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Abstract: Extrapolations from nuclei to neutron stars hinge on the symmetry term in 

nuclear binding formulas.  The term describes reduction in the binding associated with 

neutron-proton (np) imbalance.  Regrettably, binding formulas in the literature 

commonly lack an intrinsic consistency with regard to the symmetry term.  Our 

elementary considerations determine the universal macroscopic limit for the term and 

predict its weakening in light nuclei due to emergence of the nuclear asymmetry-skin.  

Experimental systematic of isobaric-analogue states allows for a determination of the 

volume and surface coefficients within the macroscopic limit of the symmetry term, 

disregarding any reminder of a binding formula.  The results are next exploited to 

constrain the dependence of symmetry energy on nuclear density, essential for the 

neutron-star predictions. 
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Availability of nuclear exotic beams [1], with an unusual neutron-proton (np) content, has 

spurred interest in the symmetry term [2] of nuclear binding-energy formulas [3,4], accounting 

for a reduction in the nuclear binding due to np-imbalance.  Understanding of that term is, 

naturally, essential for extrapolations from nuclei to neutron stars [5,6].   A binding-energy 

formula [7] relies on treating the nucleus as a macroscopic object, which underscores the 

general phenomenological nature of nuclear science.  We indicate that the basic [7] and many 

advanced binding formulas [8,9] are intrinsically inconsistent regarding the symmetry term.  

Elementary considerations [10] determine the universal macroscopic limit [10,11] for the 

symmetry term and predict that term’s weakening in light nuclei, due to the emergence of 

nuclear asymmetry skin.  The skin represents a relative displacement of neutron and proton 

distributions and is normally described in involved formalisms [12-15].  We point out that the 

experimental skin systematic restricts [10] the relative magnitude of symmetry coefficients 

describing changes in the nuclear macroscopic volume and surface energies with changing np-

imbalance.  The absolute magnitude of the volume and surface coefficients of the symmetry 

term may be constrained, disregarding any remainder of the binding formula, upon extending 

the np-interchange symmetry in the symmetry term, to the isospin symmetry [16], a rotational 

symmetry in the np-space.  The specific constraints follow from the systematic of isobaric-

analogue states [17] that are a consequence of the isospin symmetry.  The results for the 

coefficients constrain next the dependence of the symmetry energy on nuclear density, required 

for neutron-star predictions [5,18-21]. 

A binding formula expresses the energy E of a nucleus in terms of nucleon numbers, 

E=E(A,Z).  Here, A and Z are the net nuclear nucleon and proton numbers, respectively, and the 

neutron number is N=A-Z.  The basic [7], termed Bethe-Weizsäcker [3,4] (BW), formula 

represents the energy as a sum of five terms only:  

E =-aV A+ aS A2/3+aC Z(Z-1)/A1/3+aA (N-Z)2/A+δ.   (1) 

The first negative and dominant term in equation (1), with the coefficient aV ≈16 MeV, is called 

the volume term.  It represents a contribution to the energy from nuclear interior, for nucleons 
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under the sole influence of attractive nuclear interactions.  Proportionality to A for that term 

reveals the short-range nature of nuclear interactions.  The next term, aS A2/3, with aS ≈18 MeV, 

is the surface term proportional to the nuclear surface area, since the nuclear radii scale 

according to R≈r0 A1/3.  The constant so-called radius parameter r0 ≈1.14 fm represents an 

approximately constant (normal) density in the nuclear interiors, of ρ0 =3/(4πr0
3)≈0.16 fm-3.  As 

nucleons close to the surface are subject to less attraction than in the interior, the binding in 

equation (1) gets reduced in proportion to the surface area, as compared to a system with 

ignorable boundaries.  It follows that an increase in the nuclear surface area Σ would reduce 

binding at an energetic cost per unit area, or surface tension, of σ=∂E/∂Σ=aS/4πr0
2.  The third 

term in the BW formula (1) is the Coulomb term, essentially representing the electrostatic 

energy of protons spread out uniformly over a spherical nuclear volume, with the coefficient 

correspondingly given by aC ≈ (3/5)e2/4πε0r0 ≈ 0.7 MeV.  The fourth term in the formula, aA (N-

Z)2/A, with aA≈ 21 MeV,  is commonly called a symmetry term although asymmetry would be a 

more suitable adjective.  That term accounts for the binding, under the sole influence of nuclear 

interactions, being stronger for more symmetric nuclei, with N≈Z, than for more asymmetric 

nuclei, with different N and Z.  That term is, in particular, related to a stronger attraction 

between neutrons and protons than between like nucleons.  The symmetry with respect to the np 

interchange in the (a)symmetry term reflects the charge symmetry [7] of nuclear interactions.  

The final term in the formula (1) is the pairing term, δ=± aP A-1/2, 0, with aP≈11 MeV, 

describing the odd-even effect in nuclei.  Relative to its average behaviour, the binding is a bit 

stronger for nuclei with even N and Z and it is weaker for nuclei with odd N and Z.  Only the 

pairing term is microscopic in the basic formula (1), with the term’s A-dependence, though, 

phenomenological. 

The simple binding formula (1) is surprisingly successful in practice.  In fitting the five 

coefficients to the recent data set on energies of over 3100 nuclei [22], the rms deviation of the 

formula turns out to be just 3.6 MeV, for nuclear energies spanning the range of over 2000 

MeV.  Formula modifications [9], either motivated microscopically or ad hoc, may further 
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improve the accuracy.  Binding formulas play a major role in nuclear physics, as in allowing for 

assessing nuclear stability and in illuminating nuclear interactions.  The volume term in the 

formula, e.g., indicates that, under the influence of nuclear interactions alone, the energy in 

uniform np-symmetric nuclear matter minimizes at the energy per nucleon of -aV ≈ -16 MeV and 

the density ρ0.  Efforts to reproduce that minimum microscopically led to the conclusion that 

three-nucleon interactions operate in nuclei [23]. 

Microscopic investigations at different densities ρ indicate that the quadratic 

dependence of nuclear energy on relative asymmetry, exhibited in equation (1), remains valid 

for a variety of interactions and a range of ρ, down to the limit of neutron matter [2],  N>>Z.  

Much uncertainty, though, concerns the coefficient in front of that quadratic energy dependence 

on asymmetry and, especially, concerns the coefficient’s changes with ρ.  The uncertainty 

hampers predictions for neutron stars, such as of star structure from hydrostatic equilibrium 

[2,5,18,20].  This is because the nuclear pressure, stabilizing the star, is proportional to the 

derivative of energy with respect to ρ and because the pressure component related to the energy 

of symmetric matter alone is low close to the minimum of energy at ρ0.  The BW fit appears to 

yield, at ρ0, for the coefficient S(ρ) in energy per nucleon, S(ρ0) =aA ≈ 21 MeV and, for the full 

energy per nucleon in pure neutron matter, -aV +aA≈ 5 MeV.  Though differing by the 

concentration factor, the complete symmetry term in the net energy and the coefficient S are 

habitually both called symmetry energy. 

Common microscopic inclusions in a binding formula beyond (1), improving the 

formula performance, are those of the shell effects and of the diffuseness and exchange 

corrections to the Coulomb term.  However, we shall indicate that the basic BW formula (1) is 

incomplete and inconsistent [10] already at the macroscopic level.  Bringing about macroscopic 

consistency affects the conclusions on symmetry energy.  The essence of the inconsistency is in 

the fact that the same binding cannot be subtracted twice from the dominant volume term in the 

formula (1). 
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The symmetry term in the BW formula, changing as A when N and Z are scaled by one 

factor, exhibits a volume character such as the formula’s leading term.  Thus, formula (1) states 

that the interior contribution to the binding decreases, when magnitude of asymmetry increases.  

With less binding to compensate for in developing a surface for an asymmetric nucleus, the 

surface tension should then drop as compared to a symmetric nucleus.   When accounting for 

the asymmetry dependence, the macroscopic surface properties gets completely specified when 

the tension is expressed in terms of the asymmetry chemical potential µA=∂E/∂(N−Z), σ=σ(µA), 

where nucleon numbers are treated as continuous variables for the smooth part of nuclear 

energy.   With the n-p interchange symmetry present when the Coulomb interactions are 

disregarded, the nuclear asymmetry N-Z vanishes for a vanishing µA.  In general, the inverse 

Legendre-transformation relation for asymmetry, from µA to N−Z, is  

,
Aµ∂

Φ∂
=− ZN  (2) 

where Φ=µA(N−Z)−E. Following the discussion above, for small asymmetries the tension should 

behave as  

σ(µA)=σ0−νµA
2 ,  (3) 

where σ0=aS/4πr0
2 and ν is some positive constant.  We next explore the consequences of 

equation (3). 

When the surface tension depends on asymmetry, so does the surface energy.   The latter 

dependence produces an apparent conceptual paradox [10] directly following from equation (2): 

the nuclear interior cannot contain the full np-imbalance N-Z of a nucleus!  This paradox is 

resolved when considering a rigorous separation of the macroscopic quantities into the volume 

and surface components, as e.g. following Gibbs [24].  The component separation depends on 

the assumed surface location and that location is naturally set, for nuclei, by demanding a 

vanishing nucleon surface number.  In the binary system, though, the neutron and proton 

surfaces may be displaced from each other.  With no net nucleon number, the surface can carry 

then a net np-imbalance, with the overall nuclear imbalance separating into the volume and 
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surface components: N-Z=NV-ZV+NS-ZS, where NS =-ZS. For a larger radius for neutrons than for 

protons, NS is positive.   

Following equations (2) and (3), the surface imbalance NS-ZS emerges linear in the 

asymmetry potential µA and the surface energy then quadratic in the imbalance: 

ES = aS A2/3 +aA
S

 (NS-ZS)2/A2/3, (4) 

where we have introduced the surface symmetry coefficient aA
S=1/(16πr0

2ν).  A similar 

reasoning leads to the nuclear volume energy quadratic in the volume imbalance: 

EV = - aV A +aA
V

 (NV-ZV)2/A, (5) 

where the volume symmetry coefficient aA
V is now generally different from aA in the BW 

formula (1).  The Coulomb interactions remain, for the moment, ignored.  In the nuclear ground 

state, the net macroscopic energy EV+ES should be minimal under the condition of a fixed net 

imbalance N-Z.  Quadratic in the imbalance, the two energies, EV and ES, are analogous to the 

electrostatic energies of charged capacitors, proportional to the capacitor charges squared 

divided by the capacitances.  For the minimal energy of the surface and volume capacitor 

combination, the net imbalance partitions itself in proportion to the capacitances,  
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On adding the Coulomb and pairing contributions, we now get the modified binding formula:  

E = -aV A+ aS A2/3+aC Z(Z-1)/A1/3+ aA(A)(N-Z)2/A+δ,     (8) 

where  
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The A-dependent symmetry coefficient here weakens for low mass numbers A, as more of the 

np-imbalance gets pushed out from the nuclear interior to surface.  Whether the A-dependent 

symmetry coefficient may be replaced in heavy nuclei by aA
V depends on the ratio aA

V/aA
S.   Of 

the two symmetry coefficients in the formula, only aA
V contributes to the energy of normal 

neutron matter. 

 Different radii for neutron and proton distributions, characteristic for surface asymmetry 

excess, are detected in nuclei (cf. references in [10]), albeit with some difficulty.  The excess is 

referred to as asymmetry skin.  For determination of the difference of radii, the distribution of 

chargeless neutrons needs to be probed and usually combining results from different probes of a 

nucleus is required.  In establishing an empirical systematic of the radii difference, or skin size, 

exotic beams have been employed  [25].  For stable nuclei, parity violations in electron 

scattering had been proposed for discerning the neutron radii [26].  Theoretically, in 

microscopic calculations of the symmetry skins, numerical experimentation has been employed 

[12,13] to assess the relation of radii difference to the characteristics of bulk matter including 

S(ρ). 

The macroscopic equation (6) indicates that data on surface asymmetry can directly 

constrain the nuclear ratio aA
S/aA

V. Two issues, however, must be resolved before arriving at any 

constraints.  One is that the data pertaining to the surface excess, referred to above, are 

expressed in terms of the difference of rms radii for neutron and proton density-distributions, 

<r2>n
1/2-<r2>p

1/2, rather than in terms of NS-ZS.  The geometric conversion between the two 

quantities is, though, straightforward as long as the surface diffuseness, characterising a particle 

distribution, is similar for neutrons and protons.  The second issue is that, for heavy nuclei, the 

Coulomb effects can compete with the symmetry-energy effects.  Against the minimal 

symmetry energy, the Coulomb forces try, on one hand, to push the proton relative to neutron 

surface out.  On the other hand, the Coulomb forces try to polarize the nuclear interior.  By 

minimizing a sum of the three energies, EV+ES+EC, with the interior contribution to EC and with 
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the symmetry contribution to EV cast in integral forms, the Coulomb effects get easily accounted 

for and an analytic result for the difference of radii is obtained [10,27]: 
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In equation (10), <r2>1/2≈0.77r0 A1/3 is the overall nuclear rms radius.  On the rhs, the Coulomb 

correction is proportional to aC.  Otherwise, the leading rhs term in (10), with various factors, 

represents the surface imbalance NS-ZS from equation (6) converted, following geometry, to the 

fractional difference of radii.  Notably, the minimized net energy leading to (10), as quadratic in 

the asymmetry changes around the minimum, is significantly less affected [10] by the Coulomb-

symmetry energy competition than is the surface imbalance. 

To see if the disregard of diffusivity or of other microscopic effects might hurt the 

predictive power of our skin-formula (10), we confront in figure 1 our predictions with a 

comprehensive set of nonrelativistic and relativistic mean-field calculations by Typel and 

Brown [12].  The figure shows the correlations between the skin of 208Pb and the skins of 138Ba 

and 132Sn.   The symbols in the figure represent the mean-field calculations and the lines 

represent our formula.  The results in the figure suggest an accuracy of 0.01 fm for our formula 

in representing the microscopic theory (while the Pb rms radius is 5.50 fm!).   

Experimental errors for skin sizes are large because of the difficulties in measuring the 

neutron radii.  The parity violation experiment [26] aims e.g. at a 1% error in the neutron radius 

of 208Pb, which transcribes onto a representative error of 0.06 fm either in the neutron radius or 

skin size.  Given large errors, conclusions on the ratio aA
V/aA

S can be aided by fitting the skin-

result (10) to a multitude of nuclear data on the skins.  In figure 2, we show the results of such a 

fit, with roughly horizontal lines, as one and two standard-deviation limits on the aA
V/aA

S ratio, 

for an assumed value of aA
V.  In the fit, the skin data [10] for the following isotopes have been 

included: 12C, 20-23,25-31Na, 40,42,43,44,48Ca, 46,48,50Ti, 58,64Ni, 90Zr, 116,124Sn and 206-208Pb.  While the 
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experimental uncertainties dominate the deduced uncertainty in aA
V/aA

S, in fitting here and later 

we allow for theoretical uncertainties.  We estimate the latter from the excess of residuals for 

our fit, over those expected from the declared experimental uncertainties alone, in a strategy 

analogous to that of reference [8].  High values of the aA
V/aA

S ratio, favoured by the fit results 

and displayed in figure 2, clearly invalidate [10] the aA (A)-expansion in A-1/3, see equation (9), 

underlying many binding formulas in use [8,9]. 

Constraining the symmetry coefficients directly, by fitting the modified binding formula 

to the binding-energy data, turns out to be treacherous [10], as conclusions on details of the 

different terms in the formula are interrelated.  Thus, at a fixed A, there is a dependence on the 

asymmetry in the Coulomb term.  There are further arguments for adding one more, Wigner, 

term [8,9], proportional to |N-Z|, to the formula.  Moreover, the average relative asymmetry, |N-

Z|/A, changes for known nuclei as A changes.   As a consequence, in an energy fit, the 

conclusions on asymmetry-dependent and asymmetry-independent terms in a formula become 

interrelated too.  Short of going after all formula details [9,14], ideal for an absolute coefficient 

determination would be a seemingly impossible study of the symmetry term in isolation from 

the formula remainder. 

A study in isolation is actually enabled by extending the charge symmetry of nuclear 

interactions to the charge independence, the invariance symmetry under rotations in the np 

space [7].  In an analogy to the spin-1/2 states, the nucleons form an isospin T=1/2 doublet, with 

the z-isospin projections of Tz =±1/2 representing the proton and neutron, respectively.  The 

nucleonic isospins couple to a net isospin for a given nuclear state.  Due to the charge 

independence, within the set of nuclei of one A, or isobars, states can be found that are 

analogues of each other, representing different Tz =(Z-N)/2 components of one T-multiplet.  

Within the excitation spectrum of a nucleus with low |N-Z|, in particular, isobaric analogue 

states (IAS) can be found [7,17] representing the ground states of neighbouring nuclei with 

higher |N-Z|.  Isospin conservation rules allow for the IAS identification in nuclear processes.  A 
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binding formula naturally generalizes [16] to the states of lowest energy for a given T in a 

nucleus. 

Under charge independence, nuclear contributions to the energy are isospin scalars.  The 

symmetry energy, in particular, must be proportional to the nuclear isospin squared, with the 

symmetry term then generalized to:  

aA(A) (N-Z)2/A →  aA(A) 4T(T+1)/A .   (11) 

In the ground state, the isospin T takes on the lowest possible value: T=|Tz|=|N-Z|/2.  In this 

modification, most [29] of the Wigner term gets absorbed into the symmetry energy and it 

represents there the effects of ground-state isospin-fluctuations.  In the binding-formula 

generalization [16] to different T, the pairing term vanishes for half-integer T  (odd A), and is 

positive and negative, respectively, for odd and even T.  With the above generalization, in the 

macroscopic limit, the excitation energy of an IAS, representing the ground state of a 

neighbouring nucleus, is proportional to aA(A), provided that either A is odd or that the IAS and 

the ground state of the current nucleus are characterized by T of the same evenness. 

Next, we determine aA(A) for individual A from the maximal measured IAS excitation 

energies [17] that are not biased by a pairing contribution, using 

aA(A) =A∆Ε/4∆[T(T+1)] ,  (12) 

where ∆ stands for the difference between the IAS and ground-state quantity (see the caption for 

Fig. 3 for more details).  With the expected average linear dependence of the inverse coefficient 

on A-1/3, (aA(A))-1= (aA
V)-1+(aA

S)-1 A-1/3, we plot (aA(A))-1 from equation (12) as a function of A-1/3 

in figure 3.  Indeed, an average, approximately linear, decrease with a decrease in A-1/3 is 

observed.  Scatter around the average behaviour is attributable to microscopic effects.  A 

weighted linear fit to the data, produces (aA
V)-1 as an intersect of the line with the vertical axis, 

and (aA
S)-1 as a slope.  In figure 2, we indicate the 1σ and 2σ contour lines in the aA

V- aA
V/aA

S 

plane for the linear fit.  Here, the coefficient uncertainties are dominated by the theory 

limitations seen in figure 3.   
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A couple of comments on the coefficient determination from IAS are in order.  The first 

comment concerns the role of the isospin-symmetry breaking Coulomb-term of the binding 

formula, within the procedure.  Thus, the square of the net nuclear isospin may be represented 

as 

,)1( 22
zTTTT +=+ ⊥  (13) 

where T⊥ stands for the isospin perpendicular to the direction in isospin space along which n and 

p point.  The ground state and the IAS, in the determination of aA(A), differ in the T⊥
2 value but 

not in the Tz value.  The isospin difference in equation (12) amounts then to ∆[T(T+1)]= ∆[ T⊥
2].  

The Coulomb term, however, depends on Tz but not on T⊥
2.  Correspondingly, the Coulomb 

term and part of the symmetry term proportional to Tz
2, engaged in the Coulomb-symmetry 

energy competition, drop out from the macroscopic energy difference for aA(A).  The second 

comment concerns testing a potential impact of the surface curvature on the symmetry 

coefficient and on conclusions, in the view of the strong impact of the surface on the symmetry 

coefficient evident in figure 3.  To test the potential impact, we resort to the Thomas-Fermi (TF) 

theory [28,10], with a nonlocal term in the energy density proportional to the density gradient 

squared.  By adjusting the strength of the nonlocal term, a realistic diffuseness of the nuclear 

surface may be achieved.  In [10], the TF theory was used to test equation (10).  We fit the data 

in figure 3, adjusting the magnitude and density dependence of S(ρ), within a polynomial 

parameterization for S.  The best-fit results are shown with filled squares in figure 3, together 

with the result for infinite matter.  While the best-fit TF results do not exactly fall along the 

best-fit line in figure 3, they do not quite exhibit the naïvely expected curvature effects either, in 

terms of a weakly parabolic dependence on the abscissa.  The symmetry volume and surface 

coefficients for the best-fit TF theory, indicated in figure 2, end up, in fact, rather close to those 

from the fit with equation (9).  Under a closer examination, some wavering of the TF results 

along the best-fit line, appears associated with an A-dependence of the surface diffuseness for 

the simple TF theory, stronger than demonstrated by available electron scattering data.  Notably, 

the TF rms deviation from data is significantly larger than the deviation for equation (9).  
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Correspondingly, in figure 2, we provide error limits, associated with data deviations, only for 

the coefficients from equation (9), and we end up using the TF results only for assessing the 

magnitude and direction of a possible systematic bias for the results from equation (9). 

With the skin and IAS constraints and the TF result in figure 2, we can now assess aA
V to 

be within the region of 30.0< aA
V <32.5 MeV and the coefficient ratio within 2.6< aA

V/aA
S <3.0.  

This is at the edge of the broadly identified region following the global ground-state energy fit 

[10].  Improvements going in accuracy down to fractions of MeV in the coefficients require 

comprehensive microscopic considerations [30]. 

Nuclear surface augments the nuclear asymmetry capacitance, because the symmetry 

energy per nucleon S drops with density ρ in the surface.  The ratio aA
V/aA

S, characterizing the 

surface-to-volume capacitance ratio, generally constrains [10] the shape of the density 

dependence, S(ρ)/aA
V.  When considering a continuous distribution of asymmetry capacitors, 

within the local density approximation, the aA
V/aA

S ratio emerges, in fact, as an integral across 

the nuclear surface involving the shape of the density dependence: 

( )∫ 







−= 1

)(
)(3

00 rS
ar

dr
ra

a V
A

S
A

V
A

ρρ
ρ

 . (14) 

Using equation (14) as a guidance, we plot in figure 4 a correlation between the coefficient ratio 

aA
V/aA

S, deduced from the skin of 208Pb with equation (10), and the drop of the symmetry energy 

at half the normal density, S(ρ0/2)/ aA
V, for a variety of  effective interactions employed in 

structure calculations [13].  Given our limits on aA
V/aA

S, we find that we can realistically limit 

the drop of S with density to: S(ρ0/2)=(0.58-0.69)aA
V.  Within the commonly employed power 

parameterization S=aA
V(ρ/ρ0)γ, this implies limits on the power of density dependence to 

0.54<γ<0.77.  With the aV value, our results for aA
V imply now the energy of -aV+aA

V=(14-17) 

MeV in ρ0-neutron matter, in place of the naïve 5 MeV.  While advanced approaches generally 

agree that the energy in ρ0-neutron matter must be higher than that from the naïve consideration 

[8,23], the specific result here is arrived in a uniquely straightforward fashion. 
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The dependence of S on ρ impacts the pressures reached within a neutron star, at different 

ρ, and the star structure.  Calculations [18] have established correlations, of different tightness, 

between the size of a star for a given mass and pressure values at different densities.  Given our 

limits on S(ρ) around ρ0 and the predominance of symmetry pressure there, we can put limits on 

pressure in the neutron star,  

P(ρ0)= ρ0
2 d S/dρ ≈ γ ρ0 aA

V= (2.7-3.9) MeV/fm3 . (15) 

Following the scaling RP-1/4≈ const of reference [18], for a representative neutron star, 1.4 times 

more massive than the Sun, we can then predict the radius [31] range of R= (11.5-13.5) km.  

The variation of S with ρ that we found appears too slow to enable a sufficient high-ρ proton-

concentration, inside a neutron star, needed for the direct Urca process cooling [5,19,20].  The 

significant extrapolation [5,19] to supranormal ρ needs, though, testing in central nuclear 

reactions [2,6]. 

A fit to binding-energy data [22] with our binding formula, with the symmetry energy 

modified following charge independence, equations (8), (9) and (11), yields symmetry-

parameter values close to the region from other constraints, see figure 2.  This is partly 

coincidental, as results of binding-energy fits are fragile, sensitive, following previous 

discussions, to secondary details in the formula.  Irrespectively of those details, though, the 

introduction of surface symmetry energy greatly improves the performance of a binding formula 

[10,11] for low-mass highly asymmetric nuclei, such as those studied at the exotic beam 

facilities [1].  Figure 5 illustrates changes in the binding-energy residuals for |N-Z|/A>0.2 nuclei, 

when switching from the best-fit standard formula to our last formula with aA
V/aA

S =2.8 

enforced.  In the latter case, the parameter values are aV ≈15.4 MeV, aS ≈16.9 MeV, aC≈0.69 

MeV, aP≈11.6 MeV and aA
V≈32.6 MeV.   

To summarize, considerations of consistency for the macroscopic nuclear energy function 

imply the emergence of nuclear asymmetry skins and weakening of the symmetry-energy term 

in light nuclei.  Data on nuclear skins constrain the ratio of coefficients aA
V/aA

S within the 

symmetry term whose form uniquely follows from the macroscopic considerations.  Absolute 
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magnitude of the coefficients is constrained by the mass dependence of excitation energies to 

IAS representing ground-states in the same isobaric multiplet.  Using currently available data, 

we narrow the coefficients, following the macroscopic approach only, to within the range 30.0< 

aA
V <32.5 MeV and 2.6< aA

V/aA
S <3.0.  Looking at the vertical scales in figure 1, it is apparent 

that the parity violation measurement of lead neutron radius is not likely to shed new light on 

the symmetry energy.  From equations (6) and (10), it is apparent that, at a given relative 

asymmetry, the relative skin size is largest for light nuclei.  Further improved skin 

measurements for light highly asymmetric exotic nuclei [25] should be, on the other hand, 

beneficial in narrowing the uncertainty in aA
V/aA

S.   Otherwise, microscopic theoretical 

investigations of the relative energies of isospin multiplets can yield insights into the symmetry 

energy, with the effects of charge invariance and charge symmetry [32] being of particular 

interest.  The coefficient ratio in aA
V/aA

S is related to the shape of the density dependence of 

symmetry energy at subnormal densities.  Within the common power parameterization of the 

density dependence, S/aA
V = (ρ/ρ0)γ, at moderately subnormal densities, 0.5ρ0<ρ<ρ0, we find 

0.54<γ<0.77.  This has a further a further bearing on the pressure in neutron matter, P(ρ0)= (2.7-

3.9) MeV/fm3 and on properties of neutron stars. 
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Figures 

 

 

 

Figure 1.  Asymmetry-skin correlation between the 138Ba, 132Sn and 208Pb nuclei.  The 

skins are quantified with the difference of neutron and proton rms radii.  Symbols 

represent the results [12] from nonrelativistic Hartree-Fock (crosses and filled circles) 

and relativistic Hartree (diamonds and squares) calculations, for a variety of effective 

Lagrangians and Hamiltonians.  The lines represent our analytic formula (10), from 

minimizing the combination of macroscopic symmetry and Coulomb energies.  The 

rhs scale of the figure shows the symmetry coefficient ratio aA
V/aA

S for our formula.  

Given the weak sensitivity of skin size to aA
V  in separation from aA

S, solely through 

aC/aA
V in the Coulomb term in (10), in obtaining the rhs scale we set aA

V, for a given 

aA
V/aA

S, by insisting on the consistency with the BW coefficient, aA(200)≈21 MeV. 
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Figure 2.  Results for the symmetry parameters in the plane of aA
V/aA

S vs aA
V.  Slant 

lines represent the 1σ and 2σ? constraints on aA
V/aA

S at fixed aA
V, from the fit of our 

skin formula to the measurements quoted in reference [10].  Oval contours represent 

the constraints on aA
V/aA

S and aA
V, from fitting the linear dependence on A-1/3, (aA(A))-

1= (aA
V)-1+(aA

S)-1 A-1/3, to the mass-dependent symmetry-coefficient values from the 

IAS excitation energies [17], shown in figure 3.  The filled square represents the 

symmetry parameters obtained when fitting aA(A) from IAS within the simple 

Thomas-Fermi theory [10,28].  The filled circle and diamond represent, finally, the 

symmetry parameters from the best fit to the nuclear data [22], respectively, for the 

standard BW formula (1) and for our final binding formula (equations (8), (9) and 

(11)) including the effects of isospin fluctuations. 
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Figure 3.  Inverse of the A-dependent symmetry-coefficient as a function of A-1/3.  

Filled circles indicate inverse coefficient values obtained, using equation (12), from 

extremal measured excitation energies of the IAS [17] representing ground states of 

neighbouring nuclei.  For an even A, the represented neighbouring nucleus was 

required to be of the same Z-evenness as the nucleus with the IAS.  The evenness 

requirement was to preclude a pairing contribution to the energy difference 

interpreted, in the macroscopic limit, as associated with the symmetry energy alone.  

In some cases, an IAS representing the ground state of a neighbouring nucleus was 

not known, but an IAS of some low-lying excited state was.  If the latter state’s 

excitation energy did not exceed ~1 MeV, the energy of the known IAS was used and 

corrected for the excitation energy.  Results from different nuclei of the same A were 

combined.  Size of the symbols in the figure is proportional to the weight 

4∆[T(T+1)]/A in the  determination of (aA(A))-1, or to the weight combination.  The 

larger the weight (generally of the order of 1) the more likely is the suppression of 

fluctuating microscopic contributions to the energy.  Regarding those, the oscillating 
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pattern in aA
-1 in the figure is characteristic for shell effects.  The straight line in the 

figure represents the optimal weighted linear-fit to the data for aA
-1.  The filled squares 

represent the optimal weighted Thomas-Fermi fit to those data.   

 

  

Figure 4.  Correlation between the symmetry-coefficient ratio aA
V/aA

S and between 

the reduction in symmetry energy at half of normal density, relative to the normal, 

S(ρ0/2)/aA
V, for a variety of mean-field models explored by Furnstahl [13].  The 

coefficient ratio for the bottom scale was obtained from the 208Pb skins for the models 

following equation (10), cf. figure 1.  (The apparent small but systematic Coulomb 

discrepancy for the formula, reported for comparisons [10] with Thomas-Fermi 

calculations, turned out to be related to an insufficient accuracy of those calculations.)  

A smooth-curve fit to the results in the figure produces an uncertainty range of 

0.58<S(ρ0/2)/aA
V<0.69, for 2.6<aA

V/aA
S<3.0. 
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Figure 5.  Residuals of binding-formula fits to known ground-state nuclear energies 

[22], shown for the low-mass (A<90) region of asymmetric nuclei, |N-Z|/A>0.2.  Open 

and closed symbols represent, respectively, the residuals when following the standard 

formula and the formula with the symmetry term of the form aA
V |N-Z| (|N-

Z|+2)/(A+A2/3 aA
V/aA

S) with aA
V/aA

S =2.8 enforced.  (The number of fitted parameters is 

then the same for the two fits.)  Observed oscillations in the residuals are generally 

characteristic for shell effects.  Some scatter of the residuals for the modified formula, 

persisting at low mass numbers, is due to unaccounted competition between the 

symmetry and Coulomb energies [10].  When switching between the formulas, for the 

A<50 and |N-Z|/A>0.2 region, the rms deviation from data drops from 6.6 MeV down 

to 3.0 MeV, becoming close to the rms deviation for all nuclei of 2.7 MeV. 

 

 


