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Abstract

Isoscaling is found to hold for fragment yields in the antisymmetrized molecular dynamics (AMD)

simulations for collisions of calcium isotopes at 35 MeV/nucleon. This suggests the applicability

of statistical considerations to the dynamical fragment emission. The observed linear relationship

between the isoscaling parameters and the isospin asymmetry of fragments supports the above

suggestion. The slope of this linear function yields information about the symmetry energy in low

density region where multifragmentation occurs.

PACS numbers: 25.70.Pq
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In typical intermediate energy nuclear collisions, numerous fragments of intermediate

size are produced in addition to light particles [1]. The multifragmentation phenomenon

is believed to be related to the liquid-gas phase-coexistence in low density expanding nu-

clear matter. In a two-component system with more neutrons than protons (N tot > Ztot)

in equilibrium, the gas phase becomes more neutron-rich than the liquid phase [2]. This

fractionation phenomenon should reflect the features of the symmetry energy in nuclear

matter.

Recently, a scaling relation

Y2(N, Z)/Y1(N,Z) ∝ eαN+βZ (1)

has been observed [3] in the measured fragment yields Yi(N, Z) for two similar systems

i = 1, 2 with different neutron to proton ratios. This phenomenon is called isoscaling.

If one assumes thermal and chemical equilibrium, the isoscaling parameters α and β are

related to the neutron-proton content of the emitting source. In fact, statistical models have

successfully explained the isoscaling data [4]. However, as fragments are formed during a

dynamical evolution of the collision system, multifragmentation should be understood in the

dynamical models as well. In fact, a stochastic mean field model has predicted very large

scaling parameters for the dynamically produced fragments in the model [5]. Such result

is difficult to understand without any dynamical effects. It is also important to determine

if the scaling parameters in the data can be directly related to the asymmetry term of the

equation of state (EOS) of nuclear matter in equilibrium, for a dynamic production.

To explore whether any kind of equilibrium is achieved regarding the isospin fractionation

and the fragmentation in dynamical nuclear collisions, we compare the result of the antisym-

metrized molecular dynamics (AMD) simulation with what is expected under a statistical

assumption. We first derive, under an equilibrium assumption, a linear relation between

the isoscaling parameter α and the fragment isospin asymmetry (Z/A)2. We then test such

a relationship using results from the AMD simulations. By studying the dependence on

the asymmetry term of the effective force, we will explore whether the relation is useful for

assessing the asymmetry term of the EOS.

AMD is a microscopic model for following the time evolution of nuclear collisions [6, 7, 8].

It represents the colliding system in terms of a fully antisymmetrized product of Gaussian

wave packets. Through the time evolution, the wave packet centroids move according to
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an equation of motion. Besides, the followed state of the simulation branches stochastically

and successively into a huge number of reaction channels. The branching is caused by

the two-nucleon collisions and by the splittings of the wave packet. The interactions are

parametrized in the AMD model in terms of the effective force between nucleons and the

two-nucleon collision cross sections.

We perform reaction simulations employing two different effective forces in order to study

effects of the asymmetry term. One is the usual Gogny force [9], consistent with the sat-

uration of symmetric nuclear matter at the incompressibility K = 228 MeV. The force

is composed of finite-range two-body terms and of a density-dependent term of the form

t3ρ
1/3(1 + Pσ)δ(r1 − r2), where Pσ is the spin exchange operator and t3 is a coefficient. The

second force (called Gogny-AS force) is obtained by modifying the Gogny force with

VGogny-AS = VGogny − (1− x)t3

(
ρ(r1)

1/3 − ρ
1/3
0

)
Pσδ(r1 − r2), (2)

where x = −1
2

and ρ0 = 0.16 fm−3. The two forces coincide at ρ = ρ0. Furthermore, they

produce the same EOS of symmetric nuclear matter at all density. However, the two forces

produce different density dependences of the symmetry energy, as shown in Fig. 1. The

choice of x = −1
2

has been made to ensure that the part of the symmetry energy from the

direct term is proportional to the density [10]. At densities below ρ0, the Gogny force has

somewhat higher symmetry energy than the Gogny-AS force. At densities above ρ0, the

Gogny-AS symmetry energy continues to rise while the Gogny symmetry energy begins to

fall, so that significant differences develop.

The AMD simulations were performed for 40Ca + 40Ca, 48Ca + 48Ca and 60Ca + 60Ca

collisions at the incident energy E/A = 35 MeV/nucleon and zero impact parameter. The

version of AMD of Ref. [8] was utilized. It has been demonstrated that an equivalent

version of AMD, for the present purposes, reproduces the experimental data of various

fragment observables in 40Ca+ 40Ca at the same energy of 35 MeV/nucleon with the Gogny

force [7, 11]. Each studied collision event was started by boosting two nuclei with centers

separated by 9 fm. The dynamical simulation was continued until t = 300 fm/c. About

1000 events were generated for each system.

In central collisions, as shown in a previous paper [7, 11], two nuclei basically penetrate

each other and many fragments are formed not only from the projectile-like and target-like

parts but also from within the neck region between the two residues. The nuclear matter
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FIG. 1: Density dependence of the symmetry energy of nuclear matter for the Gogny force (solid

line) and for the Gogny-AS force (dashed line).

seems to be strongly expanding, one-dimensionally, in the beam direction.

For the intermediate states, we define the liquid part as the part of the system to be

composed of the fragments with A > 4 and any two wave packets whose spatial separation

is less than 3 fm are treated as belonging to the same fragment. In the context of the

results of Ref. [4], Fig. 2 shows the time evolution of the isospin asymmetry (Z/A)2 of

the liquid part for the three reaction systems. At the initial value (t ∼ 0), (Z/A)2
liq is

(Z/A)2 of the initial nuclei. For the neutron-rich systems, (Z/A)2
liq increases rapidly before

t ∼ 100 fm/c, and then it continues to increase gradually. This effect can be regarded as

the isospin fractionation because the liquid part is getting less neutron-rich and the gas

part is getting more neutron-rich. Similar fractionation effects are found in other dynamical

model simulations [10, 13]. The diamond points in Fig. 2 are the results obtained from

the Boltzmann-Uehling-Uhlenbeck calculations [12] with an interaction symmetry energy

of 12.125(ρ/ρ0) MeV. The isospin fractionation has a clear dependence on the asymmetry

term of the effective force. The Gogny force (solid lines) always yields a system with larger

(Z/A)2
liq than the Gogny-AS force (dashed lines). The complementary effect of fractionation

can also be found in the gas-phase information, such as the neutron and proton emission

rates in Fig. 3. While for the symmetric system (40Ca + 40Ca) more protons are emitted

than neutrons, because of the Coulomb force, for the very neutron-rich system (60Ca+ 60Ca)
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FIG. 2: (Z/A)2 of the liquid part of the system as a function of time for the three reactions systems.

The AMD results are represented by the solid and dashed lines, respectively, for the Gogny and

Gogny-AS forces. Late-time BUU results are represented by filled diamonds.

much more neutrons are emitted.

Since fragments are produced in a rapidly evolving system in the AMD simulation, it

is not evident a priori whether the isoscaling [Eq. (1)] is expected in the fragment yield

ratio. Nevertheless, when we plot the fragment yield ratio, Y2(N, Z)/Y1(N,Z), between two

reaction systems, we observe a clear isoscaling relation, as shown in Figs. 4 and 5 obtained

for the fragments present at t = 300 fm/c. The extracted scaling parameters α and β are

provided in the figure captions and indicated in individual panels. The isoscaling parameters

depend on the asymmetry term of the effective force. The fitting parameters, α and β, are

of larger magnitude when the Gogny force is used. Moreover, α increases with increased

differences in the asymmetry of the two systems.

Given that neutron emission costs less energy in a more neutron-rich system and proton

emission costs more, it is not surprising that the isospin fractionation is observed in the

dynamical simulations. However, the isoscaling is a nontrivial result, difficult to explain

outside of statistical considerations. To explore the aspect of equilibrium in fragment emis-

sion in AMD simulations, we further explore the relation between the isoscaling and the

fragment isospin asymmetry in equilibrium and in simulations.

In the context of the expanding emitting source model [14], it has been pointed out [4]
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FIG. 3: Neutron and proton emission rates described by the left- and right-hand scales, respectively,

for the three reaction systems as a function of time. The results of AMD simulations with the Gogny

and Gogny-AS forces are, respectively, represented by the solid and dashed lines.

that the isoscaling parameter α, obtained from the yield ratio of the emitted fragments, is

related to the (Zi/Ai)
2 of an equilibrated emitting source by

α = 4Csym[(Z1/A1)
2 − (Z2/A2)

2]/T, (3)

where Csym is the symmetry energy and T is the source temperature. However, in the AMD

simulations of collisions there are no easily identifiable emitting sources. All fragments are

emitted on about equal footing. To remedy the situation, we show that, for an equilibrated

system, Eq. (3) holds also when Zi/Ai is replaced by Z/Āi, where Āi is the average mass

number for fragment charge number Z in system i, provided that fragment properties change

gradually with nucleon content.

When we consider a system in equilibrium at the temperature T and pressure P , the
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FIG. 4: The fragment yield ratio between the AMD simulations of central 60Ca+ 60Ca and 40Ca+

40Ca collisions at 35 MeV/nucleon, at time t = 300 fm/c. The top and bottom panels show,

respectively, the results obtained using the Gogny and Gogny-AS forces. The extracted isoscaling

parameters are α = 1.82± 0.06 and β = −2.23± 0.08 for the Gogny force, and α = 1.64± 0.05 and

β = −2.09± 0.07 for the Gogny-AS force.

number (or yield) of nucleus composed of N neutrons and Z protons is given by

Yi(N, Z) = Y0i exp
[−(

Gnuc(N,Z)− µniN − µpiZ
)
/T

]
, (4)

where the index i specifies the reaction system, with the total neutron and proton numbers

N tot
i and Ztot

i , and Gnuc(N, Z) stands for the internal Gibbs free energy of the (N, Z) nucleus.

The net Gibbs free energy Gtot for the system is related to the chemical potentials µni and µpi

by Gtot = µniN
tot
i + µpiZ

tot
i . In Eq. (4) and the following equations, we suppress the (T, P )

dependence for different quantities including Gnuc, µni and µpi. It is clear that isoscaling

[Eq. (1)] is satisfied for Eq. (4), with α = (µn2 − µn1)/T and β = (µp2 − µp1)/T , as long as

the two systems have common temperature and pressure.

For each given Z, the dependence of Gnuc on N , assuming gradual changes, takes the
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FIG. 5: The same as Fig. 4 but for the 48Ca + 48Ca and 40Ca + 40Ca collisions. The extracted

isoscaling parameters are α = 1.02 ± 0.05 and β = −1.19 ± 0.06 for the Gogny force, and α =

0.89± 0.04 and β = −1.05± 0.05 for the Gogny-AS force.

form

Gnuc(N,Z) = a(Z)N + b(Z) + C(Z)(N − Z)2/A. (5)

Because the important range of N is limited for a given Z, this expansion is practically

sufficient even when Gnuc contains surface terms, Coulomb terms, and any other terms

which are smooth in A as e.g. the term τT ln A introduced by Fisher [15]. We can regard

C(Z) as the symmetry energy coefficient in the usual sense, because the second order terms

in N from the other terms are very small. This fact can be proved by a straightforward

analytical calculation if a typical liquid-drop mass-formula is assumed as an example.

Let us consider the average neutron number N̄i(Z) of each element Z. By identifying the

average value with the maximum of the N distribution [Eq. (4)], we get

(∂/∂N)[Gnuc(N, Z)− µniN − µpiZ]|N=N̄i(Z) = 0. (6)
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recognized at t = 300 fm/c. The straight lines are drawn so as to connect the points for 40Ca+40Ca

and 60Ca + 60Ca. Their slopes are −26.27 for Gogny force and −21.70 for Gogny-AS force.

A straightforward calculation, using the specific form of Gnuc of Eq. (5), results in

C(Z)
[
1− 4

(
Z/Āi(Z)

)2]
= µni − a(Z), (7)

with Āi(Z) = Z + N̄i(Z). The equations for the two reaction systems, i = 1 and i = 2,

subtracted side by side then yield

α(
Z/Ā1(Z)

)2 − (
Z/Ā2(Z)

)2 = 4C(Z)/T, (8)

relating the isoscaling parameter α, the (Z/A)2 of fragments and the symmetry energy

coefficient C(Z) which is a function of (T, P ). An interesting fact is that this relation does

not depend on the terms in Gnuc other than the symmetry energy term.

Both sides of Eq. (8) depend on the fragment charge Z, in principle, and can provide

information of the surface effect in the symmetry energy. This issue will be pursued in

a separate paper. In the present letter, we use the fact the Z-dependence of Z/Āi(Z) in

simulations is weak for Z & 5, making it meaningful to consider the isospin asymmetry of

the liquid part (Z/A)2
liq ≡ (Zliq/Aliq)

2 that has been averaged over all the fragments with
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A > 4. For this quantity we expect the relation

α(
Z/A

)2

liq,1
− (

Z/A
)2

liq,2

= 4C/T. (9)

Let us check whether this equilibrium relation (9) is satisfied by the AMD simulations

that do not incorporate any assumption of equilibrium. Figure 6 shows the correlation

in the AMD simulations between (Z/A)2
liq and the isoscaling parameter α from Figs. 4

and 5 for the three reaction systems. A linear relation is observed in accordance to the

equilibrium relation (9), suggesting applicability of statistical laws to the isospin composition

of fragments. The extracted value of 4C/T depends on the time of the fragment recognition,

but the dependence is weak as both α and (Z/A)2
liq,1− (Z/A)2

liq,2 are decreasing functions of

t for t & 200 fm/c. From the slope of the linear relation, we obtain 4C/T = 26.3 for Gogny

force and 4C/T = 21.7 for Gogny-AS force. The ratio of C(Gogny)/C(Gogny-AS) ≈ 5/4,

from Fig. 1, is consistent with the idea that fragmentation occurs at low density, ρ < ρ0. The

absolute values of C of 16-20 MeV and 22-26 MeV are reasonable assuming the temperatures

T ∼ 3-4 MeV.

In conclusion, a linear relation is expected between the isoscaling parameter and the

fragment isospin asymmetry (Z/A)2 under statistical assumptions. Isoscaling is observed

in the dynamical AMD simulation and the results well comply with the linear relation,

suggesting that the fragment isospin composition is subject to the statistical laws even in a

dynamical picture of production. The slope of this linear function yields information on the

symmetry energy for the fragments.
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