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The energy of the first excited state in the neutron-rich N = 28 nucleus 45Cl has been established
via in-beam γ-ray spectroscopy following proton removal. This energy value completes the system-
atics of the E(1/2+

1 )−E(3/2+

1 ) level spacing in odd-mass K, Cl and P isotopes for N = 20−28. The
results are discussed in the framework of shell-model calculations in the sd-fp model space. The
contribution of the central, spin-orbit and tensor components is discussed from a calculation based
on a proton single-hole spectrum from G-matrix and π +ρ meson exchange potentials. A composite
model for the proton 0d3/2 − 1s1/2 single-particle energy shift is presented.

PACS numbers: 23.20.Lv, 21.60.Cs, 25.70.Mn, 27.40.+z

Neutron-rich nuclei in the neighborhood of 44S have
attracted much attention in recent years. The ques-
tion whether the high degree of collectivity observed for
42,44S [1, 2] is due to a breakdown of the N = 28 neutron-
magic number or the collapse of the Z = 16 proton sub-
shell gap at neutron number 28 is much discussed in the
literature [3–8]. The vanishing of the Z = 16 subshell
closure was inferred from the near-degeneracy of the pro-
ton s1/2 and d3/2 orbitals in the chain of K isotopes as
N = 28 is approached [4, 5, 9].

Retamosa et al. [4] present an unrestricted shell-model
calculation in a valence space including the sd shell for
protons and the pf shell for neutrons. The evolution of
the E(1/2+

1 ) − E(3/2+
1 ) level spacing in the K isotopes

was used to phenomenologically modify the cross-shell
interaction. The authors predict the evolution of the
E(1/2+

1 ) − E(3/2+
1 ) energy difference in the Z = 17 and

Z = 15 isotopic chains as neutrons fill the f7/2 orbit. At

that time, the E(1/2+
1 ) − E(3/2+

1 ) energy splitting was
neither known in any of the P isotopes with 20 ≤ N ≤ 28
nor in the Cl isotopes above N = 22. In the present
paper, we complete the systematics of the experimen-
tal 1/2+

1 − 3/2+
1 level spacings in the Cl and P isotopic

chains. The contributions of the central, spin-orbit and
tensor components of the NN interaction to the evolu-
tion of the energy splitting are analyzed to elucidate the
microscopic effects driving the changes in single-particle
structure. For this, single proton-hole spectra are dis-
cussed in the framework of G-matrix and π + ρ meson

exchange potentials.

The experiment was performed at the Coupled Cy-
clotron Facility of the National Superconducting Cy-
clotron Laboratory at Michigan State University. The
76.4 MeV/nucleon 46Ar secondary beam was produced
via projectile fragmentation of a 110 MeV/nucleon 48Ca
primary beam on a 376 mg/cm2 9Be target located at
the mid-target position of the A1900 fragment separa-
tor [11]. The separator was operated with 0.5% momen-
tum acceptance and a beam purity of about 99% was
achieved. The 46Ar secondary beam was incident on a
191 mg/cm2 polypropylene [(C3H6)n] target at the tar-
get position of the S800 spectrograph [12]. The reaction
products were identified event-by-event with the spectro-
graph’s focal-plane detector system [13] in conjunction
with time-of-flight information obtained from scintilla-
tors in the beam line. The magnetic rigidity of the spec-
trograph was centered on the elastic scattering of 46Ar
off the polypropylene target (see Ref. [14]). However,
the momentum acceptance of the S800 spectrograph was
large enough to allow the one-proton knockout residues
45Cl and the multi-nucleon removal residues 43Cl pro-
duced in the polypropylene target to enter the focal plane
as well.

The target was surrounded by SeGA, an array of 32-
fold segmented, high-purity Ge detectors [15] arranged in
two rings with angles of 90◦ and 37◦ with respect to the
beam axis, respectively. Fifteen of the 18 SeGA detectors
were used for the present experiment. The high degree
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of segmentation is necessary to Doppler reconstruct the
γ rays emitted by the reaction residues in flight.

The upper panel of Fig. 1 shows the γ-ray spectrum
detected in coincidence with 43Cl produced by multi-
nucleon removal from the 46Ar secondary beam incident
on the polypropylene target. The γ rays at 329(4) keV,
616(5) keV, 888(6) keV and 1342(7) keV observed in
43Cl are in agreement with transitions reported in [8]
from 48Ca fragmentation. In addition, we see a γ-ray
transition at 256(5) keV that would have been difficult
to be detected by [8] due to their fairly high detection
threshold for γ-ray energies (see Fig. 4 of Ref. [8]). The
1509(10) keV γ-ray peak observed by Sorlin et al. [8]
might correspond to the decay of a state that is popu-
lated in the fragmentation of 48Ca but unaccessible from
nucleon removal of 46Ar projectiles.

The lower panel of Fig. 1 displays the γ rays in coinci-
dence with the 45Cl one-proton knockout residues. The
929(9) keV γ-ray corresponds to the transition previously
observed in intermediate-energy Coulomb excitation [16].
The existence of a peak at 773 keV is less clear. The
dominant γ-ray transition in this spectrum is found at
127(6) keV and is attributed to a transition between the
3/2+

1 and 1/2+
1 states. Shell-model calculations predict

the ground state of 45Cl to be 1/2+ with the first ex-
cited 3/2+

1 state at 74 keV. Our experimental result is in
agreement with this expected energy splitting between
the 1/2+

1 and 3/2+
1 states and completes the systematics

of ∆13 in the chain of Cl isotopes for 20 ≤ N ≤ 28. This
127(6) keV γ ray could not be observed by Sorlin et al.

due to their high detection threshold (see Fig. 4 of [8]).
The evolution of the energy difference E(1/2+

1 )−E(3/2+
1 )

in the chains of K, Cl and P isotopes for neutron num-
bers from N = 20 − 28 is shown in Fig. 2 and com-
pared to shell-model calculations using the Nowacki in-
teraction [10].

We first analyze the difference between the d3/2 and
s1/2 proton-removal energies from Ca to K, ∆13, in terms
of its dependence on the interaction components. The
experimental values are given in Table I. The experi-
mental numbers are based on the lowest-energy state for
each spin as given in Fig. 2. For 47K some fragmenta-
tion of the d3/2 and s1/2 hole strength is observed [19].
The value ∆13 = −0.29 MeV obtained from the cen-
troid energies of states shown in Table I of [19] is sim-
ilar to the value of −0.36 MeV from the lowest energy
states. The experimental values are compared to the re-
sults from the Nowacki interaction [10]. (The results for
47K are based on an (f7/2)

8 configuration for the neu-
trons. With the full (pf)8 model space for neutrons there
is a fragmentation of d3/2 and s1/2 proton-hole strength
in qualitative agreement with experiment [19]. For the
full pf -shell neutron model space the lowest-energy spac-
ing is −0.31 MeV and the centroid energy spacing is
−0.17 MeV.) The agreement of the Nowacki results with
experiment in the K isotopes is due to an adjustment of
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FIG. 1: Event-by-event Doppler-reconstructed γ-ray spectra
in coincidence with 43Cl and 45Cl nucleon-removal residues
produced from an 46Ar secondary beam impinging on a
polypropylene target.

the theoretical monopole interaction strengths to repro-
duce experiment [4].

In order to have a microscopic interpretation of the re-
sults we have calculated the single-hole spectrum for pro-
tons from a G-matrix potential [20] based on the Paris
NN potential. The results are given in Table I broken
down into the contributions of the central, spin-orbit and
tensor components of the interaction. It has been shown
that the monopole part of the G matrix is not so reli-
able [21–23]; therefore, it is of interest how the individual
contributions compare to other calculations. The impor-
tance of the NN interaction has been pointed out in [24]
for the changes of the shell structure across the nuclear
chart. It is worth mentioning that the monopole part of
the tensor force has been shown in [9] to change the shell
structure in a unique and robust way across the nuclear
chart. Table I shows the effect of the tensor part of the
present G-matrix calculation and the tensor contribution
as derived from the one-π and one-ρ meson exchange ten-
sor potential similar to [9] for A = 40. One notices that
the two tensor results are remarkably close to each other.
This is in fact an example of the universality of the ten-
sor monopole effect from its longer range part as pointed
out in [9].

The tensor part can be further examined by the d5/2−
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FIG. 2: Comparison of the experimental ∆13 = E(1/2+

1 ) −
E(3/2+

1 ) energy splitting to shell-model calculations using the
Nowacki effective interaction [10]. The ordering of the 1/2+

and 3/2+ levels in 41P [17] and 45Cl has not been determined
by experiment and is assigned by comparison with calcula-
tions. The value for 43P stems from [18], others from [8, 19].

d3/2 spin-orbit splitting, ∆53, as shown in Table II. The
experimental energy is the energy centroid of the d5/2

hole strength observed in 40Ca [25] and 48Ca [19]. The
Nowacki interaction results are again based on the (f7/2)

8

neutron configuration. (The centroid energy from the
full pf -shell model space is 5.76 MeV.) One observes a
decrease in the experimental spin-orbit interaction that,
when compared to the G-matrix calculation, is mainly
attributed to the tensor interaction, consistent with Ref.
[9]. In fact, Table II indicates that the result of the one-
π and one-ρ meson exchange tensor potential is in very
good agreement with the experiment.

TABLE I: Splitting between the d3/2 and s1/2 proton hole
energies ∆13 in units of MeV. The result for the G matrix cal-
culation is decomposed into the central, spin-orbit and tensor
contribution.

∆13
39K 47K 39K - 47K

(MeV)

“expt.”a 2.52 -0.36 2.88

shell model b 2.75 -0.40 3.15

G matrix total 3.66 -0.73 4.39

(central) 0.98 -1.28 2.26

(spin-orbit) 2.68 2.10 0.58

(tensor) 0.00 -1.55 1.55

π + ρ tensor [9] 0.00 -1.67 1.67

aE(1/2+

1
) − E(3/2+

1
)

bwith the Nowacki effective interaction [10]

The absolute spin-orbit interaction obtained with the
G-matrix interaction in 40Ca amounts only for about
60% of the experimental value (first column of Table II).
It has been shown that the spin-orbit splitting can be
reproduced by a microscopic calculation based on the
UMOA method from the bare NN interaction for 16O
[26]. In this calculation, more complex components are
included but their effects are renormalized in the con-
ventional shell-model picture. The three-body interac-
tion has been shown also to contribute to the spin-orbit
splitting in light nuclei [27]. Thus, contrary to the tensor
force, the relation between the spin-orbit force and the
splitting remains to be clarified.

TABLE II: Splitting between the d5/2 and d3/2 proton hole
energies ∆53 in units of MeV. The result for the G matrix is
decomposed into the central, spin-orbit and tensor contribu-
tion.

∆53
39K 47K 39K - 47K

(MeV)

“expt.”c 7.5 4.8 2.7

shell model b 7.4 5.92 1.48

G matrix total 3.94 0.84 3.10

(central) 0.00 -0.32 0.32

(spin-orbit) 3.94 3.86 0.08

(tensor) 0.00 -2.70 2.70

π + ρ tensor [9] 0.00 -2.78 2.78

cenergy centroids from [19, 25]
bwith the Nowacki effective interaction [10]

The Skyrme Hartree-Fock (HF) method can also be
used to calculate the central interaction contribution to
∆13 (this is done by calculating the single-particle spec-
trum with the Skyrme spin-orbit strength set to zero).
The values from the Skyrme SKX [28] HF calculation
are given in the second row of Table III. The Skyrme
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results can differ from the G-matrix values due to finite
well and density-dependent (or implicit effective three-
body) effects. However, this HF does not include the
tensor contribution.

Taking all of these into account we might make a com-
posite model of the single-particle shifts based on HF for
central, G-matrix for spin-orbit (Table I) and π + ρ for
tensor contributions. The results as given in Table III are
in reasonable agreement with experiment when the spin-
orbit part from the G matrix is scaled by a factor of 1.9 as
obtained from Table II. The need for rescaling the spin-
orbit part is mainly due to monopole effects only inac-
curately taken into account. We note that the monopole
effect from the central potential differs considerably be-
tween the G-matrix and SKX interactions, which implies
intrinsic theoretical difficulties. The relative importance
of the central and spin-orbit potentials cannot be clari-
fied in the present study, however, their combined effect
seems to be about half of the tensor monopole effect for
∆13, while negligible for ∆53. A more precise evaluation
of their magnitude and interplay remains an intriguing
problem. The 1/2+ proton (Nilsson) state, which is the
highest K = 1/2+ of sd-shell origin, can be pushed up
due to deformation. This would result in a lower energy
of the 1/2+ level in the observed spectrum of the actual
nucleus. This could occur more easily as d3/2 and s1/2

come closer in energy (i.e., stronger mixing). Thus, in
this case, the “experimental” ∆13 would appear larger
than the pure single-particle effect. This point should be
taken into consideration more precisely in the future.

TABLE III: Splitting between the d3/2 and s1/2 proton hole
energies ∆13 in units of MeV compared to a composite model
of the single-particle shifts. The central part is obtained from
the SKX Skyrme HF calculation, the spin-orbit part is taken
from the G-matrix approach of Table I and the tensor con-
tribution is based on the π + ρ potential [9]. The spin-orbit
contribution is scaled by a factor of 1.9 obtained from Table II.

∆13
39K 47K 39K - 47K

(MeV)

“expt.”a 2.52 -0.36 2.88

total 3.00 -0.43 3.43

(Skyrme central) -2.09 -2.75 0.66

(1.9 × G-matrix spin-orbit) 5.09 3.99 1.10

(π + ρ tensor) 0.00 -1.67 1.67

aE(1/2+

1
) − E(3/2+

1
)

In summary, we report on the first determination of the
|E(1/2+

1 )−E(3/2+
1 )| = 127(6) keV energy splitting in the

N = 28 nucleus 45Cl observed following the one-proton
removal from a 46Ar secondary beam upon collision with
a polypropylene target. The evolution of the energy split-
ting is compared to shell-model calculations in the sd-fp
model space. Its dependence on the interaction compo-
nents, central, spin-orbit and tensor, is discussed for the

chain of K isotopes from calculations based on the G
matrix and π + ρ tensor potential. A similar analysis
is performed for the splitting between the d5/2 and the
d3/2 orbit where the experimental determination of the
location of the d5/2 single-particle strength in P and Cl
has to remain a challenge for future experiments. The
tensor monopole effect is seen as almost the sole source
of the change of the d5/2−d3/2 spin-orbit splitting, while
the central potential shows a certain effect for the change
of the s1/2 − d3/2 spin-orbit splitting. The change of the
1/2+−3/2+ splitting contains more uncertainties in rela-
tion to single-particle properties and needs further stud-
ies. In this respect, the present experiment can be a first
step towards a more comprehensive understanding of this
region.
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