calculating the contribution from (28) to the difference of the rms

neutron and proton radii, we find

δ
(
〈r2〉1/2

n − 〈r2〉1/2
p

)

〈r2〉1/2
= − aC

168α

A5/3

N
. (29)

Notably, the contribution from the polarization (28) to the net energy is practically ignorable.

On combining (26) with (29) and on incorporating a correction for the surface diffuseness

into (22), we get for the difference of the neutron and proton rms radii:

〈r2〉1/2
n − 〈r2〉1/2

p

〈r2〉1/2
=

A

6NZ

N − Z

1 + β
α

A1/3
− aC

168α

A5/3

N

10
3

+ β
α

A1/3

1 + β
α

A1/3
+ π2 d (dn − dp)

〈r2〉 . (30)

Calculations [3] appear to indicate that, for lighter nuclei, the difference in the neutron and

proton diffuseness dn − dp is of the second order in the difference of sharp-sphere radii (26).
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For heavy nuclei, there may be a Coulomb contribution to the difference in the diffuseness.

Overall, in any case, the correction for diffuseness, to the skin thickness, is of a lower order

in A than the leading term.

In Fig. 5, we compare the results of skin measurements in Na isotopes [21] to the results

from (26) for different assumed values of α/β, with the difference in diffuseness set to zero

and with α made to follow the binding-energy correlation valley in Fig. 3. The data rather

clearly rule out α/β < 1, but it is difficult, so far, to determine the energy parameter ratio

with a much better precision. Further comparisons to data are shown in Figs. 6 and 7, for

Sn and Pb isotopes, respectively. Overall, the displayed data appear to favor the ratios

in the vicinity of α/β ∼ 3. As the charge number increases, one can see in Figs. 5-7, at

α/β = 0, the increasing importance of Coulomb corrections to the skin size. For a realistic

α/β ∼ 3, we find that the Coulomb forces contribute about 0.07 fm of reduction to the skin

of 208Pb. This can be compared to the ∼ 0.1 fm change in the skin size found by Furnstahl

[6] for 208Pb when switching off the Coulomb interactions in mean-field models. The interior

polarization and pushing out of the proton surface by the Coulomb interactions contribute

about evenly to the skin reduction in our estimates.

It needs to be mentioned that, when different methods are employed in skin extraction

from measurements, such as in the case of Ca isotopes [16–19,23], the outcomes can easily

differ by more than the claimed errors, underscoring the difficulty in extractions. Results

from a global fit of (30) to the available skin sizes obtained from data [16–23] are next

shown in terms of contour lines in Fig. 3. As has been already discussed, the dependence of

skin sizes on asymmetry primarily constrains the values of the ratio α/β. We provide the

contours for two combinations of a standard statistical deviation and an assumed average

theoretical error δ of (30), i.e. χ2 = χ2
min+1+

∑
k(δ/σk)

2 where k is data index, and δ = 0.02

or 0.04 fm.

As evident in Fig. 3, the global fit to skin sizes constrains the ratio α/β to a relatively

narrow range of 2.1 . α/β . 3.2. As we will later see, at a microscopic level the α/β ratio

is related to the density dependence of the symmetry energy and, thus, these constraints
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constrain further the density dependence of the energy. Including the constraints from the

binding energy systematics, we see in Fig. 3 that the value of the symmetry energy at normal

density α can be constrained to within the range 27 MeV . α . 32 MeV. However, in detail,

the acceptable values of α are correlated to α/β.

In the next section, we employ our elementary results in a description of the asymmetry

oscillations in nuclei.

IV. APPLICATION TO ASYMMETRY OSCILLATIONS

A. Goldhaber-Teller and Steinwedel-Jensen Models of the Giant Dipole Resonance

So far, we discussed the elementary static properties of ground-state nuclei. Nuclear

excitations may involve displacements of protons relative to neutrons, compared to the

ground state, with prominent giant resonance structures in cross sections allowing for an

interpretation in terms of a collective motion involving a number of nucleons. The lowest

in energy (or frequency) is the giant dipole resonance (GDR) prominent in the low-energy

photoabsorption [27] and inelastic electron scattering [28] cross sections.

Two early models have been advanced for GDR, under the names of Goldhaber and

Teller (GT) [13] and Steinwedel and Jensen (SJ) [13,14]. In the GT model, the neutron and

proton distributions are assumed to oscillate against each other as rigid entities, see Fig. 8.

Since the energy associated with the displacement is proportional to the nuclear surface

area, i.e. ∝ A2/3, while the moving mass is proportional to A, the resonance excitation

energy in this model is proportional to A−1/6: EGDR = ~Ω ∝
√

A2/3/A = A−1/6. In the

SJ model, a standing wave of neutron vs proton displacement develops within the nuclear

volume, satisfying the surface condition of vanishing asymmetry flux, analogous to the close

pipe condition in the standard example of oscillations of a continuous medium. As the

wavelength is then in a definite constant ratio to the nuclear radius, the resonance energy

in the model is proportional to A−1/3: EGDR = ~ca/λ ∝ A−1/3, where ca is the speed of
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propagation for asymmetry perturbations in normal symmetric matter.

In detail, within the SJ model [14,29], it is assumed that there is no net movement

of matter, i.e. the net matter velocity v vanishes and the net nucleon density stays intact,

consistent with the continuity equation: ∂ρ/∂t = −∇(ρv). The relative density ρa = ρn−ρp

changes, but the state of matter is locally the same as in a ground-state nucleus, just at

the new asymmetry. The vanishing net velocity implies a relation between the velocities for

individual particles, vn and vp, and densities, following from the consideration of fluxes

0 = ρv = ρn vn + ρp vp . (31)

This then implies that the flux in the asymmetry continuity equation may be expressed in

terms of the relative velocity vnp = vn − vp,

∂ρa

∂t
= −∇(ρn vn − ρp vp) = −∇

(
2ρn ρp

ρ
vnp

)
' −2NZρ0

A2
∇vnp . (32)

where the approximate equality is valid in the lowest order in the disturbance. An Euler

type equation for the relative velocity can be next used to close the equation above,

∂

∂t
vnp = − 2

m∗∇µa = − 2

m∗
∂µa

∂ρa

∇ρa = −2 c2
a

ρ0

∇ρa , (33)

where m∗ is the effective mass and

c2
a =

ρ0

m∗
∂µa

∂ρa

. (34)

On differentiating Eq. (32) with respect to time and on substituting (33), we get the wave

equation for the asymmetry density

∂2

∂t2
ρa =

4NZ

A2
c2
a∇2ρa . (35)

Under spherical symmetry, the normal vibrations are looked for, in the standard way,

in terms of the deviation from ground-state density expressed as the product of a spherical

Bessel function j` and a spherical harmonic Y`m,

δρa = CV sin (ωt) j`(qr) Y`m(Ω) , (36)
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where the wavenumber q and the frequency ω are related by

ω =
2
√

NZ

A
ca q . (37)

The radial velocity component, from (33), is

vr
np =

2C

ρ0

A

2
√

NZ
ca cos (ωt)j′`(qr) Y`m(Ω) . (38)

The condition that the normal component of flux vanishes at the surface [30], vr
np(R, Ω) = 0,

yields the wavenumber values

q`n =
j′`n
R

, (39)

where n orders the values and j′`n represents the n’s zero of the spherical Bessel function

derivative, j′`(j
′
`n) = 0. For the resonance energy, we get, given (37),

E`n = ~ω`n =
2
√

NZ

A
~ ca q`n =

2(NZ)1/2

A4/3

~ ca j′`n
r0

, (40)

where, with (34) and (13),

ca =

√
2α

m∗ . (41)

The GDR is characterized by ` = 1 and n = 1. With j′11 ' 2.08, the GDR energy in the SJ

model is then, finally,

EGDR =
2(NZ)1/2

A4/3

(
2α

m∗

)1/2
2.08 ~

r0

≈
(

2α

m∗

)1/2
2.08 ~
r0 A1/3

. (42)

Within the GT model of the GDR, the changes in the asymmetry occur only within

the nuclear surface and in the SJ model only within the interior. Experimental dependence

of GDR energy on mass number, displayed in Fig. 9, is intermediate [27] between that

characteristic for the GT and SJ models, suggesting that both the volume and surface

participate in the oscillations. To explain the mass dependence of the GDR energy, in

Ref. [31], the oscillation in the SJ model was treated as an elementary mode of nuclear

oscillation and was coupled to a second GT mode of oscillation within the same nucleus. As
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the resonance frequencies for the two models, GT and SJ, shifted with a changing nuclear

mass, the lower-frequency normal mode for the combination of oscillators changed from a

mode with a predominantly GT to SJ content. However, this casts a nuclear system into

one with only two degrees of freedom. The physical situation is rather that of a continuous

system for which, though, the surface can generally accept the asymmetry flux, making the

SJ boundary condition excessively restrictive.

B. Description of Asymmetry Oscillations

We now explore the modification and consequences of the surface boundary condition

for the asymmetry oscillations. Given that the surface can store an asymmetry excess, we

replace the SJ condition of a vanishing flux with the condition for the change in surface

asymmetry density na,

∂

∂t
na = ρn vr

n − ρp vr
p =

2NZρ0

A2
vr

np , (43)

cf. (32). As the chemical potential for the surface needs to be the same as within the

adjacent interior, this can be further rewritten as a condition involving the interior chemical

potential, or involving the volume density next to the surface,

∂

∂t
na =

∂na

∂µa

∂µa

∂t
=

∂na

∂µa

∂µa

∂ρa

∂ρa

∂t
=

2NZρ0

A2
vr

np . (44)

When the surface does not accept the excess, i.e. ∂na/∂µa = 0, we get the regular SJ

condition of a vanishing flux.

Looking for normal modes with (36) and

δna = CS sin (ωt) Y`m(Ω) , (45)

we find from the equality of chemical potentials at the surface that

CS =
α

3β A1/3
CV R j`(qR) . (46)
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Moreover, with (38), and (37), we can obtain from either (43) or (44) the condition for the

wavevector

qR j`(qR) =
3β A1/3

α
j′`(qR) . (47)

As the ratio α/βA1/3 grows from small to large values, the relative magnitude of the

surface amplitude CS in (46) grows. Moreover, it is apparent that the solutions to the

wavenumber equation (47) generally shift then from j′`n/R to j`n/R, where j`n represents

the n’th zero of the spherical Bessel function, j`(j`n) = 0. In terms of the standard example

of oscillations for a continuous medium, the boundary condition shifts from one representing

a closed pipe to one representing an open pipe. At βA1/3/α → 0, however, the n = 1, ` > 0

solution to the wavenumber equation with q → 0, generally requires a careful expansion.

Let us now consider the ` = 1 GDR case. For α/βA1/3 → 0, the surface amplitude tends

to zero and we get the SJ limit with the GDR energy given by (42). For βA1/3/α → 0, we

need to consider the Bessel function in (47) at small values of its argument where j1(x) ≈
(x/3)(1− x2/10). We then find for the wavenumber

q11 '
(

3β

α

)1/2
1

r0 A1/6
, (48)

and for the resonance energy

EGDR = ~ω11 =
2
√

NZ

A
~ ca q11 =

2(NZ)1/2

A7/6

(
6β

m∗

)1/2 ~
r0

≈
(

6β

m∗

)1/2 ~
r0 A1/6

. (49)

In this limit, the resonance energy becomes dependent only on the surface symmetry param-

eter β and not on the volume parameter α. Moreover, the volume amplitude gets suppressed

relative to the surface amplitude in (46). This is clearly the GT limit of vibration.

Figure 9 shows next fits to the data [27] on mass dependence of the GDR energy, with

ca treated as a fit parameter and with q11 obtained from (47) for different values of α/β.

We see that a realistic ratio of α/β = 3 yields a much better description of the data than

the SJ ratio of α/β = 0. However, a still larger ratio than 3 would provide an even better

description. It is possible that other factors than the finite capacitance of the surface for

asymmetry play here a role, such as local deviations of the system from a ground state [32].
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One may ask for what values of A and realistic α/β the vibrations turn from more GT

to more SJ like. As a criterion one may use the fraction of potential energy of the vibration

attributable to the surface. With this criterion, one finds that the transition takes place

at βA
1/3
tr /α = 3/2, and, thus, for the range of 2.1 . α/β . 3.2, at 30 . Atr . 110. The

relatively high transition masses are due to the requirement that the vibration must have a

node at the center of the nucleus.

C. Transition Densities

The profile of the standing wave in oscillation represents, at the quantal level, the tran-

sition density for the resonance. This density is probed in inelastic electron scattering [28].

To our knowledge, no inversion of data for the GDR transition density has been made, but

the data were tested against the GT and SJ type densities with a conclusion that the GDR

(and also ` > 1) densities are in-between the two limits [28]. Even in theoretical works, the

transition densities have not been much quoted.

We write the transition density as

ρ1(r) = ρ1(r) Y`m , (50)

where ρ1(r) includes both the volume and surface contributions. Interpreting the volume

results in terms of long-wavelength modulations of the particle densities and the surface

results in terms of the modulations of radii, we have for the density [28]

ρ1(r) =
1

ρ0

[
CV j`(qr)− CS

dρ

dr

]
(51)

where ρ(r) is the ground-state density distribution. With (46), we can further rewrite this

as

ρ1(r) =
CV

ρ0

j`(qr)

[
ρ(r)− α

3β A1/3
r

dρ

dr

]
, (52)

Establishing a contact with microscopic theory, we compare in Fig. 10 the GDR tran-

sition density for 40Ca from (52) with (22) to the transition density from the microscopic
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calculations of Ref. [33] which include effects of 2p-2h excitations and of ground state corre-

lations. The normalization in (52) is obtained from the Thomas-Reiche-Khun sum rule; for

illustrative purposes, we take m∗ = m as in [33]. The calculations [33] employ a phenomeno-

logical Landau-Migdal type interaction in use in describing different giant resonances and

we note that a best contact with our results is made for α/β ∼ 3.

V. RELATION TO MICROSCOPIC THEORY

Several works tried to identify links between the asymmetry skins and bulk properties

of nuclear matter associated with the asymmetry, within microscopic theory [3–6]. Having

explored a link between the skins and the surface and volume symmetry parameters, we will

now try to establish a connection between the parameters and the density dependence of

the symmetry energy.

A. Symmetry Parameters in Thomas-Fermi Theory

We shall consider a nuclear energy functional expanded to the second order in asymmetry:

E = E0 +

∫
dr ρS(ρ)

(
ρa

ρ

)2

≡ E0 + Ea . (53)

Here we assume that the expansion term in asymmetry is local, but this will not be essential

for much of the discussion that follows. The function S is the density-dependent symmetry

energy per nucleon and S(ρ0) = α. The energy E0 is generally nonlocal but independent

of asymmetry as the zeroth order term in the expansion; since the Coulomb effects have

been explicitly considered in Secs. II and III, we will disregard them for the discussion that

follows. Regarding the role of asymmetry in any nonlocality, there had been indications

[3,6] that it has a negligible impact on the properties of nuclei; the apparent success in

systematizing the asymmetry skins in terms of the nuclear-matter properties [3–6] lends, in

itself, a support to the weak impact.
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A simple example of the functional (53) is such as employed in the initializations of

transport calculations for central reactions [34]:

E0 =

∫
dr

(
3

5
εF ρ +

A ρ2

ρ0

+
B ρσ+1

(σ + 1) ρσ
0

)
+
D
2ρ0

∫
dr (∇ρ)2 , (54)

S =
1

3
εF +

C ρ

ρ0

+
F ρ2

ρ2
0

, (55)

with the Fermi energy εF = (3π2/2)2/3 ~2 ρ2/3/2m. The constants A, B and σ are fixed by

the requirement that the functional yields the energy minimum of E/A = aV ≈ −16 MeV

at ρ0 in symmetric nuclear matter, that is characterized by some specific incompressibility

constant K. E.g. for K = 260 MeV, we get A = −180.9 MeV, B = 128.1 MeV and

σ = 1.446. The constant D provides a size scale for the surface diffuseness and an adequate

surface profile is obtained [34] for D ≈ 20.4 MeV fm2. As to the constants in S, we have the

relation α = εF /3 + C + F and, otherwise, different combinations of the constants C and D
yield different values of β as will be discussed.

The minimization of the energy (53) under the conditions of fixed particle numbers

A =

∫
dr ρ and N − Z =

∫
dr ρa (56)

produces the Thomas-Fermi equations:

µ =
δE0

δρ
+ ρ2

a

d

dρ

S

ρ
, (57)

µa = 2 ρa
S(ρ)

ρ
. (58)

At first, those equations will just serve as a background illustration for the claims made in

the discussion.

On the basis of (53), we would like to find out changes in the nuclear ground-state energy,

as the particle asymmetry changes. First, we consider a symmetric system and find ρ(r)

that minimizes the energy E = E0. With the energy E being quadratic in asymmetry,

the net density minimizing the energy functional at a finite asymmetry will differ from the

density for the symmetric system only to within a second order in asymmetry. With this,
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to within the second order in asymmetry, a ground-state Ea in (53) may be calculated with

ρ(r) obtained for symmetric matter. Moreover, since the symmetric-system ρ(r) minimizes

E0, any changes to it, of the second order in asymmetry, will produce only quartic terms of

change in E0. In conclusion, if we are interested in the change in the ground-state energy

to the second order in asymmetry, we just need to consider the Ea term in (53) and we can

use there the density ρ(r) from the energy E0 minimized for a symmetric system. In terms

of the Thomas-Fermi equations, this means that we can uncouple (57) by putting ρa = 0

there.

From the second of the Thomas-Fermi equations, we have in the ground-state system

ρa =
µa

2

ρ

S
(59)

and from (53)

Ea =
µ2

a

4

∫
dr

ρ

S
. (60)

Within the analogy with a capacitor, the integral
∫

dr (ρ/2S) represents the system ca-

pacitance, independent of the deposited charge. The volume capacitance is A/2α and the

reminder is the surface capacitance:

A2/3

2β
≡ S

2π r2
0 β

=
1

2

∫
dr ρ

(
1

S
− 1

α

)
. (61)

As we will not be pursuing here curvature effects, we just turn to the surface capacitance for

a semiinfinite matter. With x a coordinate along the direction perpendicular to the surface

and on factoring out the density dependence from the symmetry energy with S = α s(ρ/ρ0),

we find from (61)

α

β
=

3

r0

∫
dx

ρ

ρ0

(
1

s
− 1

)
. (62)

Thus, for (53), given that the density profile for the surface is constrained, the ratio of

the symmetry parameters α/β is a measure for the density dependence of the symmetry

energy S. We note that a density-independent symmetry energy, characterized by s ≡ 1,
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yields α/β = 0. The falling density at the surface produces in this case no extra capacitance

per nucleon compared to the interior. The faster the drop of s with density, the larger the

extra capacitance, exhibited in a larger α/β ratio.

We next test the validity of the considerations from Secs. II and III within a Thomas

Fermi model based on Eqs. (54) and (55), with a minor alteration, however, that the different

neutron and proton Fermi energies are treated explicitly for asymmetric nuclei. On one hand,

we solve the differential equation [34] from (57) for the semiinfinite symmetric matter and

we vary C and F to get various combinations of α and α/β from (62), requiring that they

follow the binding-energy correlation from Fig. 3. Given the α and β values, we make a

prediction for the size of the asymmetry skin of a specific nucleus, following Eq. (30) with

dn−dp = 0. On the other hand, we solve the Thomas-Fermi equations directly for a nucleus,

with Coulomb forces included, and calculate the difference of rms radii. A comparison of the

results for Na isotopes is shown in Fig. 11. The results are both compared when changing

the isotope mass, while keeping the symmetry parameters fixed, and for one isotope when

changing the symmetry parameters. As is seen, the agreement of the estimate (30) with

the actual skin size is rather remarkable. For heavy nuclei, however, a small systematic

difference develops between the actual and estimated skin sizes, that largely vanishes when

the Coulomb forces are switched off. The size of the discrepancy, ∼ 0.03 fm for Pb, for which

we have no understanding, is compatible with the possible difference between our estimate

of the Coulomb effects in Eq. (30) and that of Furnstahl [6] (already brought up in Sec. III).

B. Density Dependence of Symmetry Energy

To gain a perspective on the recent microscopic results in the literature [4–6] on skin

systematics, we further confront our results from the Thomas-Fermi model to those obtained

in the variety of mean-field models explored there. In Fig. 12 the skins from the mean-field

calculations [6] are presented vs the reduction factor s for the symmetry energy per nucleon

at ρ0/2 (left panel), vs the scaled derivative of the energy at normal density p0 = ρ2
0 dS/dρ0|ρ0
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(center panel) and vs the volume symmetry parameter α (right panel). The skin dependence

on p0 and on α was explored in [6]. A similar derivative to p0 was utilized in [4,5]. It is

apparent in each panel of Fig. 12, that the Thomas-Fermi model, represented by lines,

produces the general trends such as found in the mean-field calculations, represented by

symbols. However, in the three panels, the represented dependencies for the skins in the

Thomas-Fermi model are of a quite different nature. Thus α has a very limited bearing

on the skins in (30), just through a rescaling of the Coulomb corrections. However, when

α is correlated with α/β through the binding-energy requirements, the changes in α force

changes in α/β and, thus, produce significant changes in the skin in the rightmost panel

of Fig. 12. In the center panel for the Thomas-Fermi model, we observe combined indirect

and direct (albeit at the edge of the relevant density interval) effects of the abscissa on the

skin. Only in the leftmost panel for the Thomas-Fermi model, we observe the effect of a

direct physical connection between the abscissa and the skin through Eqs. (30) and (62).

The three panels illustrate dangers of scouting for a physical relation [4–6] while following

numerical results within models that are necessarily constricted.

For a given effective interaction, the mean-field models yield certainly more realistic

results in the surface region than the Thomas-Fermi model. However, there is no reason to

believe that a strong primary sensitivity of the symmetry parameter ratio α/β to the density

dependence of s disappears in the mean-field models. Using the results for the 208Pb skins

[6] in those models, we can assess α/β for the models from (30) and produce constraints on

the low-density s from the constraints on α/β. An alternative would be to use the data on

208Pb skins directly to constrain s in Fig. 12. The values of s at ρ0/2 vs α/β from inverting

(30) for the mean-field models are shown in Fig. 13. Basing here the results on one heavy

nucleus, we augment, in the inversion, the Coulomb correction in (30) by 0.03 fm; notably

an ad hoc procedure for all nuclei might be to amplify the Coulomb correction by a factor of

1.4. Given the variation of the results in Fig. 13, for the acceptable range of 2.1 . α/β . 3.2,

we deduce the range of the symmetry energy reduction factor at ρ0/2 of 0.56 . s . 0.81.
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C. Skin Size vs Difference of Separation Energies?

A strong dependence of the sizes of asymmetry skins on the difference of separation

energies between protons and neutrons was predicted within the mean-field calculations of

Ref. [35]. The dependence has been observed experimentally [21] and it was referred to in

other mean-field calculations [36,4]. As we shall demonstrate, for describing the average

features of the dependence, a macroscopic model suffices. Interestingly, the dependence

allows for a direct access to the surface symmetry parameter β.

The separation energy difference, up to a factor and O(A−1) effects, is nothing else but

the asymmetry chemical potential µa. From the energy contributions (12) and (17), we get

right away

µa =
∂E

∂(NS − ZS)
=

2β (NS − ZS)

A2/3
− 5

6
aC

Z

A1/3
. (63)

The difference of sharp-sphere radii (26) can be then written in terms of the chemical po-

tential as

Rn −Rp

R
=

A

6NZ
(NS − ZS) =

µa

12β

A5/3

NZ
+

5

72

aC

β

A4/3

N
. (64)

With (29), the diffuseness correction and with µa = (Sp − Sn)/2 where Sp and Sn are the

proton and neutron separation energies, we find

〈r2〉1/2
n − 〈r2〉1/2

p

〈r2〉1/2
=

Sp − Sn

24β

A5/3

NZ
− aC

168α

A5/3

N

(
1− 35

3

α

β A1/3

)
+ π2 d (dn − dp)

〈r2〉 . (65)

In the analysis of data, so far, the surface symmetry parameter β always came in a

combination with the parameter α. However, the situation is different with the dependence

of the skin size on the separation energy difference. According to the relation (65), in a

given mass region, the skin size is largely linearly in the separation energy, with the slope

inversely proportional to β. The parameter α appears only within the Coulomb correction

in the relation. As we have by now analyzed both the binding energies and skins vs the

mass and charge numbers in terms of the symmetry parameters, the analysis of data on

the skins vs energies need not inject a new information. However, we can use the relation
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in checking locally the results of global fits. From the results of global fits on α and α/β,

we deduce 10.0 MeV . β . 12.5 MeV. In Fig. 14, we show the dependence of skin size on

separation-energy difference for sodium isotopes. The best description of the data [21] is

obtained for β ≈ 10.3 (±1.0) MeV, in consistency with the results from global fits.

VI. CONCLUSIONS

Macroscopic nuclear properties have been discussed in terms of the symmetry energy

volume α and surface β parameters. The need for a surface symmetry parameter is apparent

in the binding energy systematics for light nuclei with a significant nucleon asymmetry. In

a consistent treatment of the nuclear energy, the nuclear surface is viewed as providing an

additional capacitance for the nucleon asymmetry of 2A2/3/β in addition to the volume

capacitance of 2A/α. The energies associated with the surface and the interior combine

in the energy formula like energies of two capacitors in parallel. The requirement that the

parameter combination in the energy formula reproduces the standard symmetry coefficient

for heavy nuclei, with the large asymmetries, imposes a strong correlation between the value

of the volume parameter α and the parameter ratio α/β.

An excess capacitance of the nuclear surface for asymmetry leads to a difference of

sharp-sphere and of rms radii for neutrons and protons, or skin effect. For a given relative

asymmetry, in the macroscopic considerations, the skin size in terms of radii has a nontrivial

behavior on the nuclear mass; it first increases as the mass increases, then turns to a constant,

to get finally eroded by Coulomb effects.

The existing data on asymmetry skins, together with the binding-energy data, permit to

establish limits of 27 MeV . α . 32 MeV for the volume symmetry parameter, 10.0 MeV .

β . 12.5 MeV for the surface parameter and 2.1 . α/β . 3.2 for the ratio. Given the

ratio assessment, the ratio of the net asymmetry in the surface to the asymmetry in the

volume, equal to α/β A1/3, can be of order of 1 for light nuclei. For reference, when taking

the parameter ratio in the middle of the permitted range, α/β ' 2.6, the sample best-fit
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parameter values in describing the binding energies with (20) and (21) are aV = 15.47 MeV,

aS = 18.42 MeV, aC = 0.694 MeV, aP = 9.84 MeV, α = 29.70 MeV and β = 11.42 MeV.

When ignoring the surface diffuseness in putting ∆ = 0 in (20), the best-fit value are

aV = 15.60 MeV, aS = 18.01 MeV, aC = 0.691 MeV, aP = 10.11 MeV, α = 33.40 MeV and

β = 12.85 MeV.

With inclusion of the surface capacitance in description of the collective modes of asym-

metry vibration, the modes evolve in their character, as nuclear mass increases, from more

Goldhaber-Teller like to more Steinwedel-Jensen like. The changes get reflected in the de-

pendence of mode energy on mass and in the the transition density.

Within the Thomas-Fermi considerations, the additional surface capacitance is associated

with a drop of the symmetry energy per nucleon S with density. (Indeed, 2/S represents

the capacitance per nucleon.) The utilized Thomas-Fermi model allows to test the phe-

nomenological assessment of asymmetry skins. For light nuclei the agreement between the

assessed and calculated directly is remarkable, but for heavy nuclei a small but systematic

discrepancy develops attributed to Coulomb interactions. Using the results on mean-field

models in the literature and the range for the symmetry-parameter ratio, the drop in the

symmetry energy at half the normal density, compared to normal, is estimated to be within

the range 0.56 . s . 0.81.
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FIGURES

FIG. 1. Illustration for the construction of surface quantities following Gibbs [9]. The top

shows the variation of the density f for some quantity F within the system. The bottom shows

an idealized reference system, where the density changes in a discontinuous manner, right at the

surface, between the density values fV characteristic for the system away from the interface. The

surface quantities FS are defined as the difference between F for a macroscopic volume containing

the interface and Fid for the same volume in the reference system, FS = F − Fid.
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FIG. 2. In a two-component system, the surface-attributable particle-asymmetry can arise

even when the surface is constructed to have no net particle number. For a spherical ground-state

nucleus, this corresponds to the situation when the sharp-sphere equivalent proton Rp and neutron

Rn radii differ from each other and bracket the matter sharp-sphere radius R. The dashed lines

in the top part of the figure illustrate the polarization of a nuclear interior, in the form of a

sharp-edged sphere of radius R, by the Coulomb interactions.
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FIG. 3. Results from optimizations of the volume parameter α and the volume-to-surface pa-

rameter ratio α/β. The thick solid diagonal line shows the optimal values of α at fixed α/β when

fitting the nuclear masses. The oval contour lines show the loci of parameter combinations that

yield average absolute deviations from the measured nuclear masses larger by 0.13 and 0.40 MeV,

respectively, than the best-fit parameter combination. The rectangular contour lines indicate the

loci of parameter combinations at constant χ2 when fitting the asymmetry skins deduced from

data. The loci are for the χ2-values assuming the combination of a standard statistical deviation

and an average systematic error of the skin-size formula of 0.02 and 0.04 fm, respectively. Only

the solid more horizontal portions of the skin-thickness contours are meaningful – the portions

paralleling the binding energy correlation serve to guide the eye only.
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FIG. 4. Values of the volume symmetry parameter α from inverting the energy formula at

different values of α/β, for individual nuclei with |N − Z|/A > 0.2, as a function of A. The top

panel shows results for the energy formula with ∆ = 0 and the bottom for the formula with ∆ given

by Eq. (21). The different symbols represent results from the inversion for α/β = 6 (squares), 2

(circles) and 0 (diamonds), respectively. The horizontal lines represent values of α from the global

fits at the different α/β.
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FIG. 5. Difference between the neutron and proton rms radii for Na isotopes as a function of

the mass number. The symbols represent results from the data analysis Ref. [21]. The different

lines represent results from Eq. (30) for the indicated values of α/β, dn− dp = 0 and α taken from

the binding-energy correlation valley in Fig. 3.
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FIG. 6. Difference between the neutron and proton rms radii for Sn isotopes as a function of

the mass number. The symbols represent results from the data analysis of Ref. [16]. The different

lines represent results from Eq. (30) for the indicated values of α/β, dn− dp = 0 and α taken from

the binding-energy correlation valley in Fig. 3.
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FIG. 7. Difference between the neutron and proton rms radii for Pb isotopes as a function of

the mass number. The symbols represent results from the data analysis of Refs. [20] (circles), [16]

(a diamond), [23] (a square) and [22] (a cross). The different lines represent results from Eq. (30)

for the indicated values of α/β, dn−dp = 0 and α taken from the binding-energy correlation valley

in Fig. 3.
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FIG. 8. In the GT model [13] of the GDR, the neutron and proton distributions are assumed

to oscillate, unchanged with respect to their centers, against each other. In the SJ model [13,14] of

the GDR, the particle asymmetry oscillates within the nuclear interior, with flux of the asymmetry

vanishing at the nuclear surface.
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FIG. 9. Energy of the giant dipole resonance as a function of the mass number A. Symbols

represent photoabsorption data from the compilation [27]. For mass numbers A > 50, we use the

energies from the Lorentzian function fits from [27]. When a splitting characteristic for a deformed

nucleus is present, we plot the equivalent energy for a spherical nucleus. For mass numbers A < 50,

we plot the peak values for nuclei for which a clear isolated peak is present in the photoabsorption

cross section [27]. The lines represent energies calculated from EGDR = (2
√

(NZ)/A) ~ ca q11 with

ca being a fit parameter and with q11 obtained from (47) at different indicated values of α/β.
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FIG. 10. GDR transition density ρ1 for 40Ca, as a function of the distance r from the nuclear

center. The lines marked with the respective values of the parameter ratio α/β represent the

densities obtained from Eq. (52). The line marked GSC represents the density from the microscopic

calculations of Ref. [33] including the effects of 2p-2h excitations and of ground-state correlations.
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FIG. 11. Size of the asymmetry skin estimated with Eq. (30) vs size obtained directly from the

calculated nucleon distributions, within the Thomas-Fermi calculations of sodium isotopes. The

filled circles represent the results for α/β = 3, while changing the isotope mass. The open circles

represent the results for 30Na, while changing the values of α/β and correlating the changes in α

to follow the valley in Fig. 3.

45



FIG. 12. Size of the asymmetry skin in models vs the reduction factor s for the symmetry

energy at ρ0/2 (left panel), vs the scaled derivative [3,6] of the energy p0 = ρ2
0 (dS/dρ) at ρ0

(center panel) and vs the volume symmetry parameter α (right panel). Symbols indicate results

for a variety of mean-field models explored by Furnstahl [6]. Lines indicate Thomas-Fermi results,

from Eq. (30) using (62).

46



FIG. 13. Reduction factor s for the symmetry energy per nucleon at ρ0/2 vs the symmetry

parameter ratio α/β deduced for the mean-field models from the calculated [6] 208Pb skins and Eq.

(30).
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FIG. 14. Difference between the neutron and proton rms radii vs the difference between the

proton and neutron separation energies for Na isotopes. The symbols represent data of Ref. [21].

The lines represent predictions of Eq. (65) for different indicated values of β (in MeV) with the

values of α made to follow the binding-energy correlation in Fig. 3.
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