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Using symmetric 112Sn+112Sn, 124Sn+124Sn collisions as references, we probe isospin 

diffusion in peripheral asymmetric 112Sn+124Sn, 124Sn+112Sn systems at incident energy of 

E/A=50 MeV. Isoscaling analyses imply that the quasi-projectile and quasi-target in these 

collisions do not achieve isospin equilibrium, permitting an assessment of the isospin 

transport rates. We find that comparisons between isospin sensitive experimental and 

theoretical observables, using suitably chosen scaled ratios, permit investigation of the 

density dependence of the asymmetry term of the nuclear equation of state.  
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The nuclear mean field potential binds nuclei, stabilizes neutron stars against 

gravitational collapse [1] and generates forces that shape the dynamics of nuclear collisions 

[2-4] and supernova explosions [5]. Many of these environments involve densities or 

isospin-asymmetries far from those characteristic for stable nuclei [1,5].  Investigations of 

nucleus-nucleus collisions enable experimental constraints to be placed on the mean field 

potential and on nuclear equation of state (EOS) at the extremes [2-4,6,7].  Significant 

constraints have already been placed on the symmetric matter EOS at high densities [2]. In 

contrast, relatively weak constraints exist on the isospin-asymmetry term of the EOS, 

which describes the EOS sensitivity to the difference between neutron and proton densities 

and allows for extrapolations to the neutron-rich matter within neutron stars [1,8]. 

Comparisons of collisions of neutron-rich to that of neutron-deficient systems provide 

one means of probing the asymmetry term experimentally [9-11]. A second involves 

“isospin-asymmetric” collisions of projectile and target nuclei. In such cases, the 

asymmetry term of the mean field provides driving forces that propel the system towards 

isospin equilibrium where anisotropies in the difference between neutron and proton 

densities are minimized. Investigations of these driving forces require collisions with 

commensurate collision and isospin-equilibration timescales and observables that reveal 

isospin equilibration. At low incident energies, deep inelastic collisions have been used to 

study charge equilibrium leading to conflicting conclusions [12,13]. However at incident 

energy above E/A=30 MeV, the time scale for fragment emission decreases and 

anisotropies in the emission patterns may develop [14], which may allow one to measure 

from the fragments the time scales for charge and mass transport and diffusion during the 

collision. Here, we show that isotopic distributions near projectile rapidity in peripheral 

Sn+Sn collisions at E/A=50 MeV allow for investigations of isospin diffusion. Transport 

calculations suggest that sub-saturation density is achieved in the neck region where 

isospin diffusion occurs [15]. By comparing the results of measurements and calculations 

relevant to isospin diffusion, we explore the sensitivity of the diffusion to the density 

dependence of the asymmetry term of the EOS at sub-saturation densities.  

The experiment involved bombarding 112Sn and 124Sn targets of 5 mg/cm2 areal 

density with 50 MeV per nucleon 112Sn and 124Sn beams from the K1200 cyclotron at the 
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National Superconducting Cyclotron Laboratory at Michigan State University [11].  Nine 

telescopes of the Large Area Silicon Strip Array (LASSA) [16] detected isotopically 

resolved particles with 1≤Z≤8. Each telescope consists of one 65 µm single-sided silicon 

strip detector, one 500 µm double-sided silicon strip detector and four 6-cm thick CsI(Tl) 

scintillators, read out by pin diodes. The strips of the silicon detectors divide the 50mm x 

50mm lateral dimensions of each telescope into 256 (3x3 mm2) square pixels, providing an 

angular resolution of about ±0.43°.  

We placed the center of the LASSA device at the polar angle of θ=32° with respect to 

the beam axis, covering polar angles of 7°≤ θ ≤ 58°. Additionally, 188 plastic scintillator - 

CsI(Tl) phoswich detectors of the Miniball/Miniwall array [17] complemented the LASSA 

coverage. The combined apparatus covered 80% of the total solid angle. Peripheral 

collisions were selected by gates on the charged-particle multiplicity yielding the reduced 

impact parameter range of b/bmax = 0.8-1.0 in the sharp cut-off approximation [18]. To 

minimize contributions from the neck fragments, projectile rapidity fragments were 

selected by the rapidity gate of y/ybeam ≥ 0.7, where y and ybeam are rapidities of the 

analyzed particle and beam, respectively. The experimental results are the same within the 

statistical uncertainty if a more restrictive rapidity gate of y/ybeam ≥ 0.8 is used instead. 

Because there are no isospin differences between identical projectiles and targets, the 

symmetric 112Sn +112Sn and 124Sn +124Sn collisions are used to establish diffusion-free 

baseline values for the measured and predicted observables. The asymmetric 124Sn +112Sn 

and 112Sn +124Sn collisions, on the other hand, have the large isospin differences needed to 

explore the isospin diffusion. As experimental observables, we focus on features of the 

isotopic yields Yi(N,Z) of particles measured for reaction “i” at y/ybeam ≥ 0.7. Here, N and 

Z are the neutron and proton numbers for the detected particles. As in multi-fragmentation 

[9,10,19], in deep inelastic collisions [10,20] and in statistical evaporation [10], we find 

that ratios of isotopic yields R21(N,Z)=Y2(N,Z)/Y1(N,Z) for a specific pair of reactions, 

with a different total isotopic composition, follow the isoscaling relationship [10]  

R21(N,Z)=Y2(N,Z)/Y1(N,Z)= Cexp(αN+βZ),    (1) 

where α and β are the isoscaling parameters for the chosen reactions pair.  
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The left panel of Fig. 1 displays the measured values for R21(N,Z) when using 124Sn 

+124Sn collisions as reaction 2 and 112Sn+112Sn  collisions as reaction 1 in Eq. 1. The fits 

following the right hand side of  Eq. 1  are represented by the solid and dashed lines.  Fits 

to the other two systems relative to 112Sn+112Sn  (not shown) are of similar quality.  In the 

right panel of Fig. 1, we plot the best fit values for the isoscaling parameter, α, versus the 

overall isospin asymmetry of the colliding system: δO =(NO-Z O)/(NO +Z O), where NO and 

Z O are the corresponding total neutron and proton numbers.  The solid and open points 

represent data for 124Sn and 112Sn projectiles, respectively. In general, the isoscaling 

parameter α increases with the overall isospin asymmetry δO. If a linear correlation 

between α and δO is assumed [11], then the mixed systems at δO = 0.153 should assume an 

α value midway between that of 124Sn+124Sn (δO = 0.193, α=0.57±0.02) and 112Sn+112Sn 

(δO = 0.107, α=0) if isospin is equilibrated across the system. However, the measured value 

for the 124Sn projectile (solid point) is much larger than the value for the 112Sn projectile 

(open point) at δO = 0.153 indicating that isospin equilibrium is not achieved in the 

asymmetric reaction systems [21]. The upper value of α=0.42±0.02, obtained for 
124Sn+112Sn, represents, in the linear relation, an effective asymmetry of about 0.17. This 

value corresponds to roughly half way from the projectile value of 0.193 to the 

“equilibrium” value of 0.153. The lower value of 0.16±0.02, obtained for 112Sn+124Sn, has 

the same interpretation; except here the projectile is 112Sn and the change in asymmetry is 

in the opposite direction. The consistency of these results extracted from two independent 

measurements adds credibility to our approach.  

Following ref. [22], we define the isospin transport ratio Ri as 
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where x is an isospin sensitive observable, preferably linear in asymmetry. For the two 

symmetric systems 124Sn+124Sn and 112Sn+112Sn, Ri is automatically normalized to +1 and 

–1, respectively, allowing for quantitative comparison of the measured and predicted Ri 

values even if the model calculations use isospin observables that differ from the 

experimental ones. In the absence of isospin diffusion, preequilibrium emission from the 
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projectile should be approximately equal for asymmetric 124Sn+112Sn (112Sn+124Sn) 

collisions as for symmetric 124Sn+124Sn (112Sn+112Sn) collisions. By focusing on 

differences in isospin observables between mixed and symmetric systems Ri(α) largely 

removes the sensitivity to preequilibrium emission and enhances the sensitivity to 

diffusion. To represent the experimental data, we chose the neutron isoscaling parameter α 

because the projectiles and targets for the asymmetric systems differ only in their neutron 

numbers. Using α for x in Eq. 2, we obtain the isospin transport ratios of the two 

asymmetric systems shown as the shaded bands in Fig. 2. The observed values, 

( ) 5.0≈αiR , are consistent with previous discussion that the isospin asymmetry of the 

projectile remnant is half way between that of the projectile and the “equilibration value”.  

We now explore the relationship between isospin diffusion, and the asymmetry term 

of the EOS within the context of the Boltzmann-Uehling-Uhlenbeck (BUU) [23,24] 

formalism, which calculates the time evolution of the colliding system using a self-

consistent mean field. The isospin independent part of the mean field in these calculations 

is momentum independent and described by an incompressibility coefficient of K=210 

MeV [15].  The interaction component of the asymmetry term in three sets of calculations 

provides a contribution to the symmetry energy per nucleon of the form 

Esym,int/A=Csym(ρ/ρo)γ where Csym is set to 12.125 MeV and γ=2, γ=1 and γ=1/3 .  Here, 

smaller values for γ dictate a weaker density dependence for Esym,int. The fourth set of 

calculations, referred to as SKM, uses an interaction asymmetry term providing Esym,int/A 

=38.5 (ρ/ρo) - 21.0(ρ/ρo)2 [25] and has the weakest density dependence at ρ≤ρo.  

Calculations were performed for the 124Sn + 124Sn, 124Sn + 112Sn, 112Sn + 124Sn and 
112Sn + 112Sn systems at an impact parameter of b=6 fm [15]. We employed ensembles of 

800 test particles per calculation and we followed each calculation for an elapsed time of 

216 fm/c. At this late time, the projectile and residues can be cleanly separated. 

Nonetheless, we require that all nucleons in the assigned regions to have density less than 

0.05ρ0 and velocities more than half of the beam velocity in the center of mass, to be 

consistent with the experimental gates. To reduce statistical fluctuations in the results, we 

averaged them over 20 calculations for each system.  
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Using the average asymmetry of the projectile-like residue <δ> in the calculation, as 

the isospin observable, x, in Eq. 2, we plot predictions for Ri(δ) as a function of time as 

bands in Fig. 3 for the stiffest asymmetry term, (ρ2 , top panel) and the softest asymmetry 

term, (SKM, bottom panel). By construction, Ri(δ) describes the evolution of isospin 

asymmetry for the projectiles (112Sn or 124Sn) in the mixed reactions relative to that for the 

symmetric 124Sn + 124Sn (with Ri =1) and 112Sn + 112Sn (Ri =-1) systems. The widths of the 

bands reflect the statistical uncertainties of the calculated values for Ri(δ) . Initially, these 

predictions for Ri(δ) represent the isospin of the projectile (Ri(δ)  =1 for 124Sn and Ri(δ)  =-

1 for 112Sn) nuclei. Subsequent isospin diffusion drives the Ri(δ) values towards zero.  

Even though pre-equilibrium emission from the projectile remnants influences <δ>, Ri(δ)  

is not strongly modified because such pre-equilibrium emission is largely target 

independent and therefore cancelled in Ri(δ)  by construction.  

The influence of the asymmetry term depends on its magnitude at sub-saturation 

density [24,26]. For the top panel, Esym,int/A =Csym(ρ/ρo)2 decreases rapidly at low density 

and becomes very small, leading to little isospin diffusion. For the bottom panel, Esym,int/A 

=38.5 (ρ/ρo) - 21.0(ρ/ρo)2 remains larger at low density, leading to stronger isospin 

diffusion and driving the residues to approximately the same isospin asymmetry. In both 

cases, the asymptotic value for Ri(δ) is first reached at around 100 fm/c when the two 

residues separate and cease exchanging nucleons as illustrated by the time evolution 

images of the collisions for the 124Sn +124Sn system in Figure 3. This timescale is 

comparable to the collision timescale τcoll, which can be roughly  (~20%) estimated by  

τcoll≈(4RN+d)/vbeam≈80 fm/c,       (3) 

where RN, vbeam and d are the nuclear radius, incident velocity, and the separation distance 

between the two nuclear surfaces at breakup. 

 Assuming that the experimental isoscaling relationships, shown in Fig. 1, reflect 

particle emission from the projectile remnants after 100 fm/c and that such emission can be 

described statistically, the calculated values for Ri(δ)  may be easily related to the 

measured ones. In doing so, we take advantage of the nearly linear relationship between α 
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and δ that has been shown to be valid for evaporation and for statistical multi-

fragmentation of the remnants that emit the observed particles [27]:  

( ) 
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where δ1 and δ2  are the asymmetries for the two systems involved in the isoscaling ratio 

[27]. Inserting Eq. 4 into the expression for Ri(α) , one can show  
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Since the second term is negligible (<4%), we can use asymptotic values of <δ> around 

216 fm/c, as x in Eq. 2 to obtain Ri(δ) values for these two systems and compare them to 

the experimental values of Ri(α). The calculated values of Ri(δ), shown as open points in 

Fig. 2 in the order of an increasing “softness” from left to right indicate an increased 

isospin equilibrium for successively softer asymmetry terms. The diamond shaped points 

indicate the Ri(α) values obtained as in the experiment by decaying the residues obtained 

in BUU to fragments using the statistical model of ref. [27]. As expected, there is close 

agreement between the diamonds and the corresponding open points according to Eq. 5. 

Figure 2 demonstrates the sensitivity of such observables to the asymmetry term of the 

EOS. The experimental Ri(α) values are closest to the predicted Ri(δ) values derived from 

the theoretical predictions for <δ> using the stiffest asymmetry term with Esym,int/A 

=Csym(ρ/ρo)2. This conclusion depends, however, on the assumption that the measured 

particles are produced after 100 fm/c when <δ> attains its asymptotic values. If the data 

include emission from earlier stages when δ is larger, a favorable comparison with 

calculations using softer asymmetry terms may be possible. Relevant determinations of the 

emission timescales for the detected particles are being explored [26] and may make the 

present conclusions regarding the density dependent asymmetry term more definitive.  

In summary, we have observed the effects of isospin diffusion by investigating heavy 

ion collisions at E/A=50 MeV with comparable diffusion and collision timescales. 

Simulations using the BUU transport model predict that the isospin diffusion reflects 

driving forces arising from the asymmetry term of the EOS. The present comparisons 
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suggest a better agreement with the stiff asymmetry term; however, more stringent 

constraints on the emission timescales for the measured particles are needed. The current 

version of BUU has no momentum dependence of the mean field which might interplay 

with the symmetry term. However, at incident energies around 50 MeV/u, few nucleons 

get accelerated to high momentum so the momentum dependence of the mean field need 

not be that important. Nonetheless, such effect should be explored in the future.  

This work is supported by the National Science Foundation under Grant Nos. PHY-

01-10253, PHY-0245009, PHY-00-70161 and by the DOE under grant numbers DE-

FG02-87ER-40316. 

REFERENCES 

1. J.M. Lattimer and M. Prakash, Ap. J., 550, (2001) 426 and refs. therein. 
2. Pawel Danielewicz, Roy Lacey and William G. Lynch, Science 298, 1592 (2002). 
3. H.H. Gutbrod etal.,. Rep. Prog. Phys. 52, 1267 (1989). 
4. C. Sturm et al., PRL 86, 39 (2001). 
5. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990) 
6. Bao-An Li, Phys. Rev. Lett. 88, 192701 (2002) and refs. therein. 
7. M. Di Toro et al., Eur. Phys. Jour. A 13, 155 (2002) and refs. therein 
8. "Isospin Physics in Heavy-Ion Collisions at Intermediate Energies",Eds. Bao-An Li 

and W. Udo Schroeder, NOVA Science Publishers, Inc.  (New York), (2001). 
9. W. P. Tan et al., Phys. Rev. C 64, 051901(R) (2001).  
10. M.B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001). 
11. H. Xu et al., Phys. Rev. Lett. 85, 716 (2000). 
12. B. Gatty et al, Nuc. Phys. A253, 511 (1975). 
13. R. Planeta et al Phys. Rev. C 38, 195 (1988), R. Planeta et al., Phys. Rev. C 41, 942 

(1990). 
14. S. J. Yennello et al., Phys. Lett. B321, 15 (1994). 
15. L. Shi, Thesis, Michigan State University, (2003). 
16. A. Wagner et. al., Nucl. Instr. & Meth. A456, 290 (2001); B. Davin et al., Nucl. 

Instr. & Meth. A473, 302 (2001) 
17. R.T. de Souza et al. Nucl. Inst. Meth. Phys. Res. A295, 109 (1990). 
18. L. Phair et al., Nucl. Phys. A 548, 489 (1992). 
19. D.V. Shetty, et al., Phys. Rev. C 68, 021602 (2003). 
20. G.A. Souliotis, et al., Phys. Rev. C 68, 024605 (2003). 
21. J. F. Dempsey et al., Phys. Rev, C 54, 1710 (1996) and refs. Therein. 
22. F. Rami et al., Phys. Rev. Lett. 84, 1120 (2000). 
23. G. Bertsch and S. Das Gupta, Phys. Rep. 160, 189 (1988). 
24. Bao-An Li, et al., Int. J. Mod. Phys. E 7 (1998) 147, and refs. therein. 
25. V. Baran, et al., Nucl. Phys. A 632, 287 (1998). 
26. L. Shi and P. Danielewicz, nucl-th/0304030.  
27. M. B. Tsang et al., Phys. Rev. C 64, 054615 (2001)  

 8



 

 
 
 

Fig. 1: Left panel: Measured values for R21(N,Z)= Y124+124(N,Z)/Y112+112(N,Z) (points) 
and fits with Eq. 1 (solid lines). The solid line and points represent even Z=4,6,8 
isotopes while the dash lines and open points represent odd Z=3,5,7 isotopes. 
Right panel: Best fit values for α as function of δO. The lines serve to guide the eye. 
The reactions are labelled next to the data points. Solid points denote 124Sn as the 
projectile and open points denote 112Sn as the projectile. 
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Fig.2: Measured (shaded bars) and calculated (open points) values for Ri . The 
labels on the calculated values represent the density dependence of Esym,int/A with 
increasing “softness” from left to right. 
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Fig. 3: Ri (δ ) from BUU calculations are plotted as a function of time for the mixed 

systems. The symmetric systems are calibrated to +1 and –1 automatically by Eq. 2. The 

top and bottom panels show the calculated results with Esym,int/A =Csym(ρ/ρo)2 and Esym,int/A 

=38.5 (ρ/ρo) - 21.0(ρ/ρo)2, respectively. The bands above (below) zero represent the system 

with 124Sn (112Sn) as the projectile. The time evolution images of the collisions for the 
124Sn +124Sn systems are superimposed on the upper panel suggesting that the projectile 

and target separate around 100 fm/c. 
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