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Motivated by the large application of the CDCC method (continuum discretized coupled
channel method) to reactions with dripline nuclei of two body nature A = c+p, we study
the behaviour of these couplings for a low energy breakup scenario, where they play a
crucial role. Continuum couplings can produce a variety of effects on reaction observables.
Based on previous calculations, we investigate their range and their dependence on the
relative angular momentum and the relative energy between the pair. The conclusions of
this work can help design a more efficient model space for the two body continuum.

1. Motivation

Due to the very weak binding of halo nuclei, breakup channels typically have a pre-
ponderant role in the reaction process. In the language introduced by the Continuum
Discretization Coupled Channels (CDCC) method [1–3], one could say that the ground
state (g.s.) of these loosely bound systems couple strongly to the continuum, which es-
sentially means that the projectile breaks up easily. Clearly, the details of the coupling
operator determined by the physical process that excites the initial bound state into the
continuum, is a relevant factor, together with the internal Hamiltonian of the projectile.

One of the simplest processes we can consider is the electromagnetic excitation A+γ →
c + p (photo-absorption), which in turn is related to the inverse process, the radiative
capture c(p,γ)A. The multipole electric couplings were previously studied in connection
to Astrophysics [4], specifically for proton capture reactions. Therein, E1 and E2 couplings
connecting the ground state and the scattering state of the proton attached to an inert core
were described in detail, as well as the identification of the various ingredients contributing
to the general pattern. It was found that the behaviour close to zero energy is not solely
determined by the nearby pole (corresponding to the c-p binding energy). It depends on
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the interplay of various effects including both bound state and scattering state centrifugal
barriers, the Coulomb barrier, etc. The multipole couplings going into a capture cross
section calculation can be written as:

Vλ(E) = < φErel
(r)|rλYλ(r̂)|φgs(r) >, (1)

where r̂ = r/r is a unit vector, φgs(r) is the bound wavefunction of the nucleus A, φErel
(r)

is the scattering state of p + c moving with the relative kinetic energy Erel. Although
not essential, for simplicity we shall assume that the only bound state of nucleus A is the
ground state. This is typically the case for nuclei on the dripline.

When considering other reactions with exotic beams, the couplings to the continuum
are often referred to as a crucial ingredient. Breakup reactions epitomize the radical effect
that couplings to the continuum may have [5]. Of particular importance was the finding
that continuum-continuum couplings could decrease the cross section by large factors. For
instance, in the breakup reaction of 8B on 56Ni at near barrier energies, a large peak in the
differential cross section is produced within a 1-step calculation, whereas in a full coupled
channel model including continuum-continuum couplings, the peak is so weak that it is
hardly visible [6–9], in agreement with experiment [10]. Even earlier, in the studies of
deuteron breakup, such continuum effects were shown to play a role [11,12]. In opposition,
recent breakup calculations of 8B on other targets and different energy regimes reveal
minor continuum-continuum effects [13,14]. So, what makes continuum-continuum effects
important in the reaction mechanism? What are the decisive ingredients? The theoretical
predictions using CDCC (e.g. [7]) rely on large scale calculations where virtually all
relevant energies and partial waves of the core + p system are included. Hundreds of
radial wavefunctions are contributing to the final result and the effect obviously becomes
everything but transparent. Is there an intuitive picture that can justify such a forceful
effect? This work tries to shed light on these issues.

In the first part (section II) we present some theoretical considerations and set up the
input needed for the calculations. Next, in section III, we consider couplings from the
ground state into the continuum. Section IV concerns continuum-continuum couplings for
different combinations of initial and final angular momenta. Comments and conclusions
can be found in section V.

2. Theoretical considerations

The reaction of a loosely bound projectile (A = c+ p) with a target T can be described
within a three-body model by two dynamical variables represented in Fig.(1): R the
distance between the target and the center of mass of the projectile, and r the distance
between the core and the valence particle in the projectile. The conjugates of these two
coordinates (~r, ~R) are the corresponding momenta (~k, ~K). The potential couplings we are
interested in will ultimately consist of an overlap between an initial and a final scattering
wave with energies Ei

rel = h̄2k2
i /(2µcp), and Ef

rel = h̄2k2
f/(2µcp), respectively (µcp being

the reduced mass of the core-p system). Since the wavelength of the scattering states
depend on the corresponding energies E i

rel and Ef
rel, one might expect to find a maximum

overlap when these energies are similar.
Let us then consider the breakup of A = c+p on a target T . The exact solution to this

three-body problem can be achieved by solving the Faddeev equations [15]. Alternatively,
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Figure 1. Coordinates used in the reac-
tion description.

one can expand the three body wavefunction in terms of the relative motion of c + p
[φk(r)] and that of the projectile and the target A + T [fK(R)]. If one further discretizes
the continuum by taking a set of representative energies for c + p, E i

rel (i = 1, ..., N), the
three body wavefunction can be written as

ΨK(r, R) =
N
∑

α=0

φα(r)

r
fαK(R). (2)

Here the subscript α runs over the set of energy values Eα
rel and angular momentum

combinations (α = 0 corresponds to the projectile in the g.s.).
Introducing this expansion in the Schrödinger equation, and working out the angular

parts, one can arrive at the following coupled radial differential equations:

[

−
h̄2

2µ

(

d2

dR2
−

L(L + 1)

R2

)

+ Eα
rel − Es

]

fα(R) +
∑

α′

iL
′−L Vαα′(R)fα′(R) = 0, (3)

where Es is the relative energy of the projectile A and target T (Es = h̄2K2

2µAT

) and Eα
rel

is the relative energy of c + p for the particular discretization chosen (E0
rel = −ε < 0

for its ground state). The full solution of the coupled equations (Eq. 3) provides the
CDCC scattering amplitudes needed to calculate the reaction process. Instead of solving
the full coupled channel equations, one can approach a solution iteratively. In the 1-step
calculation, the only couplings included are the couplings connecting the g.s. of nucleus
A and the final scattering state c + p, given by:

Vα;0(R) = <
φα(r)

r
|VcT (Rc) + VpT (Rp)|

φ0(r)

r
> . (4)

VcT (Rc) and VpT (Rp) are the total (nuclear and Coulomb) interactions between c−T and
p − T systems respectively. We assume that VcT (Rc) and VpT (Rp) are central potentials.
Note that Rc = R+mp/mA r and Rp = R−mc/mA r. One-step calculations are often not
sufficient to describe the reaction accurately and one needs to include multi-step paths,
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and in particular multi-step processes within the continuum. Such a calculation involves
the continuum-continuum couplings:

Vα;α′(R) = <
φα(r)

r
|VcT (Rc) + VpT (Rp)|

φα′(r)

r
>, (5)

where both φα(r) and φα′(r) are unbound states. In general, when these couplings are
strong, iterative processes do not work and the CDCC equations (Eq.3) needs to be solved
exactly.

Note that VcT (Rc) + VpT (Rp) in Eqs. 4 and 5 depend on both coordinates, R and r.
The couplings represented in Eqs. 4 and 5 are integrated over r such that the coupling
potentials V L

α0(R) and V L
αα′(R) depend on the relative coordinate between the c.m. of

the projectile and the target R. The angular part of these coupling potentials can be
determined algebraically and is not particularly interesting for the questions we want to
address. In this work we focus on the radial integral only, as it contains the behavioural
information we are searching for. The standard multipole expansion of the potential
VcT (Rc) + VpT (Rp) in spherical harmonics is:

VcT (Rc) + VpT (Rp) =
∑

LM

[V L
cT (R, r) + V L

pT (R, r)]YLM(R̂)Y ∗

LM(r̂), (6)

where V L
cT (R, r) and V L

pT (R, r) are invariant radial potential multipole components. From
here, we get the invariant radial potentials for the bound state-continuum couplings

V L
α;0(R) = <

φα(r)

r
|V L

cT (R, r) + V L
pT (R, r)|

φ0(r)

r
> , (7)

and for the continuum-continuum couplings

V L
α;α′(R) = <

φα(r)

r
|V L

cT (R, r) + V L
pT (R, r)|

φα′(r)

r
> . (8)

These potentials enter the coupled radial equations (Eq.3). For pure scattering waves, the
radial integrals over r of the continuum-continuum couplings (Eq.8) diverge as r → ∞.
One solution to this problem is to replace the scattering wave functions with definite
energy, by wave packets averaged over energy, using energy bins [7]. Then the states
become square integrable. This is a standard method used in the CDCC formalism,
typically referred to as the averaging method [1–3]. In [16] a comparison between this
averaging method and the mid-point method is performed for some scattering observables.

In the avergaging method, the radial bin functions ϕα are defined as a superposition

ϕα(r) =

√

2

πNα

∫ ki

ki−1

gα(k)φα(k, r) dk (9)

of the pure scattering states φα(k, r), eigenstates of the c + p internal Hamiltonian, with
weight function gα(k). Here Nα =

∫ ki

ki−1
|gα(k)|2 dk is a normalization constant. The

φα(k, r) are defined such that, for r → ∞,

φα(k, r) → [cos δα(k)F`(kr) + sin δα(k)G`(kr)] , (10)

where k ∈ α and F` and G` are the regular and irregular partial wave Coulomb functions.
So φα is real when using a real c + p two-body interaction. An optimal discretization
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of the continuum requires a consideration of the number N of bins, the boundaries ki,
the widths ∆ki and the weights gα in the bins, which may depend on the projectile `j
configuration. Our bins are usually regular in momentum space.

Note that the product of the scattering wave functions in the integrand of Eq.(8) goes
as 1/r2 at large distances r → ∞, while, after introducing the scattering bin functions, the
asymptotics fall much more rapidly ∼ 1/r4, providing the convergence of the continuum-
continuum coupling potential V L

α;α′(R). It is worth mentioning that, although the inclusion
of a tensor force in deuteron bins was performed for deuteron elastic scattering in the
early nineties [17], so far, our work has been limited to bin wavefunctions generated for
potentials without tensor interactions. Also the nuclear couplings involve the absorptive
part of the optical potential. For simplicity, in the graphical representation, we will
concentrate only on the real part of Eq.(8). We have checked that the general trend to
be discussed below is maintained for the imaginary component too.

After r is integrated, the long range R radial dependence of these couplings will be de-
termined by the Coulomb interaction given that the nuclear is short range. The multipole
Coulomb parts of the potentials for a transition L can be written as:

V CL
fT (R, r) ∼

rL

RL+1
, r < R,

V CL
fT (R, r) ∼

RL

rL+1
, r ≥ R, (11)

where the superscript C stands for C = Coulomb and the subscript f stands for either of
the fragments f = core, p.

For g.s.-continuum case, the coupling integral has an upper limit determined by the
exponential fall of the bound state wavefunction:

V CL
α;0 (R) ∼

1

RL+1

∫

∞

0
dr rL+2 ϕα(r)

r

φgs(r)

r
. (12)

It is then trivial to conclude that the long-range behaviour of the g.s.-continuum couplings
is ∼ 1

RL+1 (this is independent on whether bins are used for the scattering states or not).
As for continuum-continuum couplings, the matrix element contains essentially two

integral terms:

V CL
α;α′(R) ∼

1

RL+1

∫ R

0
dr rL+2 ϕα(r)

r

ϕα′(r)

r
+ RL

∫

∞

R
dr r−L+1 ϕα(r)

r

ϕα′(r)

r
(13)

The contribution from the lower limit of the first term gives trivially an asymptotic long
range behaviour dependent on the multipolarity 1/RL+1. Since the bin wavefunction ϕα(r)
falls of as Sin(..)/r, it is easy to see that the upper limit of the first term goes as ∼ 1/R3.
As to the second term, there are two possibilities. The first when the momentum of the
initial and final state are approximately the same (corresponding to α = α′): then the
integrand of the second term reduces essentially to ∼ 1/RL+3 and the second integral goes
trivially as ∼ 1/R2. If on the other hand the momenta differ significantly, then |ki − kf |r
is large and an expansion of the integrand in 1/qr (where q = kf − ki is the transferred
momentum) is appropriate. Under these conditions, one can show that the contribution
of the second term goes as ∼ 1/R3. Note that, we considered, in these derivations, the
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asymptotics ϕα(r) without Coulomb for simplicity: the Coulomb will only add oscillations
and will not change the conclusions with respect to the asymptotic R-dependence. One
can then write:

V CL
α;α′(R) ∼ c1

1

RL+1
+ c2

1

R2
+ O(

1

R3
) α = α′

V CL
α;α′(R) ∼ c1

1

RL+1
+ c2

1

R3
+ O(

1

R4
) α 6= α′ (14)

For couplings between different bins, the asymptotic behaviour of the dipole part is ∼
1/R2 but all higher order multipoles will fall off as ∼ 1/R3. Below we show results for
multipolarity up to L ≤ 2. For couplings between identical bins, the behaviour for R → ∞
is ∼ 1/R2 for all multipolarities.

Intuitively one may think that, in order to determine the importance of the couplings,
it would be sufficient to compare their strength Vif to the scattering energy. However,
even after convergence of a scattering observable is obtained, couplings can be reduced
significantly by reducing of the bin width further. The relationship would no longer be
trivial and one possibility would be to weigh it by the total number of bins.

In the weak coupling limit one can think about Eq.(3) perturbatively, where the per-
turbation consists on the sum of all the couplings. From first order perturbation theory,
one expects that the main effect will come from coupling states close in energy since the
correction to the wavefunctions would depend on Vα,α′/|Ei

rel −Ef
rel|. This agrees with the

expectation delineated in the beginning of this section. Nevertheless, it should be noted
that in many applications, couplings are too strong to justify a pertubative approach.

The results to be discussed in the next sections are a reproduction of the couplings
used in the analysis of the breakup of 8B on 58Ni around the Coulomb barrier [8]. The
optical potential of Moroz [18] is used for the 7Be-58Ni system. The proton-58Ni potential
is taken from the global parameterization of Becchetti and Greenlees (BG) [19]. The
proton-7Be binding potential is taken from Esbensen and Bertsch [20] after setting the
spin orbit to zero. The potential used to construct the bin states is the same (real)
potential as that used to bind the 8B ground state by 0.137 MeV, assumed a pure p3/2

proton single-particle state. This potential produces a sharp p-wave resonance at ≈ 0.8
MeV and a broad d-wave resonance at ≈ 3 MeV. The energy location of the resonances
are not crucial for the present study. We consider bins up to 8 MeV energy, binned up in
regular momentum intervals of 0.25 fm−1 width. The maximum radius r considered for
the bins is 60 fm. These are the typical parameters used in the previous CDCC model
space. These parameters were checked for convergence.

Another parameter that is relevant in the CDCC calculation is the maximum relative
angular momentum for the c + p required. So far, calculations for the 8B system have
required up to l = 3 partial waves. We will here show results up to l = 2. Our notation
for the c + p orbital momenta of the initial and final states are li and lf , respectively. Of
course, for the 8B ground state li = 1. From now on we will discuss plots as a function
of initial and final c + p relative energies, which we designate by Ei and Ef . The above
mentioned calculations [8] were performed for an incident projectile energy of Es = 26
MeV. This value does no enter in the present study.
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Figure 2. Contour plot of the dipole cou-
pling matrix elements between an lf = 0
scattering state and the g.s., as a func-
tion of the relative energy p-7Be and R.

Figure 3. Contour plot of the dipole cou-
pling matrix elements between an lf = 2
scattering state and the g.s., as a func-
tion of the relative energy p-7Be and R.

3. Couplings to and from the ground state

In the long wave approximation, the monopole matrix elements for the bound state-
continuum coupling are zero due to the orthogonality between the bound states and
scattering wave functions. As shown in the previous section, the dipole and quadrupole
couplings are long-ranged and their range is determined by the Coulomb parts. The
nuclear parts are short-ranged. The dipole term decreases as 1/R2 and quadrupole as
1/R3. In Figs. 2 and 3, we show the contour plot for the dipole couplings of either the
lf = 0 or the lf = 2 continuum and the g.s. For lf = 0, the coupling is weak and repulsive
at the surface for the lower energies but becomes mildly attractive for the higher energies.
The opposite happens for the dipole when lf = 2.

This general picture is valid for the nuclear part (real and imaginary) of the matrix
element and the Coulomb part. Naturally the strengths and signs may change, but there
is always a structure appearing at low excitation energy and ranges are essentially short,
due to the restriction imposed by the bound state wavefunction.

We have also checked the dependence on binding energy of these couplings. We find
that the patterns do remain if the binding energy is increased as much as up to 3 MeV. The
low energy strength may peak at slightly different values, and the larger the binding, the
smaller the strength. All these are characteristics that agree with our previous intuition
and therefore the exercise serves also as a check on the use of the bins.

Finally we have also looked at the couplings from the ground state to the continuum
for neutron waves instead of proton states. A fictitious system is formed by n+7Be, still
bound by 0.137 MeV, appropriately adjusting the strength of the Woods Saxon depth in
the binding potential. The same depth is then used for the scattering waves, that again
do not have Coulomb. The optical potentials are not modified. We find minor changes
for the dipole terms, and the quadrupole no longer shows any clear structure.
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R=1 fm

Figure 4. Contour plot of the monopole coupling matrix elements between li = 1 and
lf = 1 scattering states for R=1, 5 and 10 fm, as a function of both relative energies
p-7Be.

Figure 5. Contour plot of the quadrupole coupling matrix elements between li = 1 and
lf = 1 scattering states for R=1, 5 and 10 fm, as a function of both relative energies
p-7Be.

4. Continuum-continuum couplings

The calculations show that continuum-continuum couplings are by no means constant
over the whole energy window: they tend to be stronger for Ef ≈ Ei, in perfect agreement
with the arguments presented in section 2. Their peaks appear outside the surface region
(around 5 fm) and extend out to radii larger than 20 fm.2 The symmetry pattern of the
Ei versus Ef contour plot reflects the multipolarity of the transition considered, as well
as the combination of li, lf . In order to illustrate these statements, we show the contour
plot for transitions between various combinations of l-states for 3 different radii: 1, 5, and
10 fm.

We first consider the monopole transition li = 1 to lf = 1 (Fig.4). Most often, the
monopole coupling has no influence in the result: as optical potentials are fit to the
elastic data, we generally prefer to have no folding in the diagonal so as not to change the
elastic fit. In this work we show the monopole couplings for completeness, and also to help
set a trend when increasing multipolarity. One could expect a clear finger print of the p-
resonance in these plots. Instead we find there is a ridge along Ef = Ei which is maintained

2Here we are considering the radius for which Vcoupling ≤ Ebinding to define the range of the coupling.
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Figure 6. The quadrupole coupling ma-
trix elements between li = 1 initial scat-
tering state E=0.54 MeV and a final
lf = 1 scattering state as a function of
the final relative energy p-7Be and R.

Figure 7. The quadrupole coupling ma-
trix elements between an initial li = 1
scattering state E=5.4 MeV and a final
lf = 1 scattering state as a function of
the final relative energy p-7Be and R.

all the way up to the larger energies, which is easy to understand. The monopole term
is proportional to the direct overlap of the pair of bins wavefunctions. Consequently,
these figures reflect the normalization condition of the wavefunction, which, to a good
approximation, are orthogonal for different bin energies [21]. Note that the scales in the
three figures are not the same.

In comparison, the quadrupole couplings between p-waves is much weaker but still a
few MeV around 5 fm (see Fig.5). Yet, here again, it exhibits a clear ridge for Ef = Ei.
In the interior the coupling is weak and two parallel lines appear showing that there is
also a preference for a slight shift in energy. This ridge structure is also apparent as we
move to larger distances.

One can also look closer at the radial dependence by plotting the couplings as a function
of Ef and R, keeping Ei constant. Such a 3D plot is shown in Fig.(6). Coincidentally
there is a strong peak around the p-resonance which could easily be attributed to that.
However looking into it with more care, this peak is tied with the initial state energy
only Ei = 0.54 MeV. We will come back to this point later. At larger energies, due to
the rapidly oscillatory behaviour of the wavefunctions, phases can interfere in completely
different ways over the energy spectrum and produce a rather bumpy structure such as
the one for Ei = 5.4 MeV (Fig.7).

The dipole couplings are not symmetric along Ef = Ei, since lf = li. In fact the set
of energies for which the dipole coupling is attractive changes when one moves from the
interior to large distances. As can be seen in Fig.(8), the ridge structure is still present
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Figure 8. Contour plot of the dipole coupling matrix elements between li = 1 and lf = 0
scattering states for R=1, 5 and 10 fm, as a function of both relative energies p-7Be.

but no longer runs through Ef = Ei; it has been shifted to slightly higher final state
energies Es + ∆ and a nearly symmetrical valley has appeared on the other side Es − ∆
(for d-waves the opposite is seen).3

We also show the 3D plot for the couplings between an initial Ep = 3 MeV scattering
bin and the s-wave continuum as a function of relative final energy and the distance to
the target R (Fig.9). The phases interfere producing both destructive and constructive
effects. A similar example for a d-wave final state in shown in Fig.(10). As the initial
energy increases, the strength of the couplings also shift to larger Ef . So there is always
a preference for closer energies although the maximum as we have seen, is not always at
Ef = Ei.

Notwithstanding the results above, we should comment on the structures of a smaller
scale appearing in the illustrations. The discretization of the continuum into bins intends
to map the continuum in an efficient way. It is not exact and therefore small ripples in a
3D plot or spotty features in the contour plot are a result of the chosen discretization and
should not be taken as real physics. This feature is illustrated in Fig.(11) where results
from the standard discretization are compared with those using a broader bin grid, with
half of the number of bins.

Since the nuclear and the Coulomb interactions have different ranges and strengths,
some of the features depicted are controlled by the nuclear parts whereas others by the
Coulomb. However there is one feature that is present regardless, whether we only calcu-
lated the nuclear matrix elements or only the Coulomb matrix elements: the concentration
of the strength around the Ef = Ei line for the continuum-continuum transitions.

Coulomb multipole transitions are very weak compared with the nuclear multipole
transitions, around the surface region. Of course, since Coulomb is repulsive, the Coulomb
couplings have opposite signs from the total and the nuclear. These features are expected
to change with heavier targets, where Coulomb becomes dominant.

One can also study the features of continuum-continuum couplings when no nuclear
interaction is included in the calculation of the scattering wavefunctions (core+p system).
We find that the details of the nuclear interaction in the continuum cannot destroy the
characteristics that have been identified, even though there is a p-wave resonance in this

3Note that we also found asymmetries for quadrupole transitions when lf 6= li.
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Figure 9. The dipole coupling matrix el-
ements between an initial li = 0 scatter-
ing state E=3.0 MeV and a final lf = 1
scattering state as a function of the final
relative energy p-7Be and R.

Figure 10. The dipole coupling ma-
trix elements between an initial li = 2
scattering state E=3.0 MeV and a final
lf = 1 scattering state as a function of
the final relative energy p-7Be and R.

Figure 11. Dipole coupling matrix elements between li = 1 and lf = 0 scattering states
for R= 5 fm: a comparison between couplings using 50 bins on the left, and 25 bins on
the right.

p− core system. There is clearly a change in the strengths of the couplings (∼ 10%), but
patterns do not change when bins are calculated based on Coulomb waves only.

In addition, the patterns shown above do not change significantly when the binding
energy is increased. Given that an increase of the binding energy is achieved by increasing
the depth of the nuclear interaction, phase shifts in that situation are no longer the same.
However, bin characteristics are matched in a way that the overlap integral keeps the
same general features.

If instead of a proton wavefunction we assume the same initial system is a neutron
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(as was done in the previous section), the strength of the couplings are slightly modified
but the distinctive aspects found before are retained. This is reasonable since the major
contribution comes from the c + T interaction which remains exactly the same.

5. Conclusions

As a typical case, we have calculated the CDCC couplings for the low energy breakup
of 8B on 58Ni. We first analise the couplings between the ground state and the continuum
and find that regardless of the details of the continuum states, there is always a low energy
strength stretching slightly outside the range of the projectile-target interaction.

As to the continuum-continuum couplings, they peak typically around the surface and
tend to extend out farther, as there is no bound state to truncate the integral. For the
monopole and quadrupole case with li = lf , continuum couplings are stronger amongst
similar energy pairs. An offset in energy can be found for the cases where li 6= lf , as in
the dipole coupling. In all these cases, most of the non zero contributions come when the
initial and final energies are not far apart.

We also look at variations of binding energy, nuclear versus Coulomb, and neutron
versus proton wavefunctions. The general properties described above are not significantly
modified.

A standard misconception is that continuum couplings could be reduced to couplings
between resonant states. Our work shows that this could not be further from the truth.
Our example is good because it contains a strong narrow p-wave resonance at low energy.
The various plots shown do not have a clear signature of this resonance. Moreover, if
we remove it from the continuum, our conclusions do not change. It is the non resonant
continuum that is dictating the rules of the game.

This analysis can help us improve efficiency when it comes to very large CDCC calcu-
lations. Given that an initial continuum wave Ei will mainly couple to a final wave that
is close in energy (Ef = Ei ±∆ where ∆ is small and related to the bin width), and that,
as one increases the multipolarity, ∆ increases, it is possible to form blocks in the coupled
channel equations, that are no longer coupled, and optimize the performance. Tests along
these lines are planned for the near future.
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