Structure of Nuclei with Masses A = 30-35, as Calculated in the Shell Model

B. H. Wildenthal

Department of Physics and Cyclotron Laboratory,* Michigan State University, East Lansing, Michigan 48823

and

J. B. McGrory and E. C. Halbert Oak Ridge National Laboratory,† Oak Ridge, Tennessee 37830

and

H. D. Graber

Cornell College, Mt. Vernon, Iowa 52314 (Received 19 May 1971)

Properties of positive-parity states of nuclei with A = 30-35 have been calculated in a shellmodel space which encompasses all Pauli-allowed basis vectors of all configurations $(0s)^4(0p)^{12}(0d_{5/2})^{n_1}(1s_{1/2})^{n_2}(0d_{3/2})^{n_3}$ for which $n_1 \ge 10$. Two different empirical Hamiltonians, one of a δ -function form, were used. Calculated energies and spectroscopic factors are in good agreement with an extensive body of experimental data. The model wave functions also yield satisfactory agreement with many available experimental data on electric quadrupole observables if effective charges of 0.5e are added to the proton and neutron. The model predictions for magnetic dipole observables are generally in qualitative agreement with experimental observations, but inconsistencies between theory and experiment are more noticeable in this area.

I. INTRODUCTION

This paper describes the results of a series of shell-model calculations which have been carried out in an attempt to understand the structure of energy levels in nuclei of A=30-35. The properties of these nuclei present an attractive challenge to theoretical interpretation in that experimental information¹ about spins and parities of observed levels in this mass region is extensive and there are also many data on lifetimes, spectroscopic factors, and the like. Thus, any theory for these nuclei can be critically examined with unusual thoroughness.

Despite all this experimental activity, there have been relatively few theoretical investigations of these nuclei. This probably results from the fact that experimental phenomena typical of the region do not readily yield to analysis by the simplest forms of any of the popular models for describing nuclear structure. The level structures of A = 30-35 do not exhibit obvious rotational features to the extent found, for example, in A = 20 - 25. Thus, the most straightforward Nilsson-type calculations for nuclei with $A \ge 30$ are not as successful as for the lighter nuclei of the sd shell.² However, more involved calculations of this kind have successfully accounted for some properties of individual nuclei.³ Similarly the simplest kind of weakcoupling vibrational calculation meets with little success in this region,⁴ although recent, more

sophisticated intermediate-coupling calculations⁵ appear promising.

A detailed shell-model calculation of the structure of these nuclei was first made by Glaudemans and his co-workers⁶ in a study which assumed an inert ²⁸Si core and active $1s_{1/2}$ and $0d_{3/2}$ orbits. They treated all nuclei from A=29-40, but the results obtained for the lighter nuclei were obviously impaired in some respects by the omission of an active $d_{5/2}$ orbit. This region was also studied via shell-model methods as part of a general survey of the *sd* shell by Bouten, Elliot, and Pullen.⁷ By making simplifying assumptions about the Hamiltonians and the wave functions, they were able to include effects of some excitations out of the $d_{5/2}$ orbit. However, they presented and discussed only energy-level spectra.

The results of previous calculations, and examination of the experimental data, strongly suggest that any conventional shell-model calculation for the A=30-35 region should allow some excitation out of the $d_{5/2}$ orbit. As we shall discuss further below, there are no obvious indications from experiment that the orbits of the 0f-1p shell are necessary for an adequate description of the properties of the low-lying positive-parity states in the A=30-35 region. We have accordingly studied the properties of these nuclei by means of a conventional shell-model calculation in a vector space which includes basis states with particles in the $d_{5/2}$, $s_{1/2}$, and $d_{3/2}$ orbits. We shall show that a

4

TABLE I. Values of Hamiltonian parameters obtained by iterative fits of shell-model level energies to experimental level energies and the average deviations of the theoretical predictions from the experimental values. Here abs means average absolute deviation, while rms means root-mean-square deviation. Units are MeV.

								Average	deviations
Parameters					Single-	particle	energies	Ground states	Excited states
Calculations	A_0	A_1	<i>B</i> ₀	B ₁	$\epsilon_{5/2}$	$\epsilon_{1/2}$	$\epsilon_{3/2}$	abs/rms	abs/rms
A = 30 - 34 MSDI	0.646	0.906	-1.470	0.770	-7.56	-6.03	-3.96	0.170/0.220	0.320/0.410
A = 30 - 34 FPSDI	0.939	0.711	-1.598	0.866	-7.74	-4.78	-2.82	0.190/0.220	0.200/0.250
A = 30 - 33 MSDI	0.892	0.873	-1.071	0.708	-7.55	-5.73	-3.32		
A = 17 - 22 MSDI	0.774	0.954	-2.503	0.370	-4.49	-3.16	+1.04		
A = 35 - 39 MSDI	0.379	0.960	-1.818	0.461	-6.82	-2.00	+0.65		N .

TABLE II. Energies *E* and spectroscopic factors *S* for states of A = 31, $T = \frac{1}{2} \left({}^{31}\text{P} - {}^{31}\text{S} \right)$. The nuclear binding energies, relative to ${}^{16}\text{O}$, are listed for the ground state, and excitations relative to these ground-state energies are listed for the excited states. Asterisks indicate experimental energies used in fixing the parameters of the Hamiltonians. Footnotes a, b, etc., apply to the entire column of entries under the footnoted entry. Experimental energies enclosed in parentheses indicate the lack of a firm experimental spin-parity assignment. The target state for the stripping transfers (S_{st}) is A = 30, T = 1, $J^{\pi} = 0^+$ (${}^{30}\text{Si}$), and the target state for the pickup transfers (S_{pk}) is A = 32, T = 0, $J^{\pi} = 0^+$ (${}^{32}\text{Si}$).

	Ene	ergy E (Me	eV)				(100 × S	$(100 \times S_{pk})$		
ΑЈΤ	Expt.	FPSDI	MSDI			Expt.		r	FPSDI	MSDI
$31 \ \frac{1}{2} \ \frac{1}{2}$	168.50*	168.63	168.68	70 ^a	$68 {}^{\mathrm{b}}/174 {}^{\mathrm{c}}$	208 ^d	180 ^e	220 ^f	109/257	97/226
$31 \ \frac{1}{2} \ \frac{1}{2}$	3.13*	3.40	3,63	3	2/				4/3	8/2
$31 \frac{1}{2} \frac{1}{2}$	5.25	4.30	3.97	5	5/			40	1/0	1/0
$31 \frac{1}{2} \frac{1}{2}$	6.41	5.42	5.01					64	3/30	2/9
$31 \frac{3}{2} \frac{1}{2}$	1.27*	1.24	1.23	72	68/110	188	220	136	76/120	78/162
$31 \frac{3}{2} \frac{3}{2}$	3.51*	3.81	3.93	≤1	<1/				18/3	12/1
$31 \ \frac{3}{2} \ \frac{1}{2}$	4.26*	4.18	4.55	.1	4/				0/0	0/1
$31 \frac{3}{2} \frac{1}{2}$	4.59	4.77	4.69	. 3	2/				1/8	6/5
$31 \ \frac{5}{2} \ \frac{1}{2}$	2,23*	2.41	2.48	7	6/480	554	580	304	4/490	6/455
$31 \frac{5}{2} \frac{1}{2}$	3.29*	2.96	2.84	≤1	≤1/	146	160	106	0/5	0/1
$31 \ \frac{5}{2} \ \frac{1}{2}$	4.19*	4.35	4.70	3	1	172		106	0/1	1/33
$31 \frac{5}{2} \frac{1}{2}$	4.78	4.61	4.91	<1	1			46	0/29	0/11
$31 \frac{7}{2} \frac{1}{2}$	3.41*	3.63	3.65							
$31 \frac{7}{2} \frac{1}{2}$		3,91	4.09							
$31 \frac{7}{2} \frac{1}{2}$		4.83	5.53							
$31 \frac{7}{2} \frac{1}{2}$		5.32	5.73							
$31 \frac{9}{2} \frac{1}{2}$		4.85	5.02							
$31 \frac{9}{2} \frac{1}{2}$		5.26	5.64							
$31 \ \frac{11}{2} \ \frac{1}{2}$		5.94	6.42							
$31 \frac{13}{2} \frac{1}{2}$		7.63	7.66							

^aReference 27.

^bReference 28.

^dReference 30.

great many details of the experimental properties of low-lying levels in all the nuclei from A=30-35 are reproduced successfully by this one model. In addition, the over-all qualitative features of the spectra, which are not easily describable in terms of any simple rotational or vibrational model, readily appear. We wish to emphasize the consistency and comprehensiveness of the results we will present. We treat eleven different mass-isospin systems simultaneously with mass-independent Hamiltonians. We calculate for these nuclei a variety of physical observables under assumptions for the various effective operators that are also held constant for the entire study and are completely state independent.

II. DESCRIPTION OF THE CALCULATION

A. Model Space

We wished to use a fixed truncation scheme for all of the nuclei A = 30-35. The vector space we chose is spanned by all Pauli-allowed $(0_s)^4(0_p)^{12}(0d_{5/2})^{n_1}(1s_{1/2})^{n_2}(0d_{3/2})^{n_3}$ states which satisfy the condition that n_1 , the number of particles occupying the $0d_{5/2}$ orbit, is greater than or equal to 10. The choice of this particular truncation scheme was founded in part on physical considerations (two-particle excitations out of the $0d_{5/2}$ orbit were considered a minimal expansion of the $1s_{1/2}-0d_{3/2}$ space towards a satisfactory basis), and in part on technical feasibility (a general inclusion of three or more particle excitations out of the $d_{5/2}$ orbit would have led to energy matrices too large for present capabilities). It is possible that there are states mainly characterized by four-particle excitations of the $0d_{5/2}$ orbit which might appear at the same excitation energy as some states formed mainly with the model-allowed two-particle excitations. We think that the most serious limitation of our vector space is this omission of *sd*-shell states having fewer than 10 nucleons in the $d_{5/2}$ orbit.

The exclusion of 0p and 1p, 0f excitations from the model space appears to be a good approximation. The evidence for this comes from pickup and stripping experiments. Single-nucleon stripping data¹ indicate that the lowest $0f_{7/2}$ - and $1p_{3/2}$ -type states in the A=31-35 even-odd nuclei occur at excitation energies higher than 3 MeV. Pickup experiments do not reveal any 0p holes in levels below 6 MeV. For the nuclei we consider here, the situation with respect to states which appear to have their origins in configurations outside the sd-shell space is quite favorable in comparison to what occurs in the lighter and heavier nuclei of the sd shell. In the A=18 and A=38 systems, for example, positive-parity states coming as low as 3 MeV in excitation energy appear to have their origins entirely in two-particle, four-particle, etc., configurations of the adjacent negative-parity orbits.

B. Form of Effective Hamiltonian

Because of the model space we use, it is difficult to obtain the one- and two-body matrix elements of the effective Hamiltonian operator by either of two popular current methods. One of

TWO - BODY MATRIX ELEMENTS ⟨j₀ j₀JT|V|jcjdJT⟩

FIG. 1. Plots of the 63 two-body matrix elements of each of the *sd*-shell interactions used in the present study (MSDI and FPSDI), together with an interaction calculated by Kuo's techniques from the Hamada-Johnston nucleon-nucleon potential. The matrix elements $\langle (d_{5/2}s_{1/2})_{J,T}|V|(d_{5/2}d_{3/2})_{J,T}\rangle$ are labeled by the symbol 5153, and so on. Within each such group, the order follows the sequence of increasing values of the *J*, *T* pair: For example, the 5555 matrix elements are ordered (J=0, T=1), (J=1, T=0), (J=2, T=1), (J=3, T=0), (J=4, T=1), (J=5, T=0).

these methods involves the calculation of the twobody matrix elements from free nucleon-nucleon interactions by reaction-matrix methods. Most such calculations in the literature^{8, 9} are aimed at obtaining the effective interaction for two particles (or two holes) outside an inert core. It is well known that renormalization effects arising from relatively low-lying core excitations are extremely important in these calculations. There are problems in using such interactions in treating systems of many particles or holes, or in a truncated space such as we use here. First, the calculated interactions are most applicable for nuclei at the beginning (or the end) of the shell, where, indeed, they have been used with quite some success.^{10, 11} Some of the approximations of the technique (e.g., neglect of effective three-body forces) may be applicable in few-nucleon or fewhole calculations, but not applicable in calculations for the middle of the shell. In addition, while these reaction-matrix interactions are renormalized to compensate for the omission of excitations into (or out of) orbits absent from the active model space, this is not the case for the omission of the configurations involving orbits that can be partially occupied for some basis states within the model space. Since we restrict ourselves to configurations with at least 10 particles in the $d_{5/2}$ shell, we omit many configurations involving a less completely filled $d_{5/2}$ shell. There is very little experience which suggests how to calculate renormalizations to make up for such omissions.

A second popular method of obtaining effective interactions is to treat the two-body matrix elements as free parameters, $^{6, 12}$ these being determined so as to give a best fit between calculated eigenvalues and observed level energies. In this way, the interaction is empirically renormalized to compensate for the omission of configurations not included in the active model space. In the three-shell model space we use, there are 63 twobody matrix elements. For the nuclei we treat,

FIG. 2. Observed and calculated spectra for A = 31, $T = \frac{1}{2}$ (see Table II). The experimental spectrum is taken from data on ³¹P. All observed levels are plotted up to the maximum energy indicated, with the exception that all known negative-parity levels are omitted except for the lowest one. Only four levels for each spin have been calculated. All of these that fall within the indicated range are plotted. The states of the model spectra which correspond to the observed ground state have been aligned with it in energy.

there are not enough energy levels with known spins and parities to determine accurately such a large number of parameters. Even if there were sufficient data, the search procedure would be difficult.

Because of these difficulties with the above described procedures, we decided to use, as matrix elements for the two-body part of the effective interaction, the matrix elements $\langle j_a j_b JT | V | j_c j_d JT \rangle$ of the surface δ interaction (SDI), modified with isospin-dependent monopole terms in order to fit binding energies. We shall refer to this interaction as the modified surface δ interaction (MSDI). The use of this effective interaction in finite-nucleus calculations has been discussed by various authors.¹³⁻¹⁶ Our main reason for the use of the MSDI in the present study is that it has the very desirable feature of providing a parametrization of the model Hamiltonian which has a small number of degrees of freedom.

The MSDI is expressed as,

$$V_T(ij) = -4\pi A_T \delta(r_i - r_j) f_{ij} + B_T,$$

where T indicates the isospin (0 or 1) of the interacting nucleon pair, A_T and B_T are strengths depending only on T, and f_{ij} is an operator which has the following effect on the radial part of

$$\langle j_a j_b JT | V | j_c j_d JT \rangle :$$

$$\int_0^{\infty} \int_0^{\infty} r_i^2 dr_i r_j^2 dr_j R_a(r_i) R_b(r_j)$$

$$\times \delta(r_i - r_i) f_{ij} R_c(r_j) R_d(r_j) = (-1)^{n_a + n_b + n_c + n_d}.$$

Here R_a , R_b , R_c , and R_d are the single-particle radial wave functions involved in

$$\langle j_a j_b JT | V | j_c j_d JT \rangle;$$

and n_a , etc., refer to the principal quantum numbers of the orbits associated with j_a , etc. Our conventions are that the lowest orbit of given l has principal quantum number zero, and that the radial functions R_a are positive at the origin. With the assumption of the MSDI and with the parametrization technique we used, the 63 two-body matrix elements of the *sd*-shell Hamiltonian are specified by only four parameters. Together with the three single-particle energies, this leads to a total of seven parameters to specify the *complete effective Hamiltonian*, which we shall also refer to as MSDI.

Optimized values of these seven parameters were obtained by iteratively adjusting them with the code SMIT¹⁷ so as to produce a least-squares fit to 66 data on levels with experimentally assigned J, π , and T in nuclei with A = 30-34. These data comprized 11 ground-state binding energies (of systems with specific A, T) and 55 excitation energies (relative to the lowest energy state of the same A, T). The shell-model matrices were constructed with the aid of the Oak Ridge-Rochester computer code.¹⁸ The energy-level data used in this procedure are indicated in the tables of results by asterisks. The experimental ground-state binding energies are given relative to 16 O, with the Coulomb energies removed by the technique described by Glaudemans, Wiechers, and Brussaard.⁶

FIG. 3. Diagrams of observed and calculated spectroscopic factors for single-nucleon transfer to ³¹P or ³¹S. The information for these drawings is taken from Table II (Refs. 27 and 32). States with negligible particle or hole strength are not shown. The horizontal scale is such that a bar for S=1.0 has the length equivalent to 1 MeV on the vertical scale. S_{pk} denotes pickup S factors and S_{st} denotes stripping S factors.

It should be emphasized that the two monopole constants B_T of the MSDI, and one of the three singleparticle energies, contribute only to the binding energy of one A, T system relative to another. The excitation spectrum within a given system is determined only by the two SDI strengths A_T and the two single-particle energy splittings.

The values which were obtained for the MSDI Hamiltonian parameters in the iterative search, and the final average deviations of the calculated eigenvalues from experimental energies, are listed in Table I. A plot of the individual two-body matrix elements is shown in Fig. 1. The MSDI parameters we obtain here differ somewhat from the values (see Table I) obtained in a fit to data restricted to A = 30-33, as published¹⁹ in a preliminary report of this calculation. However, the eigenvalue-eigenvector spectra are generally quite insensitive to the change from the older set of parameters to the present set. The new A = 30-34parameters happen to more closely resemble the values obtained in fitting the MSDI parameters to energy-level data at the lower and upper ends of the *sd* shell (A = 17-22 and A = 35-39) in shellmodel calculations^{10, 11} with unrestricted *sd*-shell bases.

The structure predictions based upon the MSDI Hamiltonian turned out to yield remarkably good agreement with the large majority of data in the region of interest. Still, the MSDI is a very constrained and simplified effective interaction, and there are examples (e.g., in A = 38 and also in A= 18-22) in which its use^{10, 11, 20} leads to disagreements with experiments for specific aspects of nuclear structure. Hence, we have developed an alternative effective Hamiltonian for this same series of nuclei. This second Hamiltonian was derived by taking the final MSDI Hamiltonian as a starting point and then treating the two-body matrix elements which do *not* involve the $d_{5/2}$ orbit (15 in all) as independent free parameters in a least-squares search to fit experimental level energies. The remaining two-body matrix elements were readjusted in the four-parameter MSDI for-

FIG. 4. Observed and calculated spectra for A = 31, $T = \frac{3}{2}$ (see Table III). The conventions of the presentation are explained in the caption to Fig. 2.

mat, and the three single-particle energies were also readjusted. We label the resulting 22-parameter Hamiltonian FPSDI, indicating both its freeparameter aspects and its heritage from the strict MSDI form. The underlying idea in using the FPSDI form is that the $s_{1/2}$ and $d_{3/2}$ orbits are more immediately involved than is $d_{5/2}$ in determining the level structure of nuclei in this mass region, and that it is most important to have the best possible values for the two-body matrix elements involving the $d_{3/2}$ and $s_{1/2}$ orbits.

To determine the FPSDI Hamiltonian matrix elements, the same data were used in the iterative search as for the case of the MSDI. The increase in the number of free parameters from 7 to 22 (resulting in a ratio of data points to parameters of 3 to 1) significantly slowed the rate of convergence toward a stable interaction. The one- and twobody matrix elements from which the present results are computed are not the result of a completely converged search, since the iterative chain was cut off after three cycles. From an examination of the changes in matrix elements and calculated results after each of the three iterative steps, we estimate that further iterations would introduce changes in excitation energies and wave function amplitudes of less than 5%.

The MSDI part of the FPSDI interaction is quite similar to that obtained for the pure MSDI fit (see Table I). The FPSDI single-particle energies differ from those of the MSDI such that the $1s_{1/2}$ and $0d_{3/2}$ orbits are less bound, relative to $0d_{5/2}$, by approximately 1 MeV. The average agreement (see Table I) of the FPSDI-calculated ground-state binding energies with the experimental values is no better than that obtained with the MSDI. This indicates that the degrees of freedom allowed by the MSDI suffice to give quite good agreement for binding energies.²¹ However, the FPSDI average deviations from experimental excited-state energies are about half of those obtained from the MSDI. Even after account is taken of the increased number of parameters in the fit, the improvement is still appreciable. The FPSDI matrix elements are compared with the MSDI values in Fig. 1. We have plotted, for further comparison, a third

TABLE III. Energies E and spectroscopic factors S for states of A = 31, $T = \frac{3}{2}$ (³¹Si). The conventions of the presentation are explained in the caption to Table II. The target state for the stripping transfers (S_{si}) is A = 30, T = 1, $J^{\pi} = 0$ (³⁰Si).

		Energy E (MeV)			$100 \times S_{st}$	MODI
	Expt.	FPSDI	MSDI	Expt.	FPSDI	MSDI
$31 \ \frac{1}{2} \ \frac{3}{2}$	0.75*	0.92	0.80	$25^{a} 23^{b}$	14	19
$31 \frac{1}{2} \frac{3}{2}$	4.72*	4.14	3.94		5	1
$31 \frac{1}{2} \frac{3}{2}$	5.26*	5.00	4.44		0	3
$31 \frac{1}{2} \frac{3}{2}$		5.50	5.26		0	0
$31 \ \frac{3}{2} \ \frac{3}{2}$	162.16*	162.32	162.28	86 52	72	71
$31 \ \frac{3}{2} \ \frac{3}{2}$	2.32*	2.27	2.42	5	2	1
$31 \ \frac{3}{2} \ \frac{3}{2}$	4.26*	3.81	3.33		6	6
$31 \ \frac{3}{2} \ \frac{3}{2}$		4.72	3.92		0	.1
$31 \ \frac{5}{2} \ \frac{3}{2}$	1.69*	1.89	1.82	2	0	0
$31 \ \frac{5}{2} \ \frac{3}{2}$	2.79*	2.54	3.10	4	2	1
$31 \ \frac{5}{2} \ \frac{3}{2}$,	4.02	3.39		0	0
$31 \ \frac{5}{2} \ \frac{3}{2}$		4.64	4.33		0	0
$31 \frac{7}{2} \frac{3}{2}$		3.71	3.53			
$31 \frac{7}{2} \frac{3}{2}$		4.32	3.74			
$31 \ \frac{7}{2} \ \frac{3}{2}$		5.13	4.63			
$31 \frac{7}{2} \frac{3}{2}$		5.45	5.25			
$31 \frac{9}{2} \frac{3}{2}$		4.19	4.52			
$31 \frac{9}{2} \frac{3}{2}$		5.30	5.03			
$31 \ \frac{11}{2} \ \frac{3}{2}$		6.92	6.12			
$31 \ \frac{13}{2} \ \frac{3}{2}$		8.02	7.92			

^aReference 33.

^bReference 27.

TABLE IV. Values of B(E2) and B(M1) for transitions between states of A = 31. The experimental values are calculated from the lifetimes, branching ratios, and mixing ratios tabulated by Glaudemans, Endt, and Dieperink (Ref. 26). In cases of unkown E2/M1 mixing, we have assumed that the B(E2) value is 20 Weisskopf units (W.u.) and so extracted a lower limit on the B(M1). The column of calculated B(E2) values headed FPSDI results from the FPSDI wave functions with the assumptions of $\tilde{e}_p = 1.5e$, $\tilde{e}_n = 0.5e$, and harmonic oscillator wave functions for $\hbar\omega = 41A^{-1/3}$ MeV. The column headed MSDI results from the MSDI wave functions and the same assumptions for effective charge and radial wave functions. The column entitled MSDI-A is taken from Ref. 26; it results from the MSDI wave functions and the assumption of $\tilde{e}_p = 1.44e$, $\tilde{e}_n = 0.68e$. The B(M1) columns entitled FPSDI and MSDI result from using these sets of wave functions and free-nucleon g factors. The MSDI-A column is taken from Ref. 26; it results from changing the values of the isovector single-particle matrix elements $\langle s_{1/2} \| \tilde{M}^1 \| s_{1/2} \rangle$, $\langle d_{3/2} \| \tilde{M}^1 \| d_{3/2} \rangle$, and $\langle s_{1/2} \| \tilde{M}^1 \| d_{3/2} \rangle$ from their free-nucleon values of (6.90, -1.58, and 0) μ_N to (4.4, 0.5, and 0.4) μ_N respectively for A = 30 and to (4.1, -0.3, and -0.2) μ_N , respectively, for A = 33 and 34. The transitions are identified by the J, T, and the experimentally measured excitation energy (in units of MeV) of the initial and final states. The model states which are to be matched with these experimental energies are noted in the tables which list energies and spectroscopic factors. Zeroes in the tables indicate J-forbidden transition; three dots indicate no calculation was made for the transition in question.

	Initial	Final					- · · ·
	state	state	B(E2)	$(e^2 F^4)$		$100 \times B$	$(M1) (\mu_N^2)$
Nucleus	JT E	J T E	Expt. ^a FPSDI	MSDI MSDI-A *	Expt."	FPSDI	MSDI MSDI-A *
$^{31}\mathrm{P}$	$\frac{3}{2}$ $\frac{1}{2}$ 1.27	$\frac{1}{2}$ $\frac{1}{2}$ 0.00	23 ± 4 27	27 31	3.3 ± 0.2	2.2	2.5 2.7
^{31}P	$\frac{5}{2}$ $\frac{1}{2}$ 2.23	$\frac{1}{2}$ $\frac{1}{2}$ 0.00	36 ± 2 21	12 13	0	0	0 0
^{31}P	$\frac{5}{2}$ $\frac{1}{2}$ 2.23	$\frac{3}{2}$ $\frac{1}{2}$ 1.27	<30 1.7	2.4 2.3	<0.19	0.6	0.0 0.4
^{31}P	$\frac{1}{2}$ $\frac{1}{2}$ 3.13	$\frac{1}{2}$ $\frac{1}{2}$ 0.00	0 0	0 0	18 ±1	47	44 29
^{31}P	$\frac{1}{2}$ $\frac{1}{2}$ 3.13	$\frac{3}{2}$ $\frac{1}{2}$ 1.27	<68 9.4	10 13	<1.6	20	6.4 0.5
³¹ P	$\frac{1}{2}$ $\frac{1}{2}$ 3.13	$\frac{5}{2}$ $\frac{1}{2}$ 2.23	2.0	••• •••	0	0	0 0
^{31}P	$\frac{5}{2}$ $\frac{1}{2}$ 3.29	$\frac{1}{2}$ $\frac{1}{2}$ 0.00	<0.2 6.0	11 14	0	0	0 0
³¹ P	$\frac{5}{2}$ $\frac{1}{2}$ 3.29	$\frac{3}{2}$ $\frac{1}{2}$ 1.27	22 ± 4 11	9.4 10	3.7 ± 0.4	15	17 2.9
³¹ P	$\frac{5}{2}$ $\frac{1}{2}$ 3.29	$\frac{5}{2}$ $\frac{1}{2}$ 2.23	<20 24	••• 20	5.4 ± 0.9	2.9	5.5 13
³¹ P	$\frac{7}{2}$ $\frac{1}{2}$ 3.41	$\frac{3}{2}$ $\frac{1}{2}$ 1.27	58 ± 12 34	••• 15	0	0	0 0
³¹ P	$\frac{7}{2}$ $\frac{1}{2}$ 3.41	$\frac{5}{2}$ $\frac{1}{2}$ 2.23	<29 36	••• 81	<0.27	1.9	20 2.1
^{31}P	$\frac{3}{2}$ $\frac{3}{2}$ 6.38	$\frac{1}{2}$ $\frac{1}{2}$ 0.00	•••	0.6	• • •	7.4	4.9 7.0
^{31}P	$\frac{3}{2}$ $\frac{3}{2}$ 6.38	$\frac{3}{2}$ $\frac{1}{2}$ 1.27	•••	0.6	•••	4.0	1.8 9.5
^{31}P	$\frac{1}{2}$ $\frac{3}{2}$ 7.14	$\frac{1}{2}$ $\frac{1}{2}$ 0.00	0 0	0 0	34 ±4	62	69 39
^{31}P	$\frac{1}{2}$ $\frac{3}{2}$ 7.14	$\frac{3}{2}$ $\frac{1}{2}$ 1.27	<13 ····	••• 0.0	<3	6.3	5.2 0.7
³¹ Si	$\frac{1}{2}$ $\frac{3}{2}$ 0.76	$\frac{3}{2}$ $\frac{3}{2}$ 0.00	••• 3.5	••• 6.4	16 ± 4	11	5.2 9.1
³¹ Si	$\frac{5}{2}$ $\frac{3}{2}$ 1.69	$\frac{3}{2}$ $\frac{3}{2}$ 0.00	64 ± 15 48	••• 58	0.06 ± 0.03	0.7	0.5 0.5
³¹ Si	$\frac{5}{2}$ $\frac{3}{2}$ 1.69	$\frac{1}{2}$ $\frac{3}{2}$ 0.76	<80 7.4	••• 12	0	0	0 0
^{31}Si	$\frac{3}{2}$ $\frac{3}{2}$ 2.32	$\frac{3}{2}$ $\frac{3}{2}$ 0.00	••• 3.5	••• 5.2	4.6 ±3.4	5.2	2.2 5.4
³¹ Si	$\frac{3}{2}$ $\frac{3}{2}$ 2.32	$\frac{1}{2}$ $\frac{3}{2}$ 0.76	••• 30	••• 41	4.8 ±3.2	3.1	2.5 1.4
³¹ Si	$\frac{3}{2}$ $\frac{3}{2}$ 2.32	$\frac{5}{2}$ $\frac{3}{2}$ 1.69	••• 4.2	••• 12	63 ± 27	54	72 38
³¹ Si	$\frac{5}{2}$ $\frac{3}{2}$ 2.79	$\frac{3}{2}$ $\frac{3}{2}$ 0.00	>4.6 6.9	••• 6.4	>6.2	16	13 14
³¹ Si	$\frac{5}{2}$ $\frac{3}{2}$ 2.79	$\frac{1}{2}$ $\frac{3}{2}$ 0.76	<86 23	••• 25	0	0	0 0

^a Reference 26.

FIG. 5. Observed and calculated spectra for A = 33, $T = \frac{1}{2}$ (See Table V). The conventions of the presentation are explained in the caption to Fig. 2.

FIG. 6. Diagrams of observed and calculated spectroscopic factors for transfer to ³³S-³³Cl. The information for these drawings was taken from Table V. Conventions of the presentation are discussed in the caption to Fig. 3.

set of matrix elements in this figure. This is a set of realistic matrix elements calculated from the Hamada-Johnston potential according to the techniques of Kuo⁹ with $\hbar \omega = 12.5$ MeV. The qualitative similarity which can be observed between the realistic interaction and the MSDI and FPSDI suggest that calculations employing the former interaction might account for the observed experimental phenomena as successfully as the latter two do. Our first studies of these nuclei were, indeed, carried out with such realistic interactions. We found that, while the calculated energy-level spectra looked "respectably" like experiment, the model wave functions often completely failed to account for the qualitative features of the spectroscopic factor data. We are presently investigat- $\mathrm{ing}^{22, 23}$ whether "small" and simple empirical alterations in the realistic matrix elements can remove the problems which initially led us to abandon realistic interactions and turn to SDI types of interactions for these nuclei.

III. RESULTS OF CALCULATIONS

A. General Remarks

In evaluating the success of our model calculations, we direct our primary attention to excitation energies and to spectroscopic factors for single-nucleon transfer. Agreement between model and experimental energy-level spectra is usually the first criterion of theoretical success in a calculation such as this. In these calculations some success in this direction is assured, since we vary the parametrized effective interactions to optimize such agreement. We think it is essential therefore to establish, wherever possible, that the dominant components of the model wave functions are consistent with the experimentally observed properties of the levels with which they have been correlated. The spectroscopic factors lend themselves to this end most readily. They provide very direct and clear information about the relationships between different wave functions, and in the ag-

TABLE V. Energies *E* and spectroscopic factors *S* for the states of A = 33, $T = \frac{1}{2}$ (³³S-³³Cl). The conventions of the presentation are explained in the caption of Table II. The target state for the stripping transfers (*S*_{st}) is A = 32, T = 0, $J^{\pi} = 0^+$ (³²S), and the target state for the pickup transfers (*S*_{pk}) is A = 34, T = 1, $J^{\pi} = 0$ (³⁴S).

				Energy E (MeV)		(100 × .	$(100 \times S_{pk})$	
 A	J	Т	Expt.	FPSDI	MSDI	Expt.	FPSDI	MSDI
33	$\frac{1}{2}$	$\frac{1}{2}$	0.84*	1.00	0.52	$27^{a}/65^{b}50^{c}$	17/85	27/98
33	$\frac{1}{2}$	$\frac{1}{2}$		3.78	3.49		3/10	0/6
33	$\frac{1}{2}$	$\frac{1}{2}$		4.47	4.33		0/15	0/0
33	$\frac{1}{2}$	$\frac{1}{2}$		4.63	4.56	. /	0/1	0/0
33	$\frac{3}{2}$	$\frac{1}{2}$	192.19*	192.24	192.36	69/190 185	70/187	64/176
33	$\frac{3}{2}$	$\frac{1}{2}$	2.31*	2.31	2.02	5/24 16	5/25	7/15
33	$\frac{3}{2}$	$\frac{1}{2}$		3.61	3.47		0/6	0/8
33	$\frac{3}{2}$	$\frac{1}{2}$		4.39	3.91		0/5	0/4
33	$\frac{5}{2}$	$\frac{1}{2}$	1.97*	2.02	1.81	/5 3	0/17	0/5
33	<u>5</u> 2	$\frac{1}{2}$	2.87*	2.74	3.41	/90 129	3/158	2/90
33	$\frac{5}{2}$	$\frac{1}{2}$	3,83	3.61	3.64	/50 54	0/0	0/40
33	<u>5</u> 2	$\frac{1}{2}$		3.88	3.95		0/13	0/22
33	$\frac{7}{2}$	$\frac{1}{2}$		2.71	2.87			
33	$\frac{7}{2}$	$\frac{1}{2}$		3.65	4.42			
33	$\frac{7}{2}$	$\frac{1}{2}$		4.39	4.75			
33	$\frac{7}{2}$	$\frac{1}{2}$		4.84	5.03			
33	$\frac{9}{2}$	$\frac{1}{2}$		3.81	4.80			
33	9 2	$\frac{1}{2}$		4.69	5.25			
 33	$\frac{11}{2}$	$\frac{1}{2}$		5.50	6.57			

gregate they yield information about the relative occupations of the various orbits included in the model space.²⁴ The spectroscopic factors are proportional to the square of the reduced matrix elements of a creation operator between given initial and final states. It is worth noting that the truncation of the model space calls for some renormalization of this operator, just as it does for the effective two-body operator and various one-body operators. But we use the simple creation operator without any such renormalization.

Experimental values for spectroscopic factors are extracted from data on direct-reaction transfers of single nucleons via such processes as (d, p), (³He, d), (d, t), etc., by comparison of the data with the predictions²⁵ of the distorted-wave Born approximation (DWBA) theory for these reactions. There are numerous, well-documented, sources of uncertainty in this procedure. Because of these uncertainties, we believe that the relative predictions of the DWBA cross sections for "strong" transitions are accurate to no better than 20-30%. In weak transitions, a significant amount of the observed cross section may result from processes not considered in the DWBA picture, and so the relationship between experiment and DWBApredicted cross sections is even more uncertain.

Despite these cautions, we give the agreement between model spectroscopic factors and those extracted from experimental data a central place in our analysis. These observables are directly related to specific orbits of the model space in a way in which other measurable quantities, such as lifetimes, are not. (It must be remembered, of course, that the quantities we are inspecting are essentially overlaps of two different wave functions, and not solely dependent on a single wave function. This is true for M1 and E2 transition rates as well as for spectroscopic factors.)

In addition to studying the relationships between model-calculated and measured spectroscopic factors, we have used the wave functions generated with the MSDI and FPSDI interactions to calculate observables involving the magnetic dipole and electric quadrupole operators. In calculating electric quadrupole expectation values, we use the effective operator

 $\vec{\mathbf{Q}}^2 = \sum_{k=1}^{A} \vec{e}_k \boldsymbol{\gamma}_k^2 \, \vec{\mathbf{Y}}^2(\Omega_k) \, .$

FIG. 7. Observed and calculated spectra for A = 33, $T = \frac{3}{2}$ (see Table VI). The conventions of the presentation are explained in the caption to Fig. 2.

Here \bar{e}_k is the total effective charge of the *k*th nucleon, r_k^2 is the square of its radial coordinate, and \vec{Y}^2 is the usual spherical harmonic operator of rank 2. The single-particle radial wave functions from which we obtain the matrix elements of r^2 are of the harmonic-oscillator form, with $\hbar\omega$ $=41A^{-1/3}$ MeV. We have employed effective charges of $\tilde{e}_p = 1.5e$ and $\tilde{e}_n = 0.5e$. This choice was made because we have made the same assumption in other sd-shell calculations with some success,¹⁰ and there is no obvious empirical or theoretical reason for any other choice. Effective charges are introduced in an attempt to renormalize the E2 operator in a simple way, so as to compensate for the exclusion of part of the sd-shell configuration space and the exclusion of all other oscillator shells. Glaudemans and co-workers²⁶ have used our MSDI wave functions to search empirically for effective charges in this region. They arrive at values $\tilde{e}_p = 1.44e$ and $\tilde{e}_n = 0.68e$. The differences in B(E2)'s and quadrupole moments resulting from the two different choices are generally insignificant. (See Tables IV, VII, XI, XV, XVIII, and XIX for comparisons.)

Magnetic dipole moments and transition strengths have been calculated using the operator

$$\vec{\mathbf{M}}^{1} = \sum_{k=1}^{n} \frac{1}{2} \{ \vec{\mathbf{1}}(k) + (g_{p} + g_{n}) \vec{\mathbf{s}}(k) \}$$
$$+ \sum_{k=1}^{n} t_{z}(k) \{ \vec{\mathbf{1}}(k) + (g_{p} - g_{n}) \vec{\mathbf{s}}(k) \}$$

where we have used the free-nucleon values of the spin-gyromagnetic ratios,

$$g_p = 5.58$$
 and $g_n = -3.82$.

That is, we have assumed negligible renormalization for the M1 operator. In the same study of our MSDI wave functions just mentioned, Glaudemans, Endt, and Dieperink²⁶ conclude that agreement between model predictions and experiment could be improved in some cases by changing the values of three of the isovector single-particle matrix elements,

$$\langle s_{1/2} \| \, \vec{\mathbf{M}}^1 \| \, s_{1/2} \rangle$$
, $\langle d_{3/2} \| \, \vec{\mathbf{M}}^1 \| \, d_{3/2} \rangle$, and $\langle s_{1/2} \| \, \vec{\mathbf{M}}^1 \| \, d_{3/2} \rangle$

from their free-nucleon values of (6.90, -1.58, and $0)\mu_N$, respectively, to (4.4, 0.5, and $0.4)\mu_N$ for

TABLE VI. Energies E and spectroscopic factors S for states of A = 33, $T = \frac{3}{2} ({}^{3}\text{P})$. The conventions of the presentation are explained in the caption to Table II. The target nucleus in the pickup transfers (S_{pk}) is A = 34, T = 1, $J^{\pi} = 0^{+} ({}^{3}\text{S})$.

	·	Energy E (MeV	7)		$100 \times S_{pk}$	
	Expt. ^a	FPSDI	MSDI	Expt. ^b	FPSDI	MSDI
$33 \frac{1}{2} \frac{3}{2}$	186.58*	186.74	186.66	180	157	140
$33 \frac{1}{2} \frac{3}{2}$		3.64	3.43		58	45
$33 \frac{1}{2} \frac{3}{2}$		5.14	4.56		4	1
$33 \frac{1}{2} \frac{3}{2}$		5.51	5.73		. 0	1
$33 \frac{3}{2} \frac{3}{2}$	1.43*	1.18	1.01		73	112
$33 \frac{3}{2} \frac{3}{2}$	2.53*	2.34	2.08		1	2
$33 \frac{3}{2} \frac{3}{2}$		3.96	3.82		4	2
$33 \frac{3}{2} \frac{3}{2}$		4.51	4.41		0	0
$33 \frac{5}{2} \frac{3}{2}$	1.84*	1.72	1.78	340	160	153
$33 \frac{5}{2} \frac{3}{2}$		3.35	2.73		0	0
$33 \frac{5}{2} \frac{3}{2}$		3.75	3.37		115	234
$33 \frac{5}{2} \frac{3}{2}$		4.78	4.44		108	28
$33 \frac{7}{2} \frac{3}{2}$		3.30	3,33			
$33 \frac{7}{2} \frac{3}{2}$		5.09	4.82			
$33 \frac{7}{2} \frac{3}{2}$		5.33	5.48			
$33 \frac{7}{2} \frac{3}{2}$		5.81	5.56			
$33 \frac{9}{2} \frac{3}{2}$		4.13	4.32			
$33 \frac{9}{2} \frac{3}{2}$		5.43	5.49			
$33 \frac{11}{2} \frac{3}{2}$		6.36	6.24			м. М

^aReferences 37 and 38.

^bReference 39.

A = 30-32 and $(4.1, -0.3, \text{ and } -0.2)\mu_N$ for A = 33-34. We shall compare the results calculated with these different effective M1 operators below.

B. Method of Presentation

We present the calculated and experimentally obtained values of energies and spectroscopic factors in tabular form. The results for each different A, T system are presented in a separate table. In each table the states are grouped according to spin, and the spectroscopic factors associated with a given residual level are presented together with its energy. For the ground states of each system we list the nuclear binding energies relative to ¹⁶O, and for the other states we list excitations relative to these ground-state energies. Experimental energies and spectroscopic factors are entered in the tables only when there is an assumed or suggested correspondence with a model state.

In addition to the tables, energy-level diagrams, and for some nuclei spectroscopic-factor diagrams, are also presented to simplify theory-experiment comparisons. In these figures the energies of calculated and experimental ground states are set equal, so that only the excitation energies in each spectrum are shown. The only experimentally observed levels which are omitted from the energylevel figures below the maximum excitation indicated are those which have firm negative-parity assignments. The lowest energy negative-parity state in each nucleus is indicated.

Calculated results for electromagnetic (E2 and M1) observables are presented in tabular form. We discuss most completely the results obtained with the FPSDI wave functions. Also, in many instances we present comparisons with results obtained with the MSDI wave functions, as calculated both with our assumptions for the M1 and E2 operators and with the empirically modified operators of Glaudemans, Endt, and Dieperink.²⁶

Finally, we present in an Appendix the major components of selected FPSDI wave functions, in order to convey a picture of how states are constructed in our model.

Experimental results which are quoted without reference in the energy-level spectroscopic-factor tables have been taken from the compilation of Endt and van der Leun.¹ The data presented in the B(E2) and B(M1) tables are calculated from the lifetimes, mixing ratios, etc., compiled in Ref. 26.

We shall discuss the results in the order A = 31, 33, 35, 30, 32, and 34. We shall usually confine discussion to the lowest-lying levels in each system, since it is for these levels that the present model approach is expected to be most accurate. Information about higher excited states not discussed can be gleaned from the tables.

TABLE VII. Values of B(E2) and B(M1) for transitions between states of A = 33. The notation is explained in the caption to Table IV.

	Initial state	Final state		B (E2)	$(e^2 F^4)$		1	00 × <i>B(M</i>	1) (11 2)	
Nucleus	JTE	J T E	Expt. ^a	FPSDI	MSDI	MSDI-A ^a	Expt. ^a	FPSDI	MSDI	MSDI-A ^a
³³ S	$\frac{1}{2}$ $\frac{1}{2}$ 0.84	$\frac{3}{2}$ $\frac{1}{2}$ 0.00	38 ± 19	23	32	31	5.9 ± 1.1	12	8.8	5.5
^{33}S	$\frac{5}{2}$ $\frac{1}{2}$ 1.97	$\frac{3}{2}$ $\frac{1}{2}$ 0.00	50 ± 25	37	50	55	3.8 ± 0.7	12	12	3.0
³³ S	$\frac{5}{2}$ $\frac{1}{2}$ 1.97	$\frac{1}{2}$ $\frac{1}{2}$ 0.84	<14	31	31	34	0	0	0	0
³³ S	$\frac{3}{2}$ $\frac{1}{2}$ 2.31	$\frac{3}{2}$ $\frac{1}{2}$ 0.00	<38	16	17	16	<1.3	1.7	0.2	0.4
^{33}S	$\frac{3}{2}$ $\frac{1}{2}$ 2.31	$\frac{1}{2}$ $\frac{1}{2}$ 0.84	•••	38	37	41	6.8 ± 1.2	4.3	5.0	7.7
³³ S	$\frac{5}{2}$ $\frac{1}{2}$ 2.87	$\frac{3}{2}$ $\frac{1}{2}$ 0.00	• • •	18	13	14	15 ± 7	13	46	36
³³ S	$\frac{5}{2}$ $\frac{1}{2}$ 2.87	$\frac{1}{2}$ $\frac{1}{2}$ 0.84	<56	8	22	22	0	0	0	0
^{33}S	$\frac{7}{2}$ $\frac{1}{2}$ 2.87	$\frac{3}{2}$ $\frac{1}{2}$ 0.00	•••	27	32	30	0	0	0	0
$^{33}\mathrm{P}$	$\frac{3}{2}$ $\frac{3}{2}$ (1.43)	$\frac{1}{2}$ $\frac{3}{2}$ 0.00	46 ± 19	40	27	28	1.8 ± 0.5	0.2	3.4	2.0
$^{33}\mathrm{P}$	$\frac{5}{2}$ $\frac{3}{2}$ (1.85)	$\frac{1}{2}$ $\frac{3}{2}$ 0.00	26 ± 3	29	25	27	0	0	0	0
$^{33}\mathbf{P}$	$\frac{5}{2}$ $\frac{3}{2}$ (1.85)	$\frac{3}{2}$ $\frac{3}{2}$ 1.43	•••	9	14	16	3.3 ± 1.4	5.2	0.2	1.1
^{33}P	$\frac{3}{2}$ $\frac{3}{2}$ (2.54)	$\frac{1}{2}$ $\frac{3}{2}$ 0.00	•••	0.1	13	16	•••	15	10	8.1
³³ P	$\frac{3}{2}$ $\frac{3}{2}$ (2.54)	$\frac{3}{2}$ $\frac{3}{2}$ 1.43	• • •	51	28	31	•••	2.9	11	10

^a Reference 26.

C. Details of Results

1. A = 31, $T = \frac{1}{2} ({}^{31}P - {}^{31}S)$ (See Tables II and IV, Figs. 2 and 3)

The nucleus ³¹P has been extensively explored both in particle-transfer and in γ -decay experiments²⁷⁻³² The level structures calculated from the FPSDI and the MSDI are very similar to each other both as regards energies and spectroscopic factors. In these areas, agreement of the model results with experimental data is quite good as can be seen from Figs. 2 and 3. The magnetic dipole moment calculated for the $\frac{1}{2}^+$ ground state of ³¹P is somewhat too large [(1.6 to 1.1) μ_N , see Table XIX]. The calculated *M*1 and *E*2 rates for transitions connecting the three lowest states are in what we consider acceptable over-all agreement with experimental data. These values are shown in Table IV.

If we pursue the correspondence between model states and the observed states to higher excitations, we find that agreement deteriorates. The higher $\frac{5}{2}^+$ model states do not exhibit as much $d_{5/2}$ hole strength as the pickup experiments indicate they should. Also, the second model $\frac{3}{2}^+$ state has a larger stripping spectroscopic factor than is found experimentally for the second observed $\frac{3}{2}^+$ level. Both of our models put the third $\frac{1}{2}^+$ state at ≈ 4 MeV, but the third known experimental $\frac{1}{2}^+$ level occurs at 5.25 MeV. There is, however, a possibility²⁷ that the experimentally observed $\frac{3}{2}^+$ state at 3.51 MeV is actually a $\frac{1}{2}^+ - \frac{3}{2}^+$ doublet, which

TABLE VIII. Energies *E* and spectroscopic factors *S* for states of A = 35, $T = \frac{1}{2} ({}^{35}\text{Cl} - {}^{35}\text{Ar})$ and A = 35, $T = \frac{3}{2} ({}^{35}\text{S})$. The conventions of the presentation are explained in the caption to Table II. The target state for the stripping transfer is A = 34, T = 1, $J^{\pi} = 0^+$ (${}^{34}\text{S}$).

	_	Energy E (Me	V)		$100 \times S_{st}$		
	Expt. ^{a, b}	FPSDI	MSDI	Expt.	FPSDI	MSDI	
$35 \frac{1}{2} \frac{1}{2}$	1.22	1.45	0.67	19 ^b 28 ^c	9	22	
$35 \frac{1}{2} \frac{1}{2}$	3.96	3.92	3.38	2 6	6	9	
$35 \frac{1}{2} \frac{1}{2}$		5.22	4.40		2	0	
$35 \frac{1}{2} \frac{1}{2}$		5.72	5.27		1	2	
$35 \frac{3}{2} \frac{1}{2}$	216.32	216.44	216.02	108 130	94	82	
$35 \frac{3}{2} \frac{1}{2}$	2.69	2.18	1.85	2	0	2	
$35 \frac{3}{2} \frac{1}{2}$		4.64	4.41		9	7	
$35 \frac{3}{2} \frac{1}{2}$		5.22	5.32		1	0	
$35 \frac{5}{2} \frac{1}{2}$	1.76	1.48	1.44		0	0	
$35 \frac{5}{2} \frac{1}{2}$	3.00	2.86	2.45	4 4	3	6	
$35 \frac{5}{2} \frac{1}{2}$		4.93	4.52		0	0	
$35 \frac{5}{2} \frac{1}{2}$		4.97	5.06		0	0	
$35 \frac{7}{2} \frac{1}{2}$	2.64	2.42	2.96				
$35 \frac{7}{2} \frac{1}{2}$		4.08	4.38				
$35 \frac{7}{2} \frac{1}{2}$		4.64	4.98				
$35 \frac{7}{2} \frac{1}{2}$		5.76	6.44				
$35 \frac{9}{2} \frac{1}{2}$	3,94	3.54	4.30				
$35 \frac{9}{2} \frac{1}{2}$		4.95	5.31				
$35 \frac{11}{2} \frac{1}{2}$		6,13	7.13				
$35 \frac{1}{2} \frac{3}{2}$		1.46	1.36		11	13	
$35 \frac{1}{2} \frac{3}{2}$		3.64	3.24		0	0	
$35 \frac{3}{2} \frac{3}{2}$	210.32	210,17	209.46		35	38	
$35 \frac{3}{2} \frac{3}{2}$		2.93	2.55		0	0	
$35 \frac{5}{2} \frac{3}{2}$		1.59	2.24		4	0	
$35 \frac{5}{2} \frac{3}{2}$		2,96	3.46		0	2	

^aReference 40.

could account for this last discrepancy. Comparison of measured and calculated B(E2)'s and B(M1)'s involving the higher excited states shows two instances in which the model numbers are smaller than the lower limit on the measured values, and several instances in which the B(M1) values obtained with the bare-nucleon operators and either the FPSDI or the MSDI wave functions are at least twice too large. The use of the empirically modified M1 operator²⁶ sometimes cures these latter troubles, but at the cost of impairing some previous agreements. The B(E2) experimental results seem to be in slightly better over-all agreement with the FPSDI wave functions than with those of the MSDI.

Thus, for A = 31, $T = \frac{1}{2}$ we find that the properties of the lowest states of each *J* value are stable from one calculation to the other and in rather good correspondence with experiment, while for the higher excited states the predictions become less stable and less accurate. These results are typical of what we find for the other nuclei of the region. There is however an above-average amount of experimental information about ${}^{31}P$ available from which to draw these conclusions.

2.
$$A = 31$$
, $T = \frac{3}{2} ({}^{31}Si)$
(See Tables III and IV, Fig. 4)

Below an excitation energy of 4 MeV in ³¹Si the agreement between experimental and calculated values for energies and stripping spectroscopic factors is good.^{27, 33} The main question of detail involves the relative strengths of stripping to the first $\frac{3}{2}^+$ and $\frac{1}{2}^+$ states.

The predictions for both M1 and E2 transition rates between the low-lying states of ³¹Si are in excellent agreement with all available experimental data. Results are shown in Table IV. The values for transitions between the lowest $\frac{1}{2}^+$, $\frac{3}{2}^+$, and $\frac{5}{2}^+$ states are distinctly different from those we obtained for the lowest states of ³¹P, but the good agreement with experiment holds. This good agreement extends throughout the presently available data. For this nucleus we can establish no preference for any single variant of the calculations of B(M1) and B(E2) values.

FIG. 8. Observed and calculated spectra for A=35, $T=\frac{1}{2}$ (see Table VIII). The conventions of the presentation are explained in the caption to Fig. 2.

3. A = 33, $T = \frac{1}{2} ({}^{33}S - {}^{33}Cl)$ (See Tables V and VII, Figs. 5 and 6)

The agreement between the calculated energies and spectroscopic factors for ${}^{33}S - {}^{33}Cl$ and the results of experiment ${}^{34-36}$ for this nucleus is again very good, as can be seen in Table V and Figs. 5 and 6. We see here some slight distinction between the FPSDI and MSDI results, the former giving better agreement with level energies and the latter perhaps better agreement with respect to relative $s_{1/2}-d_{3/2}$ spectroscopic factors. A preference between FPSDI and MSDI results in the case of the higher $\frac{5}{2}^+$ states must await further experimental investigation of exactly how many such states occur in the region of 4-MeV excitation.

The predicted values of the static electric quadrupole and magnetic dipole moments of the $\frac{3}{2}^+$ ground state of ³³S are in acceptable agreement with the experimental values (see Table XIX). The predicted *M*1 and *E*2 strengths for transitions among the lowest five levels of ³³S generally follow the patterns of the existing data. The empirical M1 operator improves quantitative agreement with the data in two cases. In a third example, the FPSDI value is in better agreement with experiment than is either of the MSDI values. All in all the model results for this system are as satisfactory as any we obtain in this work.

4.
$$A = 33$$
, $T = \frac{3}{2} ({}^{33}P)$
(See Tables VI and VII, Fig. 7)

The experimental picture for ³³ P is relatively sketchy for this region. Stripping data are unobtainable and there has not been a thorough study made of the ³⁴S(d, ³He)³³ P reaction. Spins of the lowest four levels have recently been assigned on the basis of (t, p) and particle- γ correlation experiments.^{37, 38} The agreement between the model spectra and the existing experimental structure as presented in Table VI is typical of the present series of calculations. Lifetime measurements on the first two excited states have yielded *E*2 and *M*1 strengths for these decays and the results are in qualitative accord with our predictions. Addi-

FIG. 9. Observed and calculated spectra for A=30, T=0 (see Table IX). The conventions of the presentation are explained in the caption to Fig. 2.

				Energy E (M	eV)	$100 \times (S_0; S_2)_{\rm pk}$	$100 \times (S_{1/2};$	$S_{3/2}; S_{5/2})_{pk}$
A	J	Т	Expt. ^a	FPSDI	MSDI	Expt. ^b	FPSDI	MSDI
30	0	0		5.73	5,88		· · ·	
30	0	0		7.10	7.36			
30	1	0	156.22*	156.49	156.21	71; <44	79; 3,	93; 0,
30	1	0	0.71*	1.02	1.00	<31; <53	13; 19,	1; 26,
30	1	0	3.02*	3.22	3.18		4; 1,	1; 1,
30	1	0		3.76	3.36		1; 1,	0; 1,
30	2	0	1.45*	1.41	1.56	; 30	; 19, 25	; 23, 12
30	2	0	2.72*	2.07	2.31	; 47	; 1, 27	; 0, 39
30	2	0	4.43*	4.33	4.54		; 0, 14	; 0, 14
30	2	0	(4.94)	4.94	4.86		; 1, 12	; 0, 12
30	3	0	1.97*	1.71	2.16	; 74	; , 103	; , 95
30	3	0	2.54*	2.63	2.86	; 61	; , 0	; , 0
30	3	0	2.84	2.96	3.30	; <31	;, 3	; , 8
30	3	0		4.20	4.26		; , 6	; , 13
30	4	0		4.08	4.02			
30	4	0		4.47	4.83			
30	4	0		5.53	5.84			
30	4	0		5.93	6.05			
30	5	0		3.57	3.53			
30	5	0		4.83	5.01			
30	6	0		6.13	5.72			

TABLE IX. Energies *E* and spectroscopic factors *S* for the states of A = 30, T = 0 (³⁰P). The energy results are presented in the convention of Table II. The experimental *S* values are given in terms of the l = 0 and l = 2 components, while the theoretical numbers are listed in terms of $j = \frac{1}{2}$, $\frac{3}{2}$, and $\frac{5}{2}$, with the $j = \frac{3}{2}$ and $\frac{5}{2}$ numbers (l = 2) set off from the l = 0 numbers. The target state for the pickup transfers (S_{pk}) is A = 31, $T = \frac{1}{2}$, $J^{\pi} = \frac{1}{2}$ (³¹P).

^aReference 43.

^bReference 44.

TABLE X. Energies E and spectroscopic factors S for the states of A = 30, T = 1 (${}^{30}Si - {}^{30}S$). The conventions of the presentation are explained in the caption of Table IX. The target state for the pickup transfers is A = 31, $T = \frac{1}{2}$, $J^{\pi} = \frac{1}{2}$ + (${}^{31}P$).

				Energy E (M	eV)	$100 \times (S_0; S_2)_{\rm pk}$	100	× (S _{1/2}	; $S_{3/2}$; $S_{5/2}$) _p	x	
A	J	T	Expt. ^{a, b}	FPSDI	MSDI	Expt. ^c	FI	PSDI		MSI	DI
30	0	1	155.60*	155.52	155.13	100;	110;	,	97	;	,
30	0	1	3.79*	3.52	3.69	4;	0;	,	12	;	,
30	0	1	5.37	4.67	3.78	18;	9;	,	ŝ	;	, ,
- 30	0	1	6.64	7.13	6.81		1;	,	Ę	;	,
30	1	1	3.77*	3.81	3.64	4; 0	0;	1,	0	; 1	,
30	1	1		7.20	7.12		.0;	.0.,	(; 2	,
30	1	1		7.71	7.19		1;	0,	, C	; 4	,
30	1	1		7.83	7.47		5;	6,	.1	; 3	,
30	2	1	2.23*	2.48	2.42	; 160	;	21, 3	1	; 22	, 35
30	2	1	3.51*	3.84	3.61	; 67	;	1, 1:	31	; 0	, 141
30	2	1	4.81*	4.65	4.70	; 29	;	0,1		; 1	, 2
30	2	1	5.61*	5.77	5.05	; 57	;	1, 1	5	; 3	, 14
30	3	1	5.23	4.64	4.12	; 220	;	, 22	29	;	, 220
30	3	1	4.83	5.01	5.08		;	, 0		;	, 5
30	3	1		6.18	6.42		;	, 33	3	;	, 31
30	3	1		7.28	6.78		;	, 5	9	;	, 57
30	4	1	5.28*	5.43	5.43						
30	4	1	5.95	6.21	5.82						
30	4	1		6.38	6.48						
30	4	1		7.27	7.23						
30	5	1		7.11	7.02						
30	5	1		8.13	7.82						
30	6	1		8.90	8.76						

^aReference 45.

tional experimental information will be very helpful in definitively gauging the quality of our results for this system. One specific question that needs to be answered concerns the distribution of the $d_{5/2}$ hole strength.³⁹

5.
$$A = 35$$
, $T = \frac{1}{2}$ and $\frac{3}{2}$ (³⁵Cl-³⁵Ar and ³⁵S)
(See Table VIII and Fig. 8)

The calculated energies and stripping spectroscopic factors for the states of ³⁵Cl and ³⁵S represent predictions based upon the Hamiltonians which were adjusted to fit energies in the A = 30 -34 range. The energies obtained for A = 35, $T = \frac{1}{2}$ with the two Hamiltonians have noticeable differences. The lowest few $\frac{1}{2}^+$, $\frac{3}{2}^+$, and $\frac{5}{2}^+$ states are higher in the FPSDI spectrum than they are in the MSDI spectrum, and the FPSDI results seem in better agreement with experiment. On the other hand, the excitations of the $\frac{7}{2}^+$ and $\frac{9}{2}^+$ states in the FPSDI spectrum are lower than those of corresponding states in the MSDI spectrum, and in this case the experimental values fall in between the model differences.⁴⁰ At this point we can reexamine the results for A=33 (Tables V and VI) and see this same effect, although there it is weaker. For A=31, no such differences are perceptible.

The two predictions for the stripping spectroscopic factors of the lowest $\frac{1}{2}^+$ state in 35 Cl are quite different, culminating a trend which can be followed from 31 Si on. The experimental values for the spectroscopic factors ${}^{41, 42}$ seem to favor the MSDI result. All in all, however, we believe that the A=35 results indicate that the FPSDI Hamiltonian is to be slightly preferred.

6.
$$A = 30$$
, $T = 0$ (³⁰P)
(See Tables IX and XI, Fig. 9)

The observed energy levels of ³⁰P have been extensively studied, and three states each of $J^{\pi} = 1^+$, 2^+ , and 3^+ are known. There is available consid-

FIG. 10. Observed and calculated spectra for A = 30, T = 1 (see Table X). The conventions of the presentation are explained in the caption to Fig. 2.

erable information about the electromagnetic decays of these levels,⁴³ in addition to the results of the neutron-pickup transfers to them from a ³¹P target.⁴⁴ The agreement between model energies and the measured values is fairly good, and considering the volume of data, rather impressive. These results are plotted in Fig. 9.

The experimental determinations of spectroscopic factors are not definitive in some cases because of the difficulty in disentangling the mixtures of l=0 and l=2 transfers which can both populate the 1⁺ states. The model predictions of spectroscopic factors are at least roughly consistent with the experimentally determined numbers, with the exception of the second 3⁺ state. This level is populated experimentally with almost as much strength as is the first 3⁺, but the models predict no strength for it at all.

The two different Hamiltonians yield results for energies and spectroscopic factors that are essentially equivalent and in general qualitative agreement with the experimental picture. However, comparison of the calculated B(M1)'s and B(E2)'s with the corresponding experimental values shows some distinct disagreements. The calculated patterns of B(E2) strength do not correlate well at all with the experimental patterns. The serious disagreements for transitions involving the 3⁺ states recalls the failure of the S-factor predictions for these same states. The strong $\Delta T = 1 M \mathbf{1}$ transition from the 0^+ to the 1^+ ground state is predicted to be even stronger than measured, but the empirically adjusted M1 operator corrects this problem.

The restrictions imposed upon these calculations by the assumption of a truncated $d_{5/2}$ configuration space are expected to be felt most strongly in A=30, of course. At the same time we would not be inclined to make too much of this. We have found that in all our *sd*-shell investigations, whether in a complete or truncated *sd*-shell space, the results for odd-odd nuclei are consistently the least satisfactory. In summation, the agreement for ³⁰P between model predictions and experimental results is less impressive than that achieved for the odd-even nuclei. But over all, these results represent a great improvement over results obtained in previous calculations.

> 7. A = 30, T = 1 (³⁰Si-³⁰S) (See Tables X and XI, Fig. 10)

The model energies for a dozen states in 30 Si are in good agreement with measured values.^{1, 45} The two Hamiltonians again yield quite similar results. The clearest mismatch between the model spectra and experiment involves the third 0⁺ state, which is predicted about 1 MeV too low.

The pickup spectroscopic factors predicted for the T=1 states of A=30 are in good agreement with the results of experiment, with the exception that the second 2^+ state is predicted to be more strongly excited via l=2 transfer than the first 2^+ state, while the opposite relationship is experimentally observed. Examination of the calculated l=2 strengths indicates that it is the $d_{5/2}$ hole strength which is misplaced. The dominant component of the wave function of the lowest model 2^+

TABLE XI. Values of B(E2) and B(M1) for transitions between states of A = 30. The notation is explained in the caption to Table IV.

		Initi	al		Fir	nal									
		stat	e		sta	te			B(E2)) $(e^2 \mathbf{F}^4)$		I	100 imes B (A	(μ_N (μ_N))
Nucleus	J	T	Ε	J	T		E	xpt.ª	FPSDI	MSDI	MSDI-A ^a	Expt. ^a	FPSDI	MSDI	MSDI-A ^a
³⁰ P	0	1 0	.68	1	0	0.00		0	0	0	0	134 ± 34	503	512	136
³⁰ P	1	0 0).71	1	0	0.00	9.5	5 ± 2.7	2.4	16	16	0.7 ± 0.2	1.0	0.18	0.18
³⁰ P	1	0 0	.71	0	1	0.68		0	0	0	0	• • •	•••	•••	•••
³⁰ P	2	0 1	.45	1	0	0.00	2.0	$) \pm 0.5$	28	27	28	0.6 ± 0.2	0.02	0.00	0.00
³⁰ P	2	0 1	L.45	0	1	0.68		<45	0.1	0.0	0.0	0	0	0	0
^{30}P	2	0 1	45	1	0	0.71		• • •	0.3	6	•••	<0.5	•••	•••	•••
³⁰ P	3	0 1	.97	1	0	0.00	6.4	± 1.7	19	13	13	0	0	0	0
³⁰ P	3	0 1	L.97	1	0	0.71	94	1 ± 25	2.2	0.03	0.0	0	0	0	0
^{30}P	3	0 2	2.54	1	0	0.00	47	7 ± 16	4.3	0.9	1.3	0	0	0	0
^{30}P	3	0 2	2.54	1	0	0.71		•••	32	32	37	0	0	0	0
^{30}Si	2	1 2	2.24	0.	1	0.00	40	$) \pm 2$	17	22	25	0	0	0	0
³⁰ Si	2	1 3	3.51	0	1	0.00	8.0	0 ± 2.4	14	12	10	0	0	0	0
³⁰ Si	2	1 3	3.51	2	1	2.24	46	3 ± 28	28	31	30	16 ± 5	•••	20	29
³⁰ Si	1	1 3	3.77	0	1	0.00		0	0	0	0	0.50 ± 0.16	1.0	2.5	3.4
³⁰ Si	1	1 :	3.77	2	1	2.24	4.4	4 ± 3.4	2.4		4.4	11 ± 3	22	24	36
³⁰ Si	0	1 3	3.79	2	1	2.24		<17	5.1	21	20	0	0	0	0

^a Reference 26.

is $(d_{5/2})^{12}(s_{1/2})^1(d_{3/2})^1$, while the lowest observed 2^+ state must have significantly more $d_{5/2}$ hole intensity. The predicted static electric quadrupole moments of the lowest two 2^+ state have opposite signs, and a measurement of this value for the first 2^+ would be valuable.

Calculations of spectroscopic factors and B(E2)values for the lowest two 3^+ states suggest that the calculated 3^+ states are inverted in energy with respect to their experimental partners. The lower model 3^+ is predicted to have a large $d_{5/2}$ spectroscopic factor for pickup from ${}^{31}P$ and very weak E(2) decays to the first and second excited 2^+ states. The second model 3^+ is predicted to have zero pickup spectroscopic factors and strong E(2) decays to the 2^+ states. These characteristics are similar to the properties observed^{46, 47} for the 5.23- and 4.83-MeV levels, respectively. The first two 4⁺ levels in the model also have qualitatively different wave functions; the first one is dominated by $(d_{5/2})^{-1}(s_{1/2})^2(d_{3/2})^1$, while the second has no dominating component and is highly fragmented. In this case the apparent experimental ordering of the counterparts of these states is consistent with the model ordering.⁴⁶ The calculated *E*2 rates for both states are considerably weaker than experiment indicates. This may possibly be due to the $d_{5/2}$ truncation, since 4⁺ states in ³⁰Si necessarily involve $d_{5/2}$ holes for their primary description.

We would summarize the model results for ³⁰Si as being generally satisfactory, but indicating some discrepancies in detail. The situation is similar to that obtained for ³⁰P. However, the dis-

TABLE XII. Energies *E* and spectroscopic factors *S* for the states of A = 32, T = 0 (³²S). The conventions of the notation are explained in the caption to Fig. 9. The target state for the stripping transfers (S_{st}) is A = 31, $T = \frac{1}{2}$, $J^{\pi} = \frac{1}{2}$, (³¹P). The target for the pickup transfers (S_{pk}) is A = 33, $T = \frac{1}{2}$, $J^{\pi} = \frac{3}{2}$ + (³³S).

		Energy E (Me	eV)		$100 \times (S_0; S_2)$	$100 \times (S_{1/2})$; S _{3/2} , S _{5/2})
ΑЈΤ	Expt. ^{a, b}	FPSDI	MSDI		Expt. ^b	FPSDI	MSDI
32 0 0	183.56*	183.29	183.56	st	240;	257: .	226: .
				pk		; 70,	: 64.
32 0 0	3.78*	3.68	3.81	st	40:	44: .	68:
-				pk		: 6.	: 7.
32 0 0		7.35	7.30	st		0; ,	0:
				pk		; 0,	; 0,
32 0 0		7.99	8.02	st		0; ,	0; ,
				pk		; 0,	; 0,
$32\ 1\ 0$	4.70*	4.81	4.50	st	; 49	0; 78,	0; 78,
				pk		24; 3, 1	25; 3, 0
$32\ 1\ 0$		7.12	6.64	st		3; 4,	5; 1,
				pk		2; 0, 12	0; 0, 1
$32\ 1\ 0$		7.63	8.04	\mathbf{st}		1; 1,	0; 0,
				pk		2; 0, 4	0; 0, 1
$32\ 1\ 0$		8.18	8.24	\mathbf{st}		0; 0,	0; 4,
				\mathbf{pk}		0; 0, 0	3; 0, 8
$32\ 2\ 0$	2.24*	2.20	2.00	\mathbf{st}	; 120	; 83, 3	; 85, 3
				pk		49; 0, 0	54; 0, 0
32 2 0	4.29*	4.55	4.97	st	; 5	; 0, 1	; 0, 0
				pk		0; 2, 26	0; 2, 20
$32 \ 2 \ 0$	5.55*	5.44	5.41	st	; 13	; 15, 0	; 15, 0
				pk		3; 17, 0	2; 17, 0
$32\ 2\ 0$		6.64	6.78	st		; 3, 3	; 3, 0
				pk		2; 1, 10	0; 0, 3
32 3 0	5.41	5.20	5.87	pk		; , 38	; 2, 34
$32 \ 3 \ 0$		6.60	7.07	pk		; , 4	; 3, 3
32 3 0		7.34	7.59	pk		; , 4	; 0,6
32 3 0		7.78	8.10	pk		; , 4	; 0, 3
32 4 0	4.47*	4.92	5.40	pk		; , 46	; , 21
32 4 0		5.60	6.26	pk		; , 9	; , 22
32 4 0		6.15	6.91	pk		; , 1	; , 8
32 4 0		7.52	8.07	рк		; , 2	;,3
32 5 0		6.84	7.71				
32 5 0		7.84	8.42				
32 6 0		.91 	9.08				

^aReference 48.

^bReference 50.

crepancies between model and experiment for ^{30}Si seem more specifically to involve the $d_{5/2}$ orbit.

8. A = 32, T = 0 (³²S) (See Tables XII and XV, Figs. 11 and 12)

The eight positive-parity levels which are definitely assigned in the spectrum of ³²S appear with essentially the correct ordering and spacing in the model spectra. The only level for which there is a notable discrepancy in energy is the 4⁺. The MSDI excitation energy is 1 MeV higher than the experimental value; the FPSDI adjustment reduces this gap somewhat, to 0.5 MeV. More detailed experimental investigation of the 6–8-MeV region of excitation should determine the accuracy of the model predictions for the energies of the higher states.

The spectroscopic factors experimentally obtained⁴⁸ with the ³¹P(³He, d)³²S reaction for J = 0, 1, and 2 states of ³²S are satisfactorily matched by the model predictions. The differences between the results calculated from our two different Hamiltonians are slight. The study of neutron pickup from ³³S would complement the stripping data and give a very complete picture of the single-particle aspects of the ³²S level structure.

The electromagnetic observable data on this nucleus predominantly involve the E2 operator. The static electric quadrupole moment of the first 2^+ state has recently been measured.⁴⁹ The calculated moments for this state, which indicate a prolate deformation, are smaller in magnitude than the experimental value of $-20 \pm 6 \ e \ F^2$, but are almost within the quoted experimental errors (see Table XIX). The B(E2) values calculated for the

TABLE XIII. Energies *E* and spectroscopic factors *S* for the states of A = 32, T = 1 (³²P). The conventions of the presentation are explained in the caption to Table IX. The target state for the stripping transfers (S_{st}) is A = 31, $T = \frac{1}{2}$, $J^{\pi} = \frac{1}{2}^+$ (³¹P). The target for the pickup transfers (S_{pk}) is A = 33, $T = \frac{1}{2}$, $J^{\pi} = \frac{3}{2}^+$ (³³S).

		Energy E (M	ſeV)		$100 \times (S_0; S_2)$	$100 \times (S_{1/2};$	$S_{3/2}, S_{5/2}$
AJT	Expt.	FPSDI	MSDI		Expt. ^a	FPSDI	MSDI
3201	0.51*	0.42	0.35	\mathbf{st}	32;	21; ,	26; ,
				pk		; 7,	; 14,
3201		3.29	3.55	st		3; ,	3; ,
				pk		; 0,	; 1,
$32\ 0\ 1$		4.70	5.13	\mathbf{st}		2; ,	3; ,
				\mathbf{pk}		; 0,	; 1,
3201		6.16	5.67	\mathbf{st}		0; ,	0; ,
				pk		; 0,	; 0,
$32\ 1\ 1$	176.47*	176.76	176.84	\mathbf{st}	; 59	0; 68,	0; 65,
				$\mathbf{p}\mathbf{k}$		73; 10, 3	69; 14, 1
$32\ 1\ 1$	1.15*	1.11	0.94	\mathbf{st}	19;	10; 0,	14; 3,
				$\mathbf{p}\mathbf{k}$		0; 5, 1	0; 8, 2
$32\ 1\ 1$		1.93	1.72	\mathbf{st}		1; 9,	2; 9,
				pk		2; 1, 1	1; 4, 1
$32\ 1\ 1$		3.12	2.53	st		3; 2,	0; 0,
				pk		6; 0, 28	0; 0, 0
$32\ 2\ 1$	0.08*	0.18	0.16	\mathbf{st}	; 70	; 66, 0	; 67, 0
				pk		105; 2, 11	94; 1, 8
$32\ 2\ 1$	(1.32)*	1.17	1.14	\mathbf{st}		; 0, 0	; 0, 0
				pk		1; 28, 10	3; 31, 12
$32\ 2\ 1$		2.25	2.08	\mathbf{st}		; 0, 1	; 0, 0
				$\mathbf{p}\mathbf{k}$		1; 0, 2	3; 1, 18
$32\ 2\ 1$		2.65	2.51	st		; 0, 1	; 3, 1
				pk		2; 2, 0	5; 4, 14
$32\ 3\ 1$	(1.76)	1.50	1.64	$\mathbf{p}\mathbf{k}$; 14, 80	; 33, 33
$32\ 3\ 1$		1.79	2.10	$\mathbf{p}\mathbf{k}$; 10, 22	; 5, 97
$32\ 3\ 1$		2.39	2.53	pk		; , 23	; 1, 2
$32\ 3\ 1$		3.30	3.15	pk		; 1, 0	; 1, 5
32 4 1		2.89	2.96	pk		; , 75	; , 129
32 4 1		3.30	3.35	$\mathbf{p}\mathbf{k}$; , 64	; , 13
$32\ 4\ 1$		4.17	4.30	$\mathbf{p}\mathbf{k}$; , 1	; , 24
$32\ 5\ 1$		3.51	3.32				
$32\ 5\ 1$		5.02	4.88				
32 6 1	•	6.32	6.12				

^aReference 48.

transitions from the first and second 2^+ states to the ground 0^+ state agree with experimental measurements, but the predictions for the B(E2)'s of the transitions from the second 2^+ , the second 0^+ , and the 4^+ states to the 2^+ first excited state are weaker by a factor of ≈ 2 than the present experimental values.⁵⁰

The level structure of ³²P is yet to be thoroughly worked out experimentally. The energy levels with spin-parity assignments are in good accord with both model spectra. The ³¹P(³He, d)³²S reaction populates the T=1 states in ³²S, which are isobaric analogs of the low-lying states of ³²P, as well as the lower-lying T=0 states. Experimental results for this reaction yield spectroscopic factors for these T=1 states simultaneously with those for the T=0 states.⁴⁸ The model predictions for l=2 and l=0 stripping strengths to the T=1states are again in good agreement with the values extracted from experiment. We note, for instance, the correct predictions of l=2 population of the first 1⁺ and l=0 population of the second 1⁺, with essentially the right magnitudes. Pickup experiments on ³³S would yield information which would greatly clarify the situation regarding both the presently assigned levels of ³²P and those unassigned in the 1–3-MeV region of excitation.

The electromagnetic data measured for ³²P all depend upon the *M*1 operator. The model predictions of a small magnetic moment for the ground state are consistent with the small measured value of $0.24\mu_N$. (See Table XIX.) The strong transition from the 2⁺ first excited state to the 1⁺ ground state is satisfactorily predicted, and the general experimental trend of strong *M*1 transi-

FIG. 11. Observed and calculated spectra for A = 32, T = 0 (see Table XII). The conventions of the presentation are explained in the caption to Fig. 2.

FIG. 12. Diagrams of observed and calculated spectroscopic factors for transfer to states of A=32, T=0. The information for these drawings was taken from Table XII. The conventions of the presentation are explained in the caption to Fig. 3.

tions is also evident in the model results. However, several of the predicted transition strengths involving higher excited states appear to be too large. It would be of interest to test the model predictions for E2 strengths, but the strong competing M1 transitions make this very difficult.

10.
$$A = 32$$
, $T = 2$ (³²Si)
(See Table XIV)

The energy levels predicted for the A=32, T=2 system, which could be studied experimentally via the ${}^{30}\text{Si}(t,p){}^{32}\text{Si}$ reaction, are presented in Table XIV.

TABLE XIV. Energies E of the states of A = 32, T = 2(³²Si-³²Ar). The conventions of the presentation are explained in the caption to Table II.

]	Energy E (Me	eV)
A J	Т	Expt.	FPSDI	MSDI
32 0	2	171.48*	171.35	171.41
32 0	2		4.30	4.02
32 0	2		5.30	5.06
32 0	2		7.02	6.43
$32\ 1$	2		5.15	5.05
$32\ 1$	2		5.69	5.28
$32\ 2$	2	1.94*	1.86	1.92
$32\ 2$	2		4.21	3.96
$32 \ 2$	2		5.06	4.74
32 2	2		5.76	5.31
$32 \ 3$	2		5.11	4.40
$32 \ 3$	2		6.62	5.92
$32 \ 4$	2		4.88	4.87
32 4	2		5,98	5,68

11. A = 34, T = 0 (³⁴Cl) (See Tables XVI and XVIII, Fig. 14)

The energy-level spectrum of ³⁴Cl is the most complex of those we study and it is not yet well understood experimentally. When these calculations were performed, only the first two energy levels were definitely assigned. Since then, several γ -ray decay studies have yielded spin assignments to the next three levels^{51, 52} and recent single-nucleon transfer experiments^{36, 53} have provided information about the parities and wave functions.

The MSDI results are in distinct disagreement with experiment. This is apparent from the energy spectra alone but becomes even clearer when the details of the spectroscopic factor results are examined. The FPSDI adjustment of the Hamiltonian, even though it involved only the minimal information then available from the ³⁴Cl spectrum itself, yielded an energy-level spectrum and spectroscopic factors for this system in better agreement with experiment. This distinction between the two Hamiltonians, and these criteria for choosing one over the other, occur only in this instance. The few B(E2)'s measured experimentally are well reproduced by the models. The B(M1) results from the FPSDI are qualitatively similar to observation, but the absolute magnitudes are too large, most noticeably in the case of the secondexcited-to-ground-state transition.

Inspection of Tables XVI and XVIII indicates that the most striking differences in the two sets of predicted observables occur for the lowest two J^{π} =1⁺, T=0 states. These differences suggest in

FIG. 13. Observed and calculated spectra for A = 32, T = 1 (see Table XIII). The conventions of the presentation are explained in the caption to Fig. 2.

fact that the wave functions of the FPSDI calculation occur in inverted order in the MSDI calculation. From the Appendix we note that the lowest $J^{\pi} = 1^+$, T = 0 FPSDI wave function is "dominated" (28%) by the $(d_{5/2})^{12}(s_{1/2})^3_{J=1/2}, T=1/2}(d_{3/2})^3_{J=3/2}, T=1/2}$ component, while in the second 1^+ state, the $(d_{5/2})^{12}(s_{1/2})^4(d_{3/2})^2_{J=1, T=0}$ component is largest (36%). In the MSDI wave functions these same two components each dominate a 1^+ state, but the energies of the two states are inverted. The 1⁺ state showing strong $s_{1/2}$ pickup and stripping strength is the one dominated by the $(s_{1/2})^3_{J=1/2, T=1/2} (d_{3/2})^3_{J=3/2, T=1/2}$ component which connects to the $(d_{5/2})^{12}(s_{1/2})^2_{J=0}$, $(d_{3/2})^3_{J=3/2, T=1/2}$, and $(d_{5/2})^{12}(s_{1/2})^4 (d_{3/2})^3_{J=3/2, T=1/2}$ components of the ground states of ³³S and ³⁵Cl, respectively. Hence the lowest FPSDI 1⁺ state has the $s_{1/2}$ transfer strength in contrast to the second MSDI 1⁺ state. Similarly, the $(d_{5/2})^{12}(s_{1/2})^4 (d_{3/2})^2_{J=1, T=0}$ component mediates the $d_{3/2}$ transfer strength to these levels

TABLE XV. Values of B(E2) and B(M1) for transitions between states of A = 32. The notation is explained in the caption to Table IV.

,		Init	ial		Fiı	nal								
		sta	ate		sta	ate		B(E2)	$(e^2 { m F}^4)$		10	$00 \times B(M1)$) (μ_N^2)	
Nucleus	J	T	E	J	T	Ε	Expt. ^a	FPSDI	MSDI	MSDI-A ^a	Expt. ^a	FPSDI	MSDI	MSDI-A ^a
^{32}S	2	0	2.24	0	0	0.00	45 ± 4	38	43	49	0	0	0	0
^{32}S	0	0	3.78	2	0	2.24	141 ± 36	46	27	30	0	0	0	0
^{32}S	2	0	4.29	0	0	0.00	14 ± 6	13	14	15	0	0	0	0
^{32}S	2	0	4.29	2	0	2.24	>52	16	15	17	<0.14	0.02	0.0	0.0
^{32}S	4	0	4.47	2	0	2.24	106 ± 19	45	58	66	0	0	0	0
^{32}S	1	0	4.70	0	0	0.00	0	0	0	0	0.05 ± 0.01	0.09	0.0	0.0
^{32}S	1	0	4.70	2	0	2.24	•••	2.4	3	• • •	<0.5	0.9	1.1	1.1
^{32}S	3	0	5.41	2	0	2.24	• • •	21	23	•••	•••	•••	•••	•••
$^{32}\mathrm{P}$	2	1	0.08	1	1	0.00	•••	6.9	11	12	35 ± 11	54	34	12
^{32}P	0	1	0.51	1	1	0.00	0	0	0	0	14 ± 4	5.6	0.4	2.0
^{32}P	0	1	0.51	2	1	0.08	•••	8.5	• • •	3.0	0	0	0	0
^{32}P	1	1	1.15	1	1	0.00	•••	9.2	10	12	<2	8.6	6.8	7.0
^{32}P	1	1	1.15	2	1	0.08	•••	6.8	• • •	11	<13	24	30	27
^{32}P	2	1	1.32	1	1	0.00	•••	14	12	13	3.3 ± 0.9	16	16	4.5
³² P	2	1	1.32	2	1	0.08	•••	1 4	•••	18	2.4 ± 0.7	0.0	2.5	0.0

^a Reference 26.

and the FPSDI and MSDI states show a reversal of this property also.

12. A = 34, $T = 1 ({}^{34}S - {}^{34}Ar)$ (See Tables XVII and XVIII, Figs. 15 and 16)

The level structure of ³⁴S has been thoroughly explored up through 5 MeV of excitation energy by single- and double-nucleon stripping and pickup experiments, ^{53, 54} and by γ -ray decay studies.⁵⁵ The model results for energies, spectroscopic factors, and B(E2)'s and B(M1)'s are in over-all excellent agreement with the experimental picture. The two calculations differ in their predictions for the properties of the 3⁺ and 4⁺ states, the MSDI spectrum yielding more concentration of $d_{5/2}$ -hole strength in the lowest state of each spin. The experimental data on this point favor the MSDI results.

The pickup properties of the lowest $J^{\pi} = 2^{+}$, T = 1 states also differ between the FPSDI and MSDI calculations. These differences have their origin in the same sort of wave-function differences discussed for the 1⁺ states of ³⁴Cl. The FPSDI wave function has a larger $(d_{5/2})^{12}(s_{1/2})^4(d_{3/2})^2_{J=2, T=1}$ component than does the MSDI state (28 to 18%) and this explains part of the larger value for $d_{3/2}$ pick-up to the FPSDI state. Similarly, the MSDI state has a larger $(d_{5/2})^{12}(s_{1/2})^3_{J=1/2, T=1/2}(d_{3/2})^3_{J=3/2, T=1/2}$ component than does the FPSDI state (15 to 7%),

and this term is the dominant influence on the $s_{1/2}$ pickup.

The static quadrupole moment predicted for the first excited 2^+ state has an oblate value, as compared with a somewhat larger prolate value obtained for ³²S. (See Table XIX.) The *E*2 transition strengths which have been measured between the various excited states and from the excited states to the ground state are consistently close to the FPSDI predictions and hence also are in contrast to the ³²S situation, where predicted strengths to the first 2^+ were too weak.

IV. SUMMARY AND CONCLUSIONS

In this section we summarize the rather detailed results presented above. We shall discuss in turn results for energy levels, spectroscopic factors, E2 observables, and M1 observables.

The most extensive and unambiguous set of experimental data for these nuclei is on the spins and excitation energies of low-lying states. For these quantities, the calculations are in good overall agreement with experiment. There is relatively little qualitative difference in the calculated results obtained with MSDI or FPSDI, insofar as agreement with experiment is concerned. The considerable amount of freedom introduced in going from MSDI to FPSDI does not appear to lead to commensurate improvement in the agreement with experiment. The most marked differences be-

	3.65	- 4+	- 3.59 3.69	- 5+ 5+
<u>- 3.33 3.38</u> 2+,T=1	3.39	- 5+	3 20	
3.13 (1,2)+	= 2.91 <u>2.96 2.99</u>	≡ μ ₊ 2+.⊺=1 ²⁺	3.07	- 4+ - 2+
$\frac{2.72}{-2.58}$ 2.61 2-	2.54 2.55	- 0. 5.	2.68	- 2+,T=1
2.38 4+	<u>- 2.21 2.25</u>	- 2+ 3+ = 1+ 3+	2.30	- 3+
<u>- 1,89 1.92</u> 2+,T=1 - 1,89 1.92 2+	<u> 1.99</u> - 1.78 <u> 1.83</u>	- 2+,T=1	<u>2.07</u> 1.99	- 4+,1+ 2+,T=1 - 3+
	1.60 1.61	- 4+ 01 - 1+ 2+	1.43	- 24
2+		- 3+	1.19	- 3+
0.07	0.94	- 2+		- 1+
0.46 1+	0.49	- 1+	0.39	- 2+
<u>0.15</u> 0.00 3+	0.21	- 1+ - 0+ T-1	0.00	- 0+.T=1
EXPERIMENT	-0 41	0+31-1	<u>-0.19^{-0.13}</u>	$= \frac{1}{1+} + \frac{3}{3+}$
211	FPSDI	- 3+	MSDI	- 1+
³ "CL				

FIG. 14. Observed and calculated spectra for A = 34, T = 0 (see Table XVI). The conventions of the presentation are explained in the caption to Fig. 2.

tween MSDI and FPSDI results are in the calculated spectrum of ³⁴Cl, where the FPSDI spectrum is in better agreement with experiment than is the MSDI spectrum.

There are also many experimental data on single-nucleon transfer reactions involving the nuclei studied here. These data can be used in the discussion of three aspects of the nuclei concerned: (1) the occupation numbers in each active shellmodel orbit for the ground states of target nuclei; (2) the energy centroids of single-particle and single-hole strengths in the residual nuclei; and

TABLE XVI. Energies *E* and spectroscopic factors *S* for the states of A = 34, T = 0 (³⁴Cl). The conventions of the presentation are explained in the caption to Table VI. The target state for the stripping transfers (S_{st}) is A = 33, $T = \frac{1}{2}$, $J^{\pi} = \frac{3}{2}$ (³⁵S). The target state for the pickup transfers (S_{pk}) is A = 35, $T = \frac{1}{2}$, $J^{\pi} = \frac{3}{2}$ (³⁵Cl).

			Energy E (MeV	r)		$100 \times (S_0; S_2)$	$100 \times (S_{1/2};$	S 3/2.	S 5/9)	
A J	T	Expt. ^{a, b}	FPSDI	MSDI		Expt. c. d	FPSDI]	MSDI	
34 0	1	203.64	203,50	203.32	st ^c	; 200	; 188,	;	176,	
84.0	0		4.07	4.00	pk ^d	; 86	; 94,	;	. 82,	
34 0	0		4.97	4.92	st		; 0,	;	0,	
94.0	0		0.07	F 40	рк		; 0,	;	0,	
34 0	U		6.07	5.43	st		; 0,	;	0,	
	~		0.54		pk		; 0,	;	0,	
34 0	0		6.71	5.85	st		; 0,	;	0,	
					pk		; 0,	;	0,	
$34 \ 1$	0	0.46*	0.21	-0.45	st	10; <21	15; 9,0	1;	126,	1
					pk	13;	18; 13, 2	1;	46,	0
$34\ 1$	0	0.67	0.49	-0.19	st	19; 133	9; 133, 2	40;	2,	1
					\mathbf{pk}	; 35	1; 31, 1	24;	1,	1
$34 \ 1$	0		1.60	1.01	st		1; 7,0	0;	3,	0
					\mathbf{pk}		0; 4,0	0;	2,	0
$34\ 1$	0		2.21	2.07	st		3; 2, 0	2;	1,	1
					pk		4; 1, 5	1;	2,	2
34 2	0	1.23	0.94	0.39	st	19;	11; 0, 3	24;	1,	4
					pk	17;	18; 0, 9	30;	0,	6
34 2	0	1.89	1.61	1.43	\mathbf{st}	3;	0; 5,0	0;	11,	0
					$\mathbf{p}\mathbf{k}$		2; 11, 3	3;	7,	2
34 2	0		2.54	2.18	\mathbf{st}		0; 0,0	0;	1,	0
					pk		0; 0, 1	0;	0,	0
$34\ 2$	0		2,99	3.07	st		6; 1,0	4;	1,	0
					pk		27; 0, 10	14;	0,	20
34 3	0	0.15*	-0.41	-0.13	st	: 162	: 138, 0	:	119,	0
				-	pk	: 95	; 106, 0	:	106,	0
34 3	0		1.19	1.19	st	•	: 3, 5		7.	3
					pk		: 0, 34	:	0,	16
$34 \ 3$	0		1.83	1.88	st		; 2, 0	:	0,	2
					pk		; 0,0	;	0,	14
$34 \ 3$	0		2.25	2.30	st		; 3, 1	;	4,	2
					pk		; 10, 7	;	6,	12
34 4	0	2.38	1.78	2.07	st		: . 0			0
	-				nk		, , 0	,	,	1
34 4	0		2.91	3 20	st		, , , , , , , , , , , , , , , , , , , ,	,	,	4
01 1	•		2.01	0.20	nk		• 42		,	- 53
34 4	0		3.65	4 02	st		, , 12	•	,	0
01 1	•		0.00	1.02	nk		, , 0	,	,	4
34 4	0		4.30	4.70	st		; , 0	,	,	Ô
			1.00		pk		, , , , , , , , , , , , , , , , , , ,	,	,	õ
94 F	0		9 55	9 50	1		, , -	,	,	v
94.9	U		4.00	3.99						
34 5	0		3 39	3 69						
010	·		0.00	0.00						
34 6	0		4.83	5.67						
				~ • • •						

^aReference 51.

(3) the details of the distribution of single-particle and single-hole strengths among individual levels. There are, of course, difficulties in extracting unambiguous information about these three aspects from experimental data. The accuracy of any particular experimentally determined spectroscopic factor is limited to about 30% by uncertainties in DWBA theory. Also, in the experimental determination of ground-state occupation numbers and of single-particle (or single-hole) energy centroids, it is assumed that *all* single-particle (or singlehole) strengths have been observed. It is impossi-

TABLE XVII. Energies *E* and spectroscopic factors *S* for the states of A = 34, T = 1 (${}^{34}S - {}^{34}Ar$). The conventions of the presentation are explained in the caption to Table VI. The target state for the stripping transfers (S_{st}) is A = 33, $T = \frac{1}{2}$, $J^{\pi} = \frac{3}{2}$ (${}^{35}S$). The target state for the pickup transfers (S_{pk}) is A = 35, $T = \frac{1}{2}$, $J^{\pi} = \frac{3}{2}$ (${}^{35}Cl$).

				Energy E (Me	eV)		100 × (S	₀ ; S ₂)		100×	(S1/2; S3/2,	S 5/2)	
A	J	T	Expt. ^a	FPSDI	MSDI		Expt.	b, c	I	PSDI	. 172. 072.	MSD	(
34	0	1	203.64*	203,50	203.32	st ^b	;	200	;	188,	;	176,	
						pk ^c	;	86	;	94,	;	82,	
34	0	1	3.92*	4.04	3.32	st			;	0,	;	1,	
						pk			;	4,	;	14,	
34	0	1	5.22*	5.50	5.40	\mathbf{st}			;	0,	;	0,	
						$\mathbf{p}\mathbf{k}$;	0,	;	1,	
34	0	1	5.86*	6.36	6.31	\mathbf{st}			;	0,	;	0,	
						pk			;	0,	;	0,	
34	1	1	4.08*	3.83	3.46	\mathbf{st}			0;	0,0) 0;	0,	0
						pk	(60;	<28) ^d	52;	11, 2	2 60;	11,	2
34	1	1		5.60	5.04	st			6;	8,0) 7;	10,	0
						pk			0;	0,0) 0;	0,	0
34	1	1		6.21	6.58	st			1;	1, () 0;	0,	0
						pk			2;	0,0) 26;	0,	7
34	1	1		6.90	7.07	st			0;	0,0) 0;	0,	0
						pk			36;	0, 7	7 0;	0,	1
34	2	1	2.13*	1,99	1.99	st	:	106	0;	86, 1	l 1;	71,	0
						pk	21:	<26	14;	33, 1	32:	12,	1
34	2	1	3.30*	2,96	2.68	st	:	50	3;	13, 1	L 5;	24,	1
						pk	70:	<52	75;	28, 7	7 69:	26,	12
34	2	1	4.12*	4.19	3.87	st	(60;	<28) d	0;	6, () 0;	9,	0
			-	• •	- • • •	pk	() - ,	,	1:	37. 1	18 0:	53.	12
34	2	1	4.89	4,48	4.30	st			6:	38, 0) 7:	38.	0
				-	• • •	pk	(<4:	79)	3:	2, 3	3 0:	4.	1
34	3	1	(4.69)	4.28	4.18	st		.,		1, 1	l :	2.	1
			(/			pk	(;	41)	:	9, 4	17	7.	62
34	3	1		5.58	5.73	st			:	1, 1	L ;	1,	Ó
						pk			:	6, 4	12	5,	57
34	3	1		6.26	6.60	st			:	1, 4	4	1,	1
						pk			;	0, ()	4,	34
34	3	1		7.21	7.27	st				0, () :	0.	1
					••-•	pk				0,	12	0.	1
34	4	1	(4.88)	4.36	5.09	st			:		1		0
	-		, . ,			pk	(;	79)	:		16		74
34	4	1		5.55	5.72	st		. = ,	:	. () :		0
	-			- • • •		pk			:	. :	30		20
34	4	1		6.20	6.52	st				, (0		. 1
	-					pk			;	, ,	23	,	40
3 4	4	1		6.86	6.89	st			:	, (0		, 0
	-					pk			:	•	14 :		, 20
34	5	1		6.98	7.06	r			,				
34	5	1		8.12	8.42								
34	6	1		7.79	8.17								
34	6	1		8.86	8.84								
	2												

^aReference 55.

^bReference 53.

^cReference 54.

 $^{d}1^{+}$ and 2^{+} states experimentally unresolved.

ble to determine to what extent this assumption about the experimental data is valid. (Indeed, since we only look at our calculated S factors for transitions to the lowest several states of each J, T value, there are similar limitations on the accuracy of our estimates for the MSDI and FPSDI energy centroids of single-particle strengths.)

Within the limitations just mentioned, we find that in A=30-35 the observed relative occupations of the $1s_{1/2}$ and $0d_{3/2}$ shell-model orbits in the ground states of target nuclei are reasonably well reproduced by both shell-models.

A general idea of the accuracy with which the energy centroids of the single-particle and singlehole strengths are reproduced by these calculations can be obtained from the information presented in Figs. 3, 6, 11, and 16. In these figures, the calculated and experimentally determined single-particle and single-hole strengths in low-lying states are plotted. The plots of *model* results indicate that for each nucleus, most of the calculated single-particle strength for a given orbit is concentrated in one or two levels. Similarly, for each nucleus most of the calculated single-hole strength is concentrated in one or two levels. The plots of *experimental* results indicate that, for each nucleus, most of the experimentally observed single-particle strength is concentrated in one or two states, and that these observed strong states are at about the same energy as the calculated states for which there are significant single-particle strengths. For the single-hole strengths, the experimentally determined strengths are generally spread over more low-lying states than is the case in the model results, but it is apparent from the figures that the observed strength is generally concentrated in the same excitation-energy region as is the calculated strength. To this extent, the calculated centroids of single-particle and singlehole strengths are in agreement with experiment.

With regard to details of the distribution of strengths to individual levels, there is reasonably

TABLE XVIII.	Values of $B(E2)$	and B(M1) :	for transitions	between states	s of $A = 34$.	The notation is	explained in the
			caption to	Table IV.			

	Í	nital		Fi	nal			<u> </u>						
	:	state		st	ate		B(E2)	$(e^2 { m F}^4)$			$100 \times B(A$	(μ_N^2)		
Nuclear	J	ΤΕ	J	1		Expt. ^a	FPSDI	MSDI	MSDI-A ^a	Expt. ^a	FPSDI	MSDI	MSDI-A ^a	
³⁴ C1	1	0 0.46	0	1	0.00	0	0	0	0	6.5 ± 2.9	56	11	0.0	
³⁴ C1	1	0 0.46	3	0	0.15	•••	14	0.7	0.6	0	0	0	0	
³⁴ C1	1	0.0.66	0	1	0.00	0	0	0	0	1.2 ± 0.0	0.3	34	32	
³⁴ C1	1	0 0.66	3	0	0.15	•••	10	24	25	0	0	0	0	
³⁴ C1	2	0 1.23	0	1	0.00	<0.4	0.06	0.09	0.0	0	0	0	0	
³⁴ C1	2	0 1.23	3	0	0.15	<13	0.01	0.5	0.6	<0.2	0.3	0.2	0.2	
³⁴ C1	2	0 1.23	1	0	0.46	<46	20	2.1	2.5	<0.12	0.08	0.09	0.0	
³⁴ C1	2	0 1.23	1	0	0.66	<39	12	•••	40	<0.7	•••	0.9	1.1	
³⁴ C1	2	1 2.16	0	1	0.00	78 ± 34	42	50	54	0	0	0	0	
³⁴ C1	4	0 2.38	3	0	0.15	52 ± 13	55	54	57	0.03 ± 0.03	0.2	0.2	0.2	
³⁴ S	2	1 2.13	0	1	0.00	41 ± 4	35	50	55	0	0	0	0	
³⁴ S	2	1 3.30	0	1	0.00	6.1 ± 1.2	5.6	0.9	0.7	0	0	0	0	
³⁴ S	2	1 3.30	2	1	2.13	22 ± 5	35	70	72	12.3	3.3	4.5	3.0	
³⁴ S	0	1 3.91	2	1	2.13	26 ± 9	12	•••	14	0	0	0	0	
^{34}S	1	1 4.07	0	1	0.00	0	0	0	0	>2.1	•••	4.1	2.9	
³⁴ S	1	1 4.07	2	1	2.13	•••	4.5	2.9	3,3	>5.5	30	36	9.0	
³⁴ S	2	1 4.13	0	1	0.00	••••	2.2	6.5	•••	0	0	0	0	
^{34}S	2	1 4.13	2	1	2.13	•••	0.1	0.6	•••	•••	23	1.2	•••	
³⁴ S	2	1 4.13	2	1	3.30	•••	2.1	9.3		• • •	19	3.3	•••	
³⁴ S	3	1 4.13	2	1	2.13	•••	3.3	0.08	•••	•••	3.2	0.9	•••	
³⁴ S	3	1 4.13	2	1	3.30		93	105	• • •	•••	0.6	0.8	•••	
³⁴ S	4	1 4.13	2	1	2.13	•••	35	44	•••	0	0	0	0	

^a Reference 26.

FIG. 15. Observed and calculated spectra for A = 34, T = 1 (see Table XVII). The conventions of the presentation are explained in the caption to Fig. 2.

TABLE XIX. Static electric	quadrupole and	l magnetic dipole	moments in $A = 30 - 35$
----------------------------	----------------	-------------------	--------------------------

			Q2 C	$(e F^2)$ alc.				$I(\mu_N)$ alc.	
Nucleus	J_n^{π}	Expt.	FPSDI	MSDI	MSDI-A ^a	Expt.	FPSDI	MSDI	MSDI-A ^a
³⁰ P	1+		+3.2	+0.8	+0.8		+0.64	+0.71	+0.70
³⁰ Si	2^+		-6.6	-6.4	•••		•••	• • •	
^{31}P	<u>1</u> +		0	0	0	+1.13	+1.61	+1.58	+0.91
^{31}Si	<u>3</u> +		-7.4	• • •	-8.0		+0.92	+1.03	+0.41
^{32}S	2^{+}	-20 ± 6^{b}	-13.6	-13.8	• • •		+1.02		• • •
^{32}P	1+		-4.5	-3.7	-4.0	-0.24	-0.02	0.00	-0.25
^{33}S	3+	-5.5	-7.1	-7.8	-8.4	+0.64	+0.97	+1.06	+0.65
^{33}P	$\frac{1}{2}$ +		0	0	0		+1.52	+1.54	+0.86
³⁴ C1	3 ⁺		-17	-18	• • •		1.35	+1.37	•••
^{34}S	2+		+6.7	+2.5	• • •		+0.96	+1.31	
$^{35}C1$	3+	-7.9	-9.0	• • •	• • • •	+0.82	+0.45	+0.51	• • •
^{35}S	$\frac{3}{2}$ +	+4	+5.8	•••					

^a Reference 26.

^bReference 49.

good agreement for the strong transitions between theory and experiment. Both theoretically and experimentally, the *lowest* $\frac{1}{2}^+$ and $\frac{3}{2}^+$ states in each odd-mass system carry the preponderance of $s_{1/2}$ and $d_{3/2}$ single-particle and single-hole strengths. The *lowest* $\frac{5}{2}^+$ states in A=31 and in A=33, $T=\frac{3}{2}$ carry most of the $d_{5/2}$ hole strength, but in A=33, $T=\frac{1}{2}$ and A=35, $T=\frac{1}{2}$ the second $\frac{5}{2}^+$ states have the major $d_{5/2}$ hole strength.

In summary, the spectroscopic factor calculations indicate that the shell-model wave functions generally have single-particle characteristics consistent with those inferred from experimental observations.

The results of the calculations of B(E2) values (with effective charges, as discussed above) can be summarized as follows:

(1) In almost all cases, observed strong transitions are calculated to be strong, and weak transitions are calculated to be weak.

(2) For strong transitions, there is fair-to-good quantitative agreement of calculation with experiment for the transition strengths.

(3) The relative strengths of weak transitions are not well reproduced by the calculation.

The most obvious exceptions to generalizations (1) and (2) are for the A = 30 nuclei. The slightly different effective E2 operator used by Glaudemans, Endt, and Dieperink²⁶ with the MSDI wave functions leads to results which can be summarized by these same three statements.

The qualitative features of the M1 transition strengths are reproduced by the calculations; i.e., observed strong transitions are calculated to be strong, and similarly for moderately strong transitions and weak transitions. The quantitative agreement between models and experiment for the strengths of strong and moderate transitions is distinctly poorer for M1 transitions than for E2 transitions. For a number of the strong transitions, the use of the effective M1 operator of Ref. 26 yields superior results to those obtainable with an unrenormalized M1 operator. (However, there are also a number of transitions for which this is not the case.) This general assessment of the M1 transition calculations is very similar to that made for analogous shell-model calculations in the A=18-22 region.¹⁰

Next we consider our energy, spectroscopic factor, and electromagnetic results as functions of mass number A. We see that better agreement with experiment is obtained as A increases. The main culprit here is the A = 30 system. The nuclei with A=30 are the closest in mass to the semiclosed-shell nucleus ²⁸Si, and it is possible that the restrictions on $d_{5/2}$ excitations are most critical for these A=30 nuclei. This is obviously only speculation. It suggests the need for a more careful investigation of the significance of the *sd*-shell configurations which have been omitted from our active model space for A = 30. For the A = 31 to A = 35 nuclei, the discrepancies between our model results and experiment are such that they could easily arise from relatively small errors in detail in our effective Hamiltonian and the other effective operators we use.

An important goal of this study was to determine whether straightforward shell-model techniques could give a detailed accounting for experimental data on low-lying states in nuclei which are many

FIG. 16. Diagrams of observed and calculated spectroscopic factors for transfer to states of A = 34, T = 1 (see Table XVII). The conventions of the presentation are explained in the caption to Fig. 3.

particles (or holes) removed from major shell closures. The nuclei of A = 30-34 have observed characteristics which suggest that configurations of nucleons in the three orbits of the *sd* shell should be sufficient to allow a good theoretical description of their structure. The general questions which arose about the approach we have used in this work were: (1) Could enough *sd*-shell configurations be removed from the full *sd*-shell space to make calculations practically feasible without obviously limiting the capability of the model to account for experimental phenomena, and (2) could a specification of the model Hamiltonian be found which was both "reasonable" and "successful"?

There are unavoidable ambiguities in evaluating which aspects of a nuclear model calculation depend mainly on assumptions about the vector space and which depend mainly on assumptions about the Hamiltonian. We initially used an inflexible Hamiltonian form (the MSDI) that was definitely not the most sophisticated possible, but one that did embody a basic attribute of any nuclear effective interaction. Investigation showed that most major aspects of the phenomena characteristic of the region of interest could be accounted for with this combination of model space and Hamiltonian assumptions. Because of the constrained form of the MSDI, we took this success as an implication that the assumed model space was generally adequate for the region studied. We then attempted to find out if an empirically altered form of the Hamiltonian (the FPSDI) could further improve the theoretical situation with respect to observation. Qualitative improvements did not result from this approach, possibly because we started the search which led to the FPSDI Hamiltonian with the MSDI wave functions, possibly because the MSDI results were already close to the best that could be obtained in our limited model space.

In our presentation of this study we have valued over-all consistency in the agreement between theory and experiment for a given kind of observable more than a situation in which some expectation values were in very close agreement and others of the same observable in very poor agreement. Likewise, we valued comprehensive accounting for a variety of observables over close agreement for one type of observable at the expense of failing to even qualitatively account for some other aspect of the region.

Our attitude was and is that a fundamental virtue of the shell model is its potential to account for a variety of nuclear phenomena with a unified and constant set of assumptions. We have tried to see just how far toward an understanding of observed data we could come with this approach. In particular, we treated all nuclei and all levels using exactly the same set of assumptions. The only variation from nucleus to nucleus was the number of particles. Thus, we feel that the totality of our results for the A = 30-35 nuclei have an import greater than merely the sum of the successes for individual spectra or for specific kinds of observables.

APPENDIX

In this section we present details of the FPSDImodel wave functions for the lowest energy states of each A, T system. The material is arranged in order of increasing mass and isospin. The conventions of the presentation are as follows: A particular model state is labeled by its mass number (A), twice its total angular momentum $(2J^{\pi})$, twice its total isospin (2T), its calculated binding energy (E), and an ordinal number, denoting whether it is the 1st, 2nd, 3rd, etc., lowest state for the particular A, J, T combination in question. Also noted on this initial identifying line are the number of core particles in the model (16 in all present cases) and the dimensionality (number of basis states) for that A, J, T.

Following this first line of information, all components of the wave function of this state whose amplitudes have an absolute values greater than 0.1414 are listed and identified. Under each "amplitude" value is a triplet of columns, one for each of the three sd-shell orbits $(0d_{5/2} = D5, 1s_{1/2})$ = S1, and $0d_{3/2} = D3$). The information in these columns serves to completely specify the basis vector associated with the particular amplitude in question as follows. The "configuration" triplet gives the occupation number for each of the orbits. The 2(S-shell J's) triplet gives the angular momenta to which the particles in the single orbits (shells) are separately coupled. The 2(coupled J's) doublet then gives first the angular momentum J_{12} which results from coupling the angular momentum of shell 1 $(0d_{5/2})$ to that of shell 2 $(1s_{1/2})$ and then gives the total angular momentum J which results from coupling J_{12} to the angular momentum of shell 3 $(0d_{3/2})$. The 2(S-shell T's) triplet and the 2(coupled T's) doublet give analogous information about the isospin couplings. The S-S seniorities triplet lists the seniorities of the particle couplings within each orbit.

The concluding information given about the state comes on the last two lines after all components have been listed. The percentage of the total wavefunction structure that is identified in the preceding listing is noted on the first of these lines, and on the second (and last line for the particular state in question) we list the average occupation number for each orbit as calculated from the complete wave function. <u>4</u>

STRUCTURE OF NUCLEI WITH ...

A = 30, $2J^{\pi} = 2^+$, 2T = 0, E = 156.492, eigenvector 1 of this A, J, T. Model core = 16, dimension = 82.

-0.711	S1 D3	2	2 0	2	0 0	0 0	2
1	D_5	12	0		0		0
0	D3	Ч	က	0	Ч	0	1
-0.32	S1			ч		-	
I	D5	12	0		0		0
	D3	61	2	61	0	0	01
.163	S1	0	0	0	0	0	0
0	D5	12	0		0		0
_	D3	-	က	7		0	-
0.150	S1	0	0	Ð	0	Ч	63
ł	D5	11	S		-1		н
	D3		ი	2		0	Ч
.216	S1	01	0	ഹ	0	Ч	0
ĩ	D5	11	2		F		
	D3	0	0	67	0	0	0
.179	S1	4	0	2	0	0	0
0	D_5	10	01		0		73
	D3	Ч	က	7		0	Н
.170	S1	က	Ч	ഹ	Ч	Ч	Ч
0	D5	10	4		2		5
	D3		က	2	-	0	-
.144	S1	က	Ч	1	Ч	Ч	Ч
Î	D5	10	2		0		7
	D3	0	0	0	0	0	0
.257	S1	01	\$1	2	0	0	73
0	D5	10	0		2		0
Amplitude	S-shell labels	Configuration	2(S-shell J's)	2(coupled J's)	2(S-shell T's)	2 (coupled T's)	S-S seniorities

Listed components account for 85.2% of the wave function. Occupation (D5) = 11.38, (S1) = 1.93, (D3) = 0.69.

S-shell labels $D5$ $S1$ $D3$ $D5$ $S1$	Amnlitude	'	-0.15	56	1	-0.30	80	0	.186		0	.143		Ť	0.228		I	0.22	80	1	0.145	~	0	.653			-0,3	18
Configuration10131103110401112111202121111220 $2(S-shell J^s)$ 013013213205165030013020 $2(S-shell J^s)$ 1212224252013020 $2(supled J^s)$ 12111111122<	S-shell labels	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D_{5}	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Configuration	10	٦	က	10	က	Н	10	က	٦	10	4	0	11	Ч	61	11	7	1	12	0	7	12	н	н	12	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2(S-shell J's)	0	Г	က	0	Ч	က	7	Ч	က	7	0	0	വ	٦	9	വ	0	က	0	0	67	0		က	0	2	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (coupled J's)		Ч	62			0		Ч	7		61	0		4	0		ດ	0		0	7			67		0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2(S-shell T's)	5		က	0	1	1	0	Ч	1	0	0	0	Ч	٦	0	٦	01	н	0	0	0	0	-	н,	0	0	0
S-Semiorities 0 1 1 0 1 1 2 1 1 2 0 0 1 1 2 1 0 2 0 2	2 (coupled T's)		က	0		٦	0			0		0	0		0	0		٦	0		0	0		-	0		0	0
	S-S seniorities	0	٦	Ч	0	ы	-	2	Ч	٦	07	0	0	1	Ч	61	1	0	ы	0	0	01	0	1		0	7	0
	Occupation (D5)	= 11.2	5, (S	(1) = 1.	53, D	3) = 1	1.22.																					

A = 30, $2J^{\pi} = 4^+$, 2T = 0, E = 155.077, eigenvector 1 of this A, J, T. Model core = 16, dimension = 99.

Amplitude	1	-0.155		Ť	0.269			0.271			-0.199			0.439			0.656	
S-shell labels	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3
Configuration	10	٦	က	10	က	Ч	10	က	1	11	1	7	11	က	0	12	1	
2(S-shell J's)	0		ŝ	0		က	. റ	щ	က	ю	1	9	5	Ч	0	0	-	က
2 (counted J's)	•	-	4		Г	4		н	4		4	4		4	4		Ч	4
2(S-shell T's)	2		· က	2	-	-	0		F-I	Н	H	0	1	Ч	0	0	1	Ч
2(counled T's)		6	0			0		L.	0		0	0		0	0		Ч	0
S-S seniorities	0			0	Ч	1	7	1	1	1	н	01	1	-	0	0	1	-
Listed component. Occupation (D 5)	s account =11 . 14, (t for 83. (SJ)=1.7	.3% of th ≀7, (D3)≞	e wave f =1.08.	unction.													

bels $D5$ $S1$ $D3$ $D5$ $S1$ $D5$ $D5$ $D5$ $D5$ $D5$ $D5$ $D5$ $D5$	also D_{5} S1 D_{3} D_{5}	litude		0.15	9		0.3	101		0	03		0.2	49		0.1	53		0.51(-0.18	1	-	0.411		.I	0.31	œ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	els	D5	S1	D3	T	05 S.	1 D.	3 DE	S. S.	. D3	D	5 SI	. D3	D_{1}	S	(D3	D_{1}^{c}	5 S1	D3	D5	S1	D3	D_5	S1	D3	D_5	S1 L	33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ion	10	က	-		10	م	1 11	_	33	-		-27	=		1 2	11	۲۵ ا	H	11	0	Н	11	က	0	12	н	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$'s)	0	Ч	ෆ		9	-	3	5	33		5 1	0	ц.		2	ц3	0	က	വ	01	က	0 0	Н	0	0	-	က
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r's)		Ч	4		-	2	4	,	4		4	4		4.	1 4		2	4		က	4		4	4			4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(s,)	73	Η			0		1	_	-		1	-1	-		1	-	5		1	0	-			0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ittes 0 1 <td>T's)</td> <td></td> <td>Ч</td> <td>0</td> <td>_</td> <td></td> <td>-</td> <td>0</td> <td></td> <td>0</td> <td>-</td> <td>54</td> <td>0</td> <td></td> <td>Ŭ</td> <td>0</td> <td></td> <td>-</td> <td>0</td> <td></td> <td>Ч</td> <td>0</td> <td></td> <td>•</td> <td>0</td> <td></td> <td>Ч</td> <td>0</td>	T's)		Ч	0	_		-	0		0	-	54	0		Ŭ	0		-	0		Ч	0		•	0		Ч	0
poments account for 81.1% of the wave function. ($D5$)=10.84, (S1)=1.96, ($D3$)=1.20. $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=30, 2J^{\pi}=6^{+}, 2T=0, E=154.779, eigenvector 1 of this A, J, T. Model core=16, dimension=115.$ $A=1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ities	0	Ч			67			_	1		1	0	-		12	-	1	Г	Ч	2	н	H	-	0	0		
$ (p5)=10.84, (51)=1.96, (D3)=1.20. $ $ A=30, 2J^{T}=6^{+}, 2T=0, E=154.779, \text{ eigenvector 1 of this } A, J, T. \text{ Model core}=16, \text{ dimension}=115. $ $ A=30, 2J^{T}=6^{+}, 2T=0, E=154.779, \text{ eigenvector 1 of this } A, J, T. \text{ Model core}=16, \text{ dimension}=115. $ $ P=0.150 -0.235 0.296 0.267 -0.204 0.760 0.7$	$ (\ D5) = 10.84, \ (S1) = 1.96, \ D3) = 1.20. $ $ A = 30, \ 2J^{\pi} = 6^{+}, \ 2T = 0, \ E = 154.779, \ eigenvector \ 1 \ of \ this \ A, \ J, \ T. \ Model \ core = 16, \ dimension = 115. $ $ A = 30, \ 2J^{\pi} = 6^{+}, \ 2T = 0, \ E = 154.779, \ eigenvector \ 1 \ of \ this \ A, \ J, \ T. \ Model \ core = 16, \ dimension = 115. $ $ A = 30, \ 2J^{\pi} = 6^{+}, \ 2T = 0, \ E = 154.779, \ eigenvector \ 1 \ of \ this \ A, \ J, \ T. \ Model \ core = 16, \ dimension = 115. $ $ A = 30, \ 2J^{\pi} = 6^{+}, \ 2T = 0, \ E = 154.779, \ eigenvector \ 1 \ of \ this \ A, \ J, \ T. \ Model \ core = 16, \ dimension = 115. $ $ A = 30, \ 2J^{\pi} = 6^{+}, \ 2T = 0, \ E = 154.779, \ eigenvector \ 1 \ of \ 1 \ 1 \ 2 \ 1 \ 1 \ 2 \ 1 \ 1 \ 1 \ 2 \ 1 \ 1$	ponent	s acco	wint 1	for 8	1.1%	of the	wave	e functio	on.																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (D 5):	= 10 .84	4, (S	31) = 1	(. 96,	(D 3) =	1.20																					
bels D_5 S_1 D_3 D_5 S_1 D_3 <i>J</i> 's) 6 1 3 1 10 3 1 10 4 0 11 1 2 11 2 1 11 3 0 <i>J</i> 's) 5 6 0 0 5 1 0 5 1 0 3 5 1 10 3 <i>J</i> 's) 0 1 1 0 1 1 0 1 1 1 2 11 1 2 1 11 3 0 <i>J</i> 's) 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1	bels D_5 S_1 D_3 D_5 S_1 D_3 tion 10 3 1 10 3 1 10 3 1 10 4 0 11 1 2 11 2 1 11 3 0 J's) 6 1 3 10 1 3 6 0 0 5 1 0 3 5 1 0 J's) 0 1 1 1 2 11 2 1 11 3 0 J's) 0 1 1 1 0 1 1 1 2 1 11 3 0 J's) 0 1 1 1 0 1 1 1 2 1 1 1 3 0 T's) 1 0 1 1 1 2 1 1 1 2 1 1 1 0 T's) 1 0 1 1 1 2 1 1 2 1 1 1 0 0 T's) 0 1 1 0 1 1 1 2 1 1 1 0 0 T's) 0 1 1 1 0 1 1 1 1 0 1 0 0 T's) 0 1 1 0 1 1 1 1 1 0 0 0 T's) 0 0 1 1 1 0 1 1 1 0 1 0 0 T's 0 0 0 1 1 1 0 1 1 1 0 0 0 T's 0 0 0 1 1 1 0 1 1 1 0 0 0 T's 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 T's 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ð		I	-0.15(0			-0.23	25			-	0.296				0.267	2			Ŷ	204			0	.760		
tion1031103110401112112130J's)613101360051035110J's)5696666666666J's)011011035110J's)011011212110J's)011011212110T's)011211212110T's)112112112110T's)112112111111T's)112112111111T's)1121121111111T's)1121121111111111111T's)11211111111111 <td>tion 10 3 1 10 3 1 10 3 1 10 3 1 10 4 0 11 1 2 11 2 1 11 3 0 J's) 6 1 3 10 1 3 6 0 0 5 1 0 3 5 1 0 0 J's) 0 1 1 1 0 1 1 3 6 0 0 0 5 1 0 3 5 1 0 0 J's) 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 2 1 1 1 0 0 T's) 1 0 1 1 0 1 1 1 2 1 1 1 0 0 0 0 T's) 0 1 1 0 0 1 1 1 2 1 1 1 0 0 0 0 T's) 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0</td> <td>bels</td> <td>D5</td> <td></td> <td>S1</td> <td>Γ</td> <td>33</td> <td>D_5</td> <td>S.</td> <td>,1</td> <td>D3</td> <td>Γ</td> <td>5</td> <td>S1</td> <td>D3</td> <td></td> <td>D5</td> <td>S1</td> <td>. =1</td> <td>33</td> <td>D5</td> <td>- 4</td> <td>S1</td> <td>D3</td> <td>D</td> <td>5 2</td> <td>S1</td> <td>D</td> <td>က</td>	tion 10 3 1 10 3 1 10 3 1 10 3 1 10 4 0 11 1 2 11 2 1 11 3 0 J's) 6 1 3 10 1 3 6 0 0 5 1 0 3 5 1 0 0 J's) 0 1 1 1 0 1 1 3 6 0 0 0 5 1 0 3 5 1 0 0 J's) 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 2 1 1 1 0 0 T's) 1 0 1 1 0 1 1 1 2 1 1 1 0 0 0 0 T's) 0 1 1 0 0 1 1 1 2 1 1 1 0 0 0 0 T's) 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	bels	D5		S1	Γ	33	D_5	S.	,1	D3	Γ	5	S1	D3		D5	S1	. =1	33	D5	- 4	S1	D3	D	5 2	S1	D	က
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tion	10		က		1	10	-	ŝ	Ч	,	10	4	0		11	1		0	11		2	Ч	Ч	F.	က		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J's)	9		Η		CD	10		,	်လ		9	0	0		2	Н		0	5		0	က		5			0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T's 0 1 1 0 1 1 0 1 <td>J's</td> <td></td> <td></td> <td>ഹ</td> <td></td> <td>9</td> <td></td> <td></td> <td>6</td> <td>9</td> <td></td> <td></td> <td>9</td> <td>9</td> <td></td> <td></td> <td>9</td> <td></td> <td>9</td> <td></td> <td></td> <td>വ</td> <td>9</td> <td></td> <td></td> <td>9</td> <td></td> <td>9</td>	J's			ഹ		9			6	9			9	9			9		9			വ	9			9		9
T's) 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 </td <td>T's 1 0 1 0 1 0 0 0 0 rities 2 1 1 2 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 <</td> <td>T's)</td> <td>0</td> <td></td> <td></td> <td></td> <td>I</td> <td>0</td> <td>~</td> <td>-</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>Ч</td> <td>1</td> <td></td> <td>0</td> <td>Ē</td> <td></td> <td>5</td> <td>Ч</td> <td></td> <td></td> <td>,1</td> <td></td> <td>0</td>	T's 1 0 1 0 1 0 0 0 0 rities 2 1 1 2 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 <	T's)	0				I	0	~	-			0	0	0		Ч	1		0	Ē		5	Ч			, 1		0
rities 2 1 1 2 1 1 2 0 0 1 1 0 1 0 1 1 0	cities 2 1 1 2 1 1 2 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 nponents account for 85.6% of the wave function.	T's)			. –		0			·,	0			0	0			7		0			г	0			0		0
	properts account for 85.6% of the wave function.	rities	2				Ч	61			Н		2	0	0		Г	н		0			0			1			0

Amplitude	I	-0.325		I	-0.222			-0.165			0.363			-0.427			0.537	
S-shell labels	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	SI	D3
Configuration	10	2	2	10	2	2	11	0	က	11	0	П	11	7	1	12	0	0
2 (S-shell J's)	0	0	9	2	63	9	5	0	ŝ	5 2	0	က	2	2	က	0	0	9
2 (coupled J's)		0	9		0	9		2	9		വ	9		က	9		0	9
2 (S-shell T 's)	63	7	0	0	0	0	H	0	Ч	1	7	-	Н	0	Ч	0	0	0
2(coupled T's)		0	0		0	0		1	0		1	0		Ч	0		0	0
S-S seniorities	0	0	63	2	61	7	-	0			0	1	H.	7	T	0	0	7

4

D3

 $\begin{array}{c} S1\\ 2\\ 0\end{array}$

0 10 0 0 0 0

0 12 12 0

0

0 0

0

0

40

0

0

2(S-shell T's) 2(coupled T's) S-S seniorities

2 (coupled J's) Configuration 2 (S-shell J's)

S-shell labels

Amplitude

Listed components account for 87.1% of the wave function. Occupation (D5) = 11.35, (S1) = 1.85, (D3) = 0.80.

STRUCTURE OF NUCLEI WITH...

A = 30, $2J^{\pi} = 0^+$, 2T = 2, E = 155.521, eigenvector 1 of this A, J, T. Model core = 16, dimension = 50.

A = 30, $2J^{\pi} = 0^+$, 2T = 2, E = 152.004, eigenvector 2 of this A, J, T. Model core = 16, dimension = 50.

						NTD							
S-shell labels $D5$ S1 $D3$ $D5$ S1 $D3$ $D5$ S1 $D3$ $D5$ S1	S1 D3	D_{5}	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3
Configuration 10 0 4 10 2 2 10 2	12	10	73	7	11	T.	02	12	0	0	12	62	0
2(S-shell J's) 0 0 0 0 0 0 2 2	0	.01	2	0	ß	, -1	4	0	0	0	0	0	0
2(coupled J's) 0 0 0 0 0	0 0		0	0		4	0		0	Õ		0	0
2(S-shell T's) 2 0 4 2 2 2 0 0	2	0	0	2	***		67	0	0	N	0	01	0
2(coupled T's) 2 2 2 0 2 0	0 2		0	~7		0	73		0	7		2	2
S-S seniorities 0 0 0 0 0 0 2 2	0 0	62	7	0	1	, 1	7	0	0	0	0	0	0

Amplitude		-0.1(8	0	.155		ĩ	.324		0	222		0	.280		1	0.168	~	Ū	.196		0	.729	
S-shell labels	D5	S1	D3	D_5	S1	D_3	D5	S1	D3	D5	SI	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D_3
Configuration	10	Ч	က	10	01	2	10	က	1	10	က	-	11		2	11	2	٦	11	01	٦	12	Ч	1
2(S-shell J's)	0		e 2	4	0	4	0	Ч	S	67	н	က	2	Ч	4	5 2	0	က်	5	01	ŝ	0	٦	က
2(coupled J's)		-	67		4	63		Ч	8		н	73		4	2		ŝ	73		က	2			7
2(S-shell T's)	67	H	H	7	.01	61	2	Ч	F	0	H	1	Ч		67	٦	03	Ч	1	0	F	0	٦	1
2(coupled T's)		n	63		0	63			7			27		0	10		۲	73		٣	07		F	7
S-S seniorities	0	- 11	Ē	67	0	2	0	H	Ч	6 7	щ	-	H	Ч	67	1	0	Н	H	07	H	0	H	1

Occupation (D5) = 11.23, (S1) = 1.46, (D3) = 1.31.

16
dimension =
ô,
Model core = 1
Ь.
J,
4,
of this /
Ч
eigenvector
e,
04
53.
Ē
щ
ç,
2T =
÷
$J^{\pi} = 4$
30

Amplitude		0.160	~	0	.291		0	.208		1	0.168	~	I	0.160	_	0	.281		T	0.247		T	.681	
S-shell labels	D_5	S1	D3	D5	S1	D3	D_5	S1	D3	D5	S1	D3	D_5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3
Configuration	10	Ч	က	10	လ	Ч	10	ŝ	Ч	11	1	0	11	Ч	7	11	က	0	12	0	2	12		
2(S-shell J's)	0	ы	က	0	Ч	လ	61	1	က	ß	1	0	ß	Ч	4	ഹ	٦	0	0	0	4	0	Ē	က
2(coupled J's)			4		ы	4		Ч	4		4	4		4	4		4	4		0	4		Ч	4
2(S-shell T's)	7		ы	01	Ч	Ч	0	Ч	Ч	1	Ч	0	Ч		01	1		0	0	0	2	0	Ч	٦
2(coupled T's)		က	7		Ч	7		Ч	0		0	¢1		0	01		01	63		0	73		H	07
S-S seniorities	0		1	0	Ч	1	0	-	Ч	Ч	÷	0	-	-	61		Ч	0	0	0	61	0	1	
Listed component	s accc	ount fo	or 81.15	% of tł	ie wa	ve func	ction.																	
Occupation (D5)	= 11.2	3, (S1	.) = 1.47	r, (D3)	=1.3	Ŀ.																		

Amplitude	Ŭ).221		1	0.201		0	150		0	160		Ť	.381		Ţ	0.301		0	.581		0	200	
S-shell labels	D_{5}	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	SI	D3	D_5	SI	D3	D5	S1	D3	D5	S1	D3
Configuration	10	4	0	11	Ч	7	11	ы	5	11	-	01	11	0	1	11	0	1	11	က	0	12	0	01
2(S-shell J's)	4	0	0	വ		0	2	Г	0	ß	Ч	4	5	0	က	5	0	က	വ		0	0	0	4
2(coupled J's)		4	4		4	4		4	4		4	4		5	4		က	4		4	4		0	4
2(S-shell T's)	2	0	0	1	Ч	2	1	Ч	2	1	Ч	57	Ч	0	1	Ч	0	1	1	-	0	0	0	01
2(coupled T's)		52	2		0	2		0	0		0	0		ч	0		٦	0		67	2		0	07
S-S seniorities	2	0	0	1	٦	0	Ч	щ	0	Ч	Ч	0	m	0	Ч	H,	0	1	1	1	0	0	0	ò

Listed components account for 75.1% of the wave function. Occupation $(\mathcal{D}5) = 10.80$, (S1) = 2.26, $(\mathcal{D}3) = 0.95$.

A = 30, $2J^{\pi} = 4^{+}$, 2T = 2, E = 151.677, eigenvector 2 of this A, J, T. Model core = 16, dimension = 167.

A = 30, $2J^{\pi} = 6^{+}$, 2T = 2, E = 150.883, eigenvector 1 of this A, J, T. Model core = 16, dimension = 162.

litude	•0	184		[.0	173		0	178		0.28	35		-0.1	-68		-0.14	Ļ	1	-0.32	10	Ĩ	0.208		Ŷ	193		0.5	98
oels	D5	S1 1	D 3	05 5	51 1	03 1	35 5	31 D.	3 L	5 SI	L D3	Q	5 S1	D3	D_5	S1	D3	D_{5}	S1 /	33	D5	SI D	3 D	5 S	1 03	D	5 S1	D3
ttion	10	က	Ĥ	11	0	e co	11	-	5	11	2	H	1	2	11	Ч	01	11	0	T	11	2	-	Ч	5	- 1	1 3	0
J's	80	Ч	က	വ	0	ი	വ	÷	0	2	0		5 1	0	ŝ	г	4	5 2	0	က	5	2	с С	5 C	20	~	5 1	0
IJ's		7	9		5	9		9	9	J	9		4	9		9	9		ខ	9		2	9		7		9	9
T'_{S}	7	н	Ч	н	0	1	1		5	н П	2		1	0		٦	01	Ч	01	H	Ч	0		-	0	_	1	0
IT's		က	01		H	7		0	2		01		5	07		0	62		က	7			73		-	~1	01	0
orities	7	1	-	Ч	0			, m	0	Г Н	0		1 1	61		1	2	Ч	0	H	-	0	1	-	5		1	0
omponen	ts acc	ount	for 7	7.0%	of tł	1e wav	ve fu:	nctior	4																			
ion (D 5) = 10.	77, ((S1) =	2.15,	D_{3}) = 1 .0	80																					

, dimension = 162.
Model core = 16,
Т.
Ļ,
4,
of this /
2
eigenvector
E = 150.518
2T = 2,
$2J^{\pi} = 6^{+}$,
A = 30,

Amplitude		0.147			-0.1	79		0.5	82		Ť	.238			.692			0.188			0.262	
S-shell labels	D5	S1	D3	D5	S	l D		D5	S1 1	33	D5	S1	D3	D_{5}	S1	D3	D_5	S1	D3	D5	S1	D3
Configuration	10	0	67	10		~	1	10	ŝ	1	11	1	02	11	2	-	11	01	-	11	0	Г
2(S-shell J's)	10	2	4	4		_	e 0	9	F	e	ß	Ч	4	2	0	က	5	7	က	5	7	က
2 (counled J's)		oc	9						L L L L	9		4	9		2	9		က	9		5 C	9
2(S-shell T's)	0	0	0	2			-	0	-	1	Ч	٦	7	I	61	1	1	0	۲	1	0	٦
2 (coupled T's)		0	7				2		F	2		0	01		-	7		Г	0		1	7
S-S seniorities	5	02	73	73		_		7	ч	÷	н	F,	67	г	0	Ч	Ч	7 3	-	1	61	Ч
Listed componen Occupation (D5)	ts accou) $= 10.72$,	nt for (S1) =	77.3% =1.96,	of the v (D3) = 1	vave f .32.	unctio																
			A = 30), 2 <i>J</i> [*] =	8+, 2	T = 2,	E = 150	.087,	eigenve	ector 1	of this	.A,J,	<i>T</i> . M	odel co	re = 16	dime	nsion =	147.				
Amplitude	•	0.149			-0.2	26		0.2	07		0	149		0	.594			0.506			0.162	
S-shell labels	D5	S1	D3	D5	S1	D	Γ	5 5	1 D	3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3
Configuration	10	7	2	10	က	-		11	0	e	11	1	63	11	0	Ч	11	01		11	62	٦
2(S-shell J's)	10	67	4	10	Ч	0		5	0	e c	ß	1	4	വ	0	က	5	0	က	5	07	ĉ
2(coupled J's)		80	80		6	æ			വ	8		9	80		വ	80		2	80		ß	œ
2(S-shell T's)	0	0	0	0				T	0	3	Ч	Ч	01	٦	0	Ч	-	0	н	-	0	-
2(coupled T's)		0	67		-	21				5		5	0		1	7		က	63		Ч	0
S-S seniorities	61	62	0	5	Ч	-		-	0			1	73	H	0	Н		0	H	-	61	
Listed componen	ts accou	nt for	77.4%	of the v	vave f	unctio	ч.															
Occupation (D5)	= 10.77,	(S1) =	±1.90,	(D3) = 1	.33.																	
			A = 30), 2 <i>J</i> ^π =	8 ⁺ , 2	T = 2,	E = 149	.308,	eigenve	ector 2	of this	.Α,J,	T. Mc	odel co	re=16	dime	ision =	147.				
Amplitude	•	0.227			0.18			Ŷ	156		0	150		1	0.142			0.328			0.216	
S-shell labels	D_5	S1	D3	D_5	S1	D3	П	5 5	1 D		D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3
Configuration	10	01	7	10	က	-		10	റ	1	10	e	1	10	က	٦	10	4	0	11	0	က
2 (S-shell J's)	80	0	0	9	-			80	1	3	80	-	က	10	ч	က	œ	0	0	5	0	က
2 (coupled J's)		80	80		5 2	ω			7	8		6	80		6	80		œ	œ		5	œ
2(S-shell T's)	2	61	7	0	1	-		5	1	-	7	1	1	0	Ч	٦	67	0	0	-	0	-
2 (coupled T's)		7	7		-	2			3	2		Ч	0		Ч	0		0	0		Н	7
S-S seniorities	5	0	0	2	-	-		5	1		67	1	-	7		-	67	0	0	Н	0	
Amplitude	1	-0.155			0.162	01		9	144		0.	180		0	.443		•	-0.259			-0.33	н
S-shell labels	D5	S1	D3	D_5	S1	D	L	5 5	1 D	e S	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	. D3
Configuration	11	-	0	11	1	21		11		67	11		7	11	0	1	11	2	-1	11	7	٦
2(S-shell J's)	S	-	61	5		Ţ		2	1	4	ß	1	9	2	0	က	Ð	0	က	5	7	ი
2(coupled J's)		9	80		9	æ			9	8		4	œ		2	80		0 L	80		7	80
2(S-shell T's)	ы	Ч	0	1	-	C/			F	5	1	Ч	0	1	7	٦	1	0		1	0	-
2(coupled T's)		01	73		0	с ч			67	2		62	01		1	0		က	63		1	7
S-S seniorities			0	Ч		61			1	5	F.	ار	7	1	0	1	۳	0	Ч	1	7	٦

STRUCTURE OF NUCLEI WITH...

4

Listed components account for 78.3% of the wave function. Occupation (D5) = 10.55, (S1) = 2.03, (D3) = 1.42.

1744

A=31, $2J^{\pi}=1^+$, 2T=1, E=168,625, eigenvector 1 of this A, J, T. Model core=16, dimension=129.

Amplitude S-shell labels Configuration 2(S-shell J's) 2(s-shell T's) 2(S-shell T's) 2(S-shell T's) 2(s-shell T's)		D5 10 2 2	-0.300 S1 33 33 - 1 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	0 9 9		D5 10 2 2	-0.22 S1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T T	8 2 0 1 2 1 0	D5 11 5 1	0 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	88	8 H 8 H H F	<i>d</i> 1		0.371 S= 	D 1 2 1 0 2 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		D5 12 0 0	0.707 S1 3 1 1 1 1		
Listed component: Occupation $(D5)$:	= 11.41, (t for (S1) =	$\begin{array}{c} \mathbf{81.3\% \ 0} \\ \mathbf{2.57, \ 0} \\ \mathbf{A=31, } \end{array}$	f the W: (33) = 1.($2J^{\pi} = 3$	12. fun 2. fun 2. fun	o iction. ±1, <i>E</i> =	167,38	8, eig	envect	or 1 of	this A,	J, T.	Mode	Core	= 16, 0	li mensi	o ion = 22	en e	>	4 <u>,</u>		`
Amplitude	0	.251		; . 0	228		-0.1	1 9		-0.332		0.1	75		0.2]	16		0.591		0	253	
S-shell labels	D5	S1	D3	D5 S	1 D3	D	5 S1	D3	D5	S1 L	13 1	95 S.	1 D(a a	5 S.	1 D3	D5	S1	D3	D5	S1 D	33
Configuration	10	8	က	10	4 1	-	1 2	2	12	0	ج	12	-	-	2	1 2	12	7	1	12	8	H
2 (S-shell J's)	0	0	က	0	0 3	~	5 2	9	0	0	e S	0	-		0	1 4	0	0	က	0	67	e
2 (coupled J's)		0	က		0 3	~	က	က		0	со -			~		3		0	က		2	က
2(S-shell T's)	6 3	2		63	0		1 0	0	0	0	H	0	ц Н	_	0	[2	0	7		0	0	-
2(coupled T's)	4	0 0			2 0		·		•	0		4	·		1			01			0,1	-
S-S seniorities	0	0	Ч	0	0		1	21	0	0	H	0	-		0	12	0	0	-	0	01	
Listed component: Occupation (D5) -	s account = 11.31, (t for (S1) =	73.8% o 1.80, <i>(</i> 1.80, <i>(</i> 1.80	f the w: (33) = 1.6 $2.1^{\pi} = 5^{-1}$	17 = 27 = 27	ction. $\mathcal{R} =$	166.21	d G	envecto	ут 1 оf 1	this A.		Mode	 core	9 	dimens	iom = 2(
- E 4 E	T C	6	(10 - W	3	- 10 (- 	TO DOT -	0, CLS	-		(R emu	• • •	ADOINT		- TO	STIDITIO					100	
Ampituae		507 51	64	u C	0.305 61	6 C	5	47° 0-	0 0	5		, ,	F	г.о ч	- 10 - 1		л г с	110	о <i>ц</i>	1 2 2	067.0	с С
Configuration	01	10	с г	6 E	10	5	5 F	5	, c	5 F	-	, L	4	- c	- C	<u>, -</u>	۲ <u>۲</u>	4.4	0 0 0	5 F	1 6	2 -
2.(S-shell J's)	ç 6	۲ C	1 m	1 13			1 13	1 C		1 12	, -	4 07	-	1.0	,	ا د:	1 12	- c	• c		1 01	1 03
2 (counted J 's)	1	2	о с а)	ы (с	о IC)	ы. С	, re)	4	ы. С		,	9	2)	ы С	<u>л</u>	,	2	0.0
2(S-shell T's)	0	0		Ч	0	10	н	0	01	Ч	1	н		1	÷		1	0	0	0	0	٦
2 (coupled T's)		0	H		1	٦		က	Ч		62	Ч			0	T		Ч	Ч		0	Ч
S-S seniorities	63	0	٦	1	0	0	I	0	0	Ļ	Ч	1		1	Ч	1	1	0	0	0	0	1
Titata Common Latat	1	1 403	10 101 01	1410																		
Decimation (D.5) =	10.92. (S1) =	2.90. 07	1.11 = (SI	.VE 1011	.110113																

<u>4</u>

.

a chall lobala		0.182			0.283			-0.2	24		-	0.210			ĭ	.277			ĭ	0.270			Ŷ	556
STAURI INDERS	D5	S1	D3	D5	S1	D3	D5	S	1 D	33	D5	S1	D3		95	S1	D3	D	5	31	D3	D	S S	D
Configuration	10	4	1	11	63	61	11	0.0	~	1	11	က	1		11	ი	H		5	-	63	12		
2 (S-shell J's)	7	0	က	ວ	0	4	വ		_	റ	വ	н	က		വ	1	က		0		4	0		
2 (coupled J's)		0	ъ		5	Ð		7	ينب	อ		4	വ			9	Ð			Ч	0 D			
2(S-shell T's)	0	0		1	67	7	-	1	_	1	٦	Ч	-		٦	1	1		0	1	8	0	-	-
2(coupled T's)		0			1	Ч		0	~	1		0	÷			0	1			г	Ч		0	
S-S seniorities	7	0		÷	0	2	1	-1		г	Ч	Ч	Ч		1	Н	1		0	1	7	0		
Listed component Occupation (D5)	ts accour =11.17,	tt for (S1) =	66.6% c 2.17, (of the wa D3) = 1.6	tve fun 16.	ction.																		
			A = 31	$2J^{\pi} = 7$	+, 2 <i>T</i> -	=1, <i>E</i> =	:164.9)5, ei	genve	sctor 1	. of thi	sA, J	Γ, Τ.	Mode	l coré)=16,	dime	nsion	=251	•				
Amplitude	Î	.178	0	,151	I	-0.176		-0,21'	7	0	157		-0.14	2	Ĩ	.485		0.35	÷	I	0.152		0.3	80
s-shell labels	D5 S	1 D3	D_5	S1 D3	D_5	S1 D:	3 D5	S1	D3	D5 5	1 D3	D_5	S1	D_3	D5 5	D	3 DE	5 S1	D_3	D_5	S1 D	13 L	05 S.	L D3
Configuration	10	3	10	3 3	10	4	11 11	H	ŝ	11	1 3	H	2	2	11		11	- 3	н	12	0	 ന	12	12
2 (S-shell J's)	0	1 6	5	1 6	4	0	3 5	7	က	2	1 3	2	0	4	വ		~	. 1	က	0	0	7	0	9
2 (coupled J's)		1 7		1 7		4	2	4	7		6 7		വ	7		4	2	9	7		0	7		1
(S-shell T's)	2	, 0 1	0	1	0	0			, -				01	~ ~		(0	0	·	0	0
s (couplea 1 s) 5-S seniorities	C	 	6		6			0 -		-			- 0	- ~		N -		0 -		C	о с	–	c	
	>	4	1 ;	а н	3	, >	-	4	4	4	-	•	>	a	4			-	-	>	>	5	>	3
Listed component Decupation (D 5)	s accoun = 10.91,	t for $(S1) = $	71.1% o 2.23, <i>(</i> 1	f the wa) 3) = 1.8(ve fund 6.	ction.																		
			A = 31,	$2J^{\pi} = 1$	+, 2 <i>T</i> -	=3, E=	= 161 . 4()5, ei	genve	ctor 1	of thi	sA, j	τ, Τ.	Mode	l coré	9=16,	dime	nsion	= 96.					
Amplitude	-0.1	12	ł	-0.165		-0.32	6	0	.242		ĭ	,258		Ĩ	.244		Ŷ	.170		Ť	0.147		0	696
s-shell labels	D5 S1	D3	D5	S1 D	3 D.	5 S1	D3	D5	S1	D3	D5	SI L)3	D_{5}	S1 1)3	D5	S1 L	33	D5	S1 L	33	D_{5}	S1 D
Configuration	10 1	4	10	01	3 1(03	7	10	က	7	11	٦	က	11	7	0	11	2	7	11	7	7	12	
(S-shell J's)	0 1	0	4	0		0	0	67		0	വ	-	က	5	0	4	വ	61	4	ŝ	07	4	0	
(coupled J's)		·		4								4			ഹ			က ၊			വ			
(S-shell T's)	2 H	4 c	63	01 C		н - 0	~1 ~	0		~ ~			നം		c1 7	∾1 c	,	0,	~ ~		0 -	~1 ~	0	
(s r nardnoo)	ہ ۲ ن	00	c		°.		o		-	o		>	o		-	o		-	o		-	° O		-
-> seniorities								¢	٣	¢	٣	•	•	•	<	c	٣	c	¢	•	¢	G	¢	•

STE

<u>4</u>

STRUCTURE OF NUCLEI WITH...

1745

Listed components account for 87,5% of the wave function. Occupation (D5) = 11,18, (S1) = 1,57, (D3) = 2,25.

Amplitude	J	.175		0	191.0		•	-0.27	e S	I	-0.23	7	0	.241		I	0.199	_	'	-0.14	9	1	0.724	
S-shell labels	D5	S1	D3	D5	S 1	D3	D_5	S 1	D3	D5	S1	D3	D_{5}	S1	D3	D5	SI	D3	D5	S1	D3	D_5	S1	D3
Configuration	10	~1	ŝ	10	61	ဂ	10	4	-	11	0	0	11		1	12	0	en en	12	н	0	12	0	
2 (S-shell J's)	0	0	e	0	0	က	0	0	က	S	2	4	ß	Ч	က	0	0	က	0		4	0	0	က
2 (coupled J's)		0	က		0	က		0	က		က	က		4	က		0	က		Ч	က		0	က
2(S-shell T's)	61	0	Ч	2	61	က	0	0	1	Ч	0	61	Ч	Ч	1	0	0	က	0	Ч	7	0	67	Ч
2 (coupled T's)		4	က		0	က		01	က		1	က		0	က		0	က		Ч	က		67	က
S-S seniorities	0	0	Н	0	0	Ч	0	0	T	1	0	0	1	Ч	٦	0	0	٦	0	Ч	7	0	0	
Tisted components	account	for 8	4.2% 0	of the v	vave	functio	n.																	
Occupation $(D5) = 1$	11.33, (S1) = {	2.13, (D3) = 1	.55.																			
. ,																								

A = 31, $2J^{\pi} = 3^+$, 2T = 3, E = 160.048, eigenvector 2 of this A, J, T. Model core = 16, dimension = 168.

Amplitude	Ť	0.336		Ĩ	.219		0	203		0	141		01	288		01	310		0.	174		0.4	96		-0.	02
S-shell labels	D5	S1	D3	D5	SI	D3	D_5	S1 D		95 2	S1 I	33	D5 3	S1 1	33	D_{5}	S1 1	03 L	5 S	1 D	3 D	5 S	1 D3	ñ	5 S1	D3
Configuration	10	07	က	10	2	ę	10	ი	5	10	က	7	11	г	က	11	0	~	-	73	2	~	33	1;	-	0
2(S-shell J's)	0	0	ę	0	2	က	0	-	4	4	1	0	ഹ	1	က	ß	0	0	2	01	4	0	33	Ŭ		4
2 (coupled J's)		0	CO		0	က		г	e S		က	e		4	က		ŝ	3 S		റ	e c	-	3		-	က
2 (S-shell T 's)	2	2	ę	0	0	ŝ	07	1	5	01	1	01	г		ŝ	H	0	0	ч	0	2	0	0	Ŭ	П	61
2 (coupled T's)		0	ŝ		0	က		г	က		Ч	က္		0	က		Ţ	က		Ч	e co	-	3			က
S-S seniorities	0	0	Ч	2	01	1	0	T	73	7	÷	0	1	H,	Ч	Ч	5	0	1	67	2	0	0			61
Listed componen	ts acco	ount 1	for 84.	1% of :	the w	rave fu	nctio																			
Occupation $(D5)$) = 11.0	7, (S	1) =1.5	11, (D)	3) = 2	.62.																				

0.597 S1 D_5 120 0 D3ററ **н с н** ч -0.512က 2 1 S1 4 -A = 31, $2J^{\pi} = 5^+$, 2T = 3, E = 160.429, eigenvector 1 of this A, J, T. Model core = 16, dimension = 195. D_5 ഹ Ц D30.2160 S1 D_5 11 ß **с 5 – 6 –** D3-0.1870 10 0 4 S1 0 4 D_5 2 5 0.230 SI က - - D_5 10 0 10 00 00 D32 4 -0.302S1 က 2 D_5 10 c D30.158 0 0 10 S12 0 4 D5 102 Amplitude S-shell labels 2(S-shell J's) 2(coupled J's) 2 (S-shell T's) 2(coupled T's) Configuration

Listed components account for 86.9% of the wave function. Occupation $(\mathcal{D}5) = 11.06$, (S1) = 2.05, $(\mathcal{D}3) = 1.88$.

0

-

-

2

01

0

2

S-S seniorities

		D3	0	0	0	0	0	0					53	D3	1	0	0	0	0	0
	.623	S1	4	0	0	0	0	0					0.55	S	4	0	0	0	0	0
	0	D5	12	0		0		0						D_5	12	0		0		0
		D3	01	01	0	0	0	73						D3	0	0	0	0	0	0
	0.148	S1	63	61	7	0	0	0				•	31	12	~	0	0	07	73	0
on = 62,	T	D5	12	0		0		0			69 - uo		0.3	05	12	0		0		0
mensio		D3	62	0	0	61	0	0			imanci	I CITOTITI								
6, di	0.444	S1	0	0	0	63	0	0			ب م			D3	က	-	0	T.	0	က
ore = 1	I	D5	12	0		0		0			- 010		-0.281	S1	Ч	-	٦	-	٦	1
odel c		D3	4	0	0	0	0	0			o lalo	Tana	•	D5	12	0		0		0
Ň.	169	S1	0	0	0	0	0	0			2	•		e	4	0	0	0	0	0
, J, 1	0	D5	12	0		0		0			F	5	55	D.	_	_	_	_		_
this A		33	ი	e S	0	Ч	0	1			thic A	C OTTA	-0.3	S	•	-	0	0	0	0
1 of 1	58	1 D	2	7	e	0	1	5			o c .	5		Ð	12	0		0		0
rector	0.1	D5 S	11	പ		1		Ч			votor	ACCE OF		D3	2	4	0	7	0	7
eigenv		e co	2	0	0	0	0	0			nonio	CIRCII	.249	S1	က	1	4	1	61	1
292,	408	1 D	4	0	0	0	2	0			619	·7T0	Ŷ	5	Ч	อ		-		1
= 183.	0	05 S	10	0	-	07		0			-170			D	-					
=0, E		T		_	-		_	_	action.		1 - 0	4 6 1		D3	က	က	0	1	0	٦
, 2T	6	. D3	4	-	0	4	0	0	ve fur 1.		T.0	17 (0.183	S1	7	0	က	0	Ч	02
π = 0 ⁺	0.15	5 S1	2	0	0	0	- T	0	le wa = 1.5		rπ - 0+		T	D_5	11	5 2		Ч		Г
32, 2J		D	1	U		UN .		0	% of th , (D3)		10 00	3								
A = C	11	D3	4	0	0	0	0	0	87.9 ⁽		-	4		D3	4	0	0	0	0	0
	-0.16	S1	2	0	0	7	0	0	nt for (S1)				0.239	S1	02	0	0	2	0	0
		D5	10	0		0		0	accou 11.36,				-	D5	10	0		0		0
	Amplitude	S-shell labels	Configuration	2 (S-shell J 's)	2 (coupled J's)	2(S-shell T's)	2 (coupled T's)	S-S seniorities	Listed components Occupation $(D 5) =$				Amplitude	S-shell labels	Configuration	2(S-shell J's)	2 (coupled J's)	2(S-shell T's)	2 (coupled T's)	S-S seniorities

S-shell labels	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	Sl	
Configuration	10	0	4	11	7	က	11	က	7	12	0	4	12	1	က	12	0	2	12	4	
2 (S-shell J's)	0	0	0	£	61	က	ß	Ч	4	0	0	0	0	1	1	0	0	0	0	0	
2(coupled J's)		0	0		က	0		4	0		0	0		1	0		0	0		0	
2(S-shell T's)	62	67	0	-	0	7	1	٦	2	0	0	0	0	Ч	Ч	0	01	63	0	0	
2 (coupled T's)		0	0		٦	0		61	0		0	0			0		0	0		0	
S-S seniorities	0	0	0		62	п	п	٦	7	0	0	0	0	Н	က	0	0	0	0	0	
Listed components Occupation $(D5) =$	s accou =11.42,	nt for (S1) =	77.3% o 2.34, (I	f the wa 33) = 2.2	ave fun 24.	iction.															

		А	=32, 2J	$\pi = 2^+, 27$	=0, E=	-178.481	, eigenv	ector 1	of this A	I, J, T.	Model	core = 16	i, dimen	sion=1	28.			
le	Ĩ	0.299		·	-0.145		ı	-0.284		1	0.229			0.331			-0.667	
abels	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3
ation	10	က	ŝ	10	4	2	11	c	2	11	က	07	12	1	က	12	က	Ч
(J's)	0	-	e	4	0	4	ີ	Ч	4	2	1	9	0	1	က	0	Ч	က
1 <i>J</i> 's)		1	2		4	2		4	63		4	2		1	63		Ч	01
(T's)	61			2	0	2	1	1	2	1		0	0	1	1	0	H	H
T's		Ч	0		7	0		2	0		0	0		Ч	0		Г	0
orities	0	1	1	2	0	2	1		7	Ч	٦	2	0	1	1	0	۲	-

Amplitude	Ĩ	0.299			-0.145		1	-0.284		'	-0.229		-	0.331		•	-0.667	
S-shell labels	D5	S1	D3	D_{5}	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	η
Configuration	10	က	က	10	4	63	11	က	7	11	က	67	12	Н	က	12	က	
2 (S-shell J's)	0		ი	4	0	4	2	٦	4	ß	1	9	0	1	e	0	1	
2 (coupled J's)		1	2		4	7		4	62		4	2		Ч	5		1	
2(S-shell T's)	61		-	7	0	7	1	1	2	1	1	0	0	1	1	0	1	
2(coupled T's)		1	0		7	0		5	0		0	0		1	0		1	
S-S seniorities	0	1	٦	0	0	2	1	1	7	Ч	1	7	0	-	1	0	-	
Listed component Occupation (D5)	s account =11.35, (for 79. (S1) = 2.(.9% of the 68, (D3) =	∋ wave fi =1.97.	unction.													

<u>4</u>

	D3		က	4		0	٦							D3	Ч	က	4	
0.570	S1	က	1	ч	Н	-	ц,						.512	S1	4	0	ເດ	C
Ť	D5	12	0		0		0						U	D5	11	5 2		
	D3	7	0	4	0	0	63						6	D3	07	4	4	2
.156	S1	07	01	01	0	0	01					•	0.22	S1	က္	1	4	
Ĭ	D5	12	0		0		0					n=201	1	D5	11	2 D		
	D3	67	4	4	01	0	7					mensio	1	D3	73	01	4	C
.273	S1	67	0	0	62	~1	0					3, di	0.20	S1	က	1	9	
0	D5	12	0		0		0					ore = 1(1	D5	11	ŋ		
	D3	က	က	4	۲	0	7					odel co		D3	7	0	4	6
377	S1				۲	H	H					Ň.	.327	S1	က	٦	4	
0	D5	12	0		0		0					4, J, T	0	D5	11	വ		
	D3	4	4	4	0	0	7					f this .		D3	က	က	4	
0.162	S1	0	0	0	0	0	0					r 2 o	0.163	S1	0	01	က	c
I	D5	12	0		0		0					invecto	T	D5	11	0		,
	D3	7	0	4	63	0	0					3, eige	-	D3	က	က	4	-
171.0	S1	က		4	Ч	0	1					8.74(0.305	S1	01	0	ഹ	2
1	D_5	11	с, С		٦		Ч	ction.				E = 17	T	D5	11	5		•
	D3	က	က	4	က	0		ve fune	5.			2T = 0,		D3	4	0	4	0
.149	S1	က	Ч	۲	Ч	က	٦	ле wa	=2.5			=4 + ,	.169	S1		-	4	
0	D5	10	0		01		0	% of t]	1, (D 3)			, 2J [†] =	Ŭ	D5	11	Ð		
50	D3	က	က	4	1	0	Ч	or 72.0	[) = 2 .3 ²			A = 32		D3	01	0	4	2
-0.27	S1	က	-	Ч	٦	Ч	٦	unt f	l, (S:				0.158	S1	4	0	4	C
1	D5	10	0		67		0	s acco	=11,34				Ū	D_5	10-	4		2
Amplitude	S-shell labels	Configuration	2 (S-shell J's)	2 (coupled J's)	2(S-shell T's)	2 (coupled T 's)	S-S seniorities	Listed component	Occupation $(D5)$				Amplitude	S-shell labels	Configuration	2 (S-shell J's)	2(coupled J's)	2.6-shell T 's)

A=32, $2J^{\pi}=4^+$, 2T=0, E=181,093, eigenvector 1 of this A, J, T. Model = 16, dimension = 201.

12	1 D3	4 1	0 3	5 4	0 1	1 0	0 1
0.5	5 S	Ξ	5				Ч
	D	-					
6	D3	07	4	4	0	0	7
-0.22	S1	ကိ	1	4	1	ς.	Ч
	D5	11	S		H		1
П	D3	07	01	4	0	0	73
-0.20	S1	က	1	9		0	-
'	D_5	11	5		1		1
	D3	0	0	4	0	0	0
.327	S1	က	٦	4	Ч	01	1
	D5	11	വ				-
~	D3	က	က	4	٦	0	٦
0.163	S1	67	01	က	0	Ч	63
I	D5	11	ß		1		٦
•	D3	က	က	4	H	0	1
0.305	S1	02	0	ഹ	~7		0
1	D_5	11	5		Ч		1
	D3	4	0	4	0	0	0
0.169	S1		۲	4		0	٦
-	D5	11	ຄ		٦		Ч
	D3	01	0	4	0	0	0
0.158	S1	4	0	4	0	01	0
	D_5	10-	4		12		7
Amplitude	S-shell labels	Configuration	2 (S-shell J's)	2(coupled J's)	2 (S-shell T 's)	2 (coupled T 's)	S-S seniorities

Listed components account for 63.8% of the wave function. Occupation (D5) = 10.74, (S1) = 2.95, (D3) = 2.31.

WILDENTHAL, MCGRORY, HALBERT, AND GRABER

A = 32, $2J^{\pi} = 8^+$, 2T = 0, E = 178.369, eigenvector 1 of this A, J, T. Model core = 16, dimension = 182.

-0.414S1 $D_{5}^{D_{5}}$ 0 0 D3 3 8 3 1 3 3 0.230 SI ч $D5 \\ 12 \\ 0$ 0 0 0.636 400000 S1D511 5 н н -0.181 S1 2 0 5 3 3 0 D5 11 5 --------101833 D Listed components account for 78.4% of the wave function. -0.270 S1 2 0 0120 D_5 ß ÷ 11 D300800 ~ ~ ~ ~ 0.222 0 S14 $\begin{array}{c} D5\\ 10\\ 2\end{array}$ 0 01 2 (coupled J's) 2 (S-shell T's) 2 (coupled T's) S-S seniorities S-shell labels Configuration 2(S-shell J's) Amplitude

Description (D5) = 11.07, (S1) = 2.89, (D3) = 2.04.

Amplitude	ſ	-0.22]			0.353		0	199		Ť	0.184		1	-0.14	80	ł	0.21	~1	I	0.174	-	0	.713	
S-shell labels	D5	S1	D3	D_5	S1	D3	D_5	S1	D3	D_5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D_5	S1	D3
Configuration	10	01	4	10	4	7	11	Ч	4	11	07	en en	11	7	က	11	က	0	12	-	က	12	07	01
2 (S-shell J's)	0	0	0	0	0	0	5	Ч	4	Ω	07	ი	n N	01	e	5	Ч	4	0	Ч	1	0	0	0
2 (coupled J's)		0	0		0	0		4	0		က	0		က	0		4	0		H	0		0	0
2(S-shell T's)	63	7	4	63	0	7	۲	Ч	5	٦	0	1	Ч	0	ຕີ	1	Ч	7	0	٦	Ч	0	~	0
2(coupled T's)		4	7		01	2		0	2		1	2		-	7		2	7		1	0		7	7
S-S seniorities	0	0	0	0	0	0	1	٦	7	H	7	Ч	Ч	0	Ч	٦	Ч	01	0	1	က	0	0	0
Listed components Occupation $(D5) =$	account 11.25, (: for { S1) =2	35.3% (2.28, (of the v D(3) = 2	wave 2.47.	functio	Ŀ.																	

A = 32, $2J^{\pi} = 2^+$, 2T = 2, E = 176.758, eigenvector 1 of this A, J, T. Model core = 16, dimension = 226.

Amplitude	Í	0.14	တဲ	٩	.187		0	.165		0.	200		Ŷ	.147		0.2	60		0.14	7		-0.1	73	•	0.179		0	694
S-shell labels	D5	S1	D3	D5 5	1	D3	D_5	S1 L		D5 (SI D	13 L	55 S	1 D	3 D	15 S	1 D	3 D	5 S1	D3	D_5	5 S1	D3	D_5	S1	D3	D5	S1
Configuration	10	က	(C)	10	က	က	11	~1	က	11	ຕາ	61	11	4	1	12	-	-H	2 1	က	12	5	7	12	0	07	12	က
2 (S-shell J's)	0	٦	က	0	Ч	က	ß	67	က	വ	-	•	വ	0	e	0	-	÷	0 1	က	0	0	2	0	67	4	0	H
2 (coupled J's)		Ч	01		-	01		က	67		4	7		2	5			3	Η	6 7		0	0		01	07		
2 (S-shell T 's)	67	-	Ч	0	Ч	က	Ч	0	က	Ч	· –	~	٦	0	-	0	-) 1	က	0	67	0	0	0	01	0	Ч
$2 \pmod{T's}$		က	67		I	~		Ч	63		7	73		н	5		-	61	Ч	63		5	7		0	67		Ч
S-S seniorities	0	Ч	Ч	0	H		-	7	H		÷,	ہ 20	н	0	, T	0		-	0 1	٦	0	0	07	0	07	07	0	Ч
Listed components	s accou	mt ft	or 75.	3% of	the w	vave	functi	ion.																				
Occupation (D 5) :	= 11.40,	S]	1) = 2.7	75, D.(3) = 1	.86.																						

4

1750

 D_3 0 0 0 0 0 0 0 D3က 2 0.581 S1 -0.679 0 10 10 10 C \$ 2 0 % 0.703 S1 0 0 2 S1က H D_{5} 12 $D5 \\ 12$ 0 C D5 120 0 C S1 D3 2 20 0 2 \sim 0.190 2 0 C D32 2 2 4 4 40 D_{3} 0 0 D_5 12 c c -0.153 c S1 3 0 0 2 N -0.278 D3S1 C က က 0 0 2 A = 32, $2J^{\pi} = 4^+$, 2T = 2, E = 176.578, eigenvector 1 of this A, J, T. Model core = 16, dimension = 298. A = 32, $2J^{\pi} = 2^+$, 2T = 2, E = 175.649, eigenvector 2 of this A, J, T. Model core = 16, dimension = 226. A = 32, $2J^{\pi} = 0^+$, 2T = 4, E = 171.352, eigenvector 1 of this A, J, T. Model core = 16, dimension = 42. D_{5} 12C 0 0 0.144 S1 D_5 12 0 0 0 D_5 12C 0 C D 3 က က - 12 3 4 D3က 0 0 4 0 0.218 D3 S 0.189 S1 0.292 D_5 D512C C 12C C c S1 D_3 2 2 2 2 D_5 Π ß D3က 4 0.281 S1 က -0.255S1 0 ß C D_{5} ۱Q Ξ D_3 с с с с က D5ŝ 11 D_{3} 2 က 2 0.28310 0.179 S1 00 10 10 0 S 0 2 2 ഹ 0 D32 4 2 0 0 4 D_5 H ഹ D_{5} ഹ 11 0.166 S1 က S1 D3 H 10 00 10 00 00 0.277 D5ഹ П 000 40 D_3 2 0 ß 2 C D_{5} ŝ Ξ -0.284 0 10 D32 4 4 0 0 0 S 4 0 0 0 01 000 0 S1 D3 0 -0.194-0.213 S1 က 0 4 D_5 c 10 c 4 C 2 0 D5 D_{5} Ξ ŝ -10 \$ Listed components account for 76.3% of the wave function. Listed components account for 73.1% of the wave function - D_{3} . n n n n n n 4 D3က က 2 D30.149 C C 4 C C 1 S1 -0.152----က ഹ S1 က ŝ -0.231 Occupation (D5) = 11.40, (S1) = 2.84, (D3) = 1.76. Occupation (D5) = 11.21, (S1) = 2.23, (D3) = 2.56. S1 D_5 **~** 10 0 2 co 2 D_{5} 10 4 2 D510 C 2 0 D3က 01.00 -0.158 S1 က 0 40 2 1 D30 4 D3က က 4 D5 2 10 4 2 -0.148S1 ŝ က 0 0.281 2 0 S D30 -0.146 D_5 2 10 c c S1 2 2 2 2 0 2 D_5 0 10 0 2 D_{5} 10 2 0 C S-S seniorities S-S seniorities S-S seniorities 2 (coupled T's) 2(S-shell T's)2 (coupled T's)2 (coupled T's)2 (S-shell T's) S-shell labels S-shell labels S-shell labels 2 (S-shell T's) 2 (coupled J's)Configuration 2 (coupled J's)2 (S-shell J's) 2(coupled J's)Configuration 2(S-shell J's)2 (S-shell J's) Configuration Amplitude Amplitude Amplitude

Listed components account for 88.6% of the wave function.

Occupation (D5) = 11.25, (S1) = 2.13, (D3) = 2.61.

4

STRUCTURE OF NUCLEI WITH...

1751

2 4 5 7 7 3 3

A=33, $2J^{\pi}=1^+$, 2T=1, E=191,244, eigenvector 1 of this A, J, T. Model core = 16, dimension = 147.

Amplitude		.229		J	7.197		0	144		0	.186		Î	.302		0	156		.0	201		ĩ	.617		0	161	
S-shell labels	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1	D3	D5	S1 1	33	D 5	S1) 3)	D5	S1 I	33	D_{5}	S1 1	33	D_{5}	S1	D3
Configuration	10	က	4	10	က	4	11	7	4	11	က	က	12	F	4	12	0	က	12	2	က	12	ę	2	12	က	2
2 (S-shell J's)	0	٦	0	0	Ч	0	വ	0	4	ŋ	1	e	0	H	0	0	0	T	0	0	-	0		0	0	1	0
2 (coupled J's)			щ		ч	Ч		က	٦		4	1		Ч			0	1		0	1					ч	Ч
2 (S-shell T 's)	61	٦	0	01	Ч	4	٦	0	2	Ч	Ч	က	0	H	0	0	07	Ч	0	0	1	0		5	0	Ч	0
2(coupled T's)		٦	٦		က	Ч		н	н		2	Ч		T			2	1		0			г	H		Ч	
S-S seniorities	0		0	0	H	0	-	7	01	Ч	Ч		0	1	0	0	.0	e	0	5	က	0	H	0	0	÷,	01
Listed component Occupation (D5)	s acc = 11.3	ount 2, (S	for 71 1)=2.	.0% of 66, (D	f the ' 3) = 5	wave fi 3.02.	unctio	ġ																			

dimension $= 256$.
Model core=16,
A, J, T.
1 of this.
eigenvector
E = 192.244,
, $2T = 1$,
$2J^{\pi} = 3^{+}$
A = 33,

S-shell labels $D5$ $S1$ $D3$	Amplitude		-0.275	~		-0.269	~	-	.173		1	-0.293			-0.208		Ū	0.153		0	.674	
Configuration10431133122312323124 2 (S-shell J's)003003513003214 2 (S-shell J's)0030035130030140 2 (soupled J's)03031130031400 2 (soupled J's)201111130213014 2 (soupled T's)2121111111100 2 (senorities001001001000 2 (senorities00100100100	S-shell labels	D5	S1	D3	D_{5}	S1	D3	D5	S1	D3	D_5	SI	D3	D5	SI	D3	D5	S1	D3	D5	S1	D3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Configuration	10	4	က	10	4	က	11	က	°	12	0	က	12	0	က	12	က	7	12	4	н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (S-shell J 's)	0	0	က	0	0	ŝ	5	1	လ	0	0	က	0	0	က	0	н	4	0	0	က
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (coupled J's)		0	e		0	က		4	က		0	က		0	က		1	3		0	က
2(coupled 7's) 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 2 1 2	2(S-shell T's)	2	0	Ч	7	0	S	-	1	က	0	0	Ч	0	0	လ	0	٦	2	0	0	Ч
S-S seniorities 0 0 1 0 0 1 1 1 1 0 0 1 0 1 2 0 0	2 (coupled T's)		2	1		2	1		0	1		61	Ч		01	1		٦	-		0	Н
	S-S seniorities	0	0	1	0	0	Ч	-		1	0	0	1	0	0	Ч	0	٦	2	0	0	Н
	Listed components	account	tt for 7	78.4% o	f the wa	ve fund	ction.															
Listed components account for 78.4% of the wave function.	Occurration (D5) =	-11 41	(13)	9 20 1	131-9 91	c																
Listed components account for 78.4% of the wave function.	- (a d) momphing	6 T T T T T T		4	1.1 1.0																	

A = 33, $2J^{\pi} = 3^+$, 2T = 1, E = 189,935, eigenvector 2 of this A, J, T. Model core = 16, dimension = 256.

Amplitude	J	.18	01	0	.248		Ŷ	.145		Ö	248		î	.214		Ŷ	166		0.16	0	U	.432		T	0.200	_	0	331
S-shell labels	D5	S1	D3	D5	SI	D3	D5 S	1 D	33	D5 5	1 D	3 I	05 S	D D	3 D	5 S.	L D 3	DE	S1	D3	D_5	S1	D3	D_5	S1 1	03	D5 9	51 1
Configuration	10	0	പ	10	4	က	11	5	4	11	က	റ	12	0	5 1	2	4	12	!	4	12	01	က	12	က	2	12	က
2(S-shell J's)	0	0	က	0	0	က	ß	5	5	5		က	0	0		0	دم ا	0		4	0	0	က	0	٦	2	0	
2 (coupled J's)		0	ი		0	က		က	e S		4	ŝ		0	e 0		ന പ		Ч	က		0	က		Ч	က		Ч
2(S-shell T's)	5	0	1	0	0	က	٣	0	2	Ч	H	en en	0	0	-	0	2	0	Ч	0	0	0	က	0	Н	0	0	
2(coupled T's)		0			0			1	F		2			0			-		-	F-1		0	Ч		Ч	r-1		Ч
S-S seniorities	0	0		0	0	۳		3	07	Ч		ц Т	0	0	-	0	2	0	1	¢1	0	0	н	0	Ч	0	0	н
Listed components	accou	nt fc	r 61.	2% of	the 1	wave	functi	uo																				
Occupation $(D5) =$	11.22,	(S1) = 2.3	5. D	3) = 5	3.42.																						

00
1
ion
sue
ij.
, d
=16
core:
lel
Moč
Ξ.
Έ.
г, J
s A
thi
of
r 1
cto
nve
ee.
e.
222
0.0
170
Щ
Ļ,
Ë
10
₽
۰۵ ۲۵
= 33
Å.

~~~~~		ю а 4 ю а <b>н</b> а
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Q T		
70 03 11 22 22 22 22 22 22 22 22 23		D 0 1 2 2 2 2
-0.5 S1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1		1163 51 0 0 0 0
$\begin{array}{c} D_{5}\\ D_{2}\\ 0\\ 0\\ 0\\ \end{array}$		
$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	.00	
80088815 8008881	л ц	
$\begin{array}{c} D_{5} \\ D_{12} \\ 0 \\ 0 \\ 0 \end{array}$	nsio	0.11 0.12 0.11 0.11 0.11 0.11
020 03 4 4 0 3	lime	
	(9)	1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{bmatrix} D5 \\ 12 \\ 0 \\ 0 \end{bmatrix}$	e 	0.58 51 5 0 1 0 0
2 2 2 2 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2	1 coj	
0.220 S1 1 1 1 1 1 1 1 1 1	Iode	ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы
$\begin{array}{c} D_{5} \\ 12 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		1010101001001
0 1 5 2 0 5 3	С. Р.	1 1 2 1 0. 0.
S1 <i>L</i> S1 <i>L</i> 0 0 1 0 0	is A,	0 L
000 11 11 11 11 11	of thi	111120 03 1111220 1111220 1111220
	r 2	S 1 4 1 2 1
222 31 <i>L</i> 3 3 3 4 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ecto	
	geni	ч н н н со со со со со со с
	e.	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
167 167 167 167	9.501	
$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	= 18	0 4 0 0 4 1 0
1 1 3 2 3 3 7 7	tion. 1, $E$	251 21 L 22 22 33 33 22 1 10n.
185 0404 020 020	func 2T =	0.5 0.5 11 1 1 func
25 7 -0 10 5 2 4 2 2	ave. 97.	3 I 9 1 1 1 0 0 02.
0 4 4 0 0 H 0	$J^{\pi} = J$	215 215 2 2 3 1 1 8 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	of f D ³ , 2	
0 10 2 2 0 0	3.9% 2.74,	D 6.6% 3.14,
21001470 71	(0r 7) = 2	D 3 44 55 1 2 1 = (1 1) = (1
67 11 D 11 D	unt 1 , (S	.142 .51 .3 .3 .3 .3 .3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
0.1 0 0 0 0 0	acco [1.28	0 D5 10 10 2 2 acco
	ints = 15) = 1	ants 5) = 1
els ion 's) 's) 's) ''s) (ties	D D	$\begin{array}{c} \text{oels} \\ \text{ion} \\ \mathbf{'s} \\ \mathbf{'s} \\ \mathbf{'s} \\ \mathbf{'s} \\ \mathbf{'s} \\ \mathbf{'s} \\ \text{ities} \\ \text{ities} \\ \text{ipone} \end{array}$
ude 1 lab urat ell <i>J</i> led <i>J</i> led <i>1</i> led <i>1</i> niorj	contation	tude II lab urat urat (ell J ell 1 ell 1 led 5 nior nior tion
nplit shel S-sh coup S-sh S-sh S-sh S-sh S sel	sted	mpli shel S-shel coup S-sh S-sh S-sh sted sted
Lefter A C S A	ŏE	

D3 0 1 2 1 2 2 0.592 $\mathbf{S1}$ က ÷ D5120 0 0 D3 3 7 1 -H ເຕ A = 33,  $2J^{\#} = 7^{+}$ , 2T = 1, E = 189.534, eigenvector 1 of this A, J, T, Model core = 16, dimension = 282. 0.304 00000 S12 D5120 0 0 D39 2 1 2 4 5 -0.194 - -S1  $D_{5}$ 0 120 0 10 D32 9 0 2 -0.236 - 0 S14 0 ß 0 D5ഹ 11 -4 7 2 1 2 D32 0.165 н о 0 ŝ 0  $S_{12}$  $D_5$ ß -11 Listed components account for 63.1% of the wave function. 1 8 D300 2 Ч -0.228 сл. н S1 က 4  $D_{5}$ ю ----11 2 1 2 4 6 D34 0.187 S1 က r-P ÷  $D_5$ 0 0 0 10 2(coupled T's) S-S seniorities Amplitude S-shell labels Configuration 2(S-shell J's) 2(coupled J's) 2(S-shell T's)

Occupation (D 5) = 11, 32, (S 1) = 2.78, (D 3) = 2.90.

<u>4</u>

# STRUCTURE OF NUCLEI WITH...

		Y	=33, 2J [#]	• + =	2T = 3,	E = 186.7	743, e	igenvec	tor 1 oi	f this /	I, J, T.	Model	core=	16, din	tension	= 111.					
Amplitude	1	-0.316			0.180			9	203			-0.253			0.25	1			0.681		
S-shell labels	D5	S1	D3	D5	S1	D3	Г	5	. 11	$D_3$	D5	S1	D3	$D_{1}^{c}$	S	-	03	D5	S1	D3	
Configuration	10	က	4	11	က	က		Ļ	e S	က	11	4	7	12		F	4	12	လ	2	
2(S-shell J's)	0	П	0	2	1	က		5 2	1	က	сı.	0	4	0		I	0	0	Ч	0	
2 (coupled $J's$ )			٦		4	1			4	I		ഹ	-			-	H			Ч	
2(S-shell T's)	7	1	4	Ч		က		1	1	e S	Ч	0	2	U		-	4	0	1	7	
2(coupled  T's)		s1	က		0	က			5	e	`		က			-	က		Ē	က	
3-S seniorities	0	н	0	1	-			1		1	Ч	0	7	U			0	0	щ	0	
Listed components Occupation $(D 5) = :$	account 11.34, (	for 78. S1) = 2.8	3% of the 3, (D3) =	wave 2.83.	function																
		A =	=33, 2 <i>J</i> [¶]	= 3+	2T = 3, .	E = 185.8	560, e	igenvec	tor 1 of	f this A	l, J, T.	[aboM	core=	16, din	lension	=190.					
Amplitude	Î	.216		0.20	Н		1.0-	88		0.17	0		-0.2(	0		1.0-	96		-0.21	H	
S-shell labels	D5	S1 D;	3 D	5 S1	. D3	$D_5$	SI	D3	D	5 S1	D3	D	5 S1	D3	$D_{\mathbb{C}}$	S 1	D3	D	5 S1	D3	
Configuration	10	01	1	4	ŝ	10	4	လ	F	9	с,	Ē	1	4	11		4	1	133	က	
2(S-shell  J's)	0	0	~	0	ი ი	0	0	က		0	က		2	0	ц,	10	9		5 1	က	
2 (coupled J's)	d	0 0	~	0,	n 1	(	0	က (		21	က		ເກ ,	က က		က	с С		4	က	
2 (S-Shell 1 S) 9 (coupled T's)	V		~ ~	) ) )			)	no c	-	0 0			107	4 0	-	o ,	01 0			ຕ ເ	
S-S seniorities	c		- -		- C	C		<del>-</del> מ			- CI			ົ້	-	c	ົ່ດ		- 12	- ca	
	>						>	- ,		D 4	-		- -	0	-	4			-	-	
Amplitude	י ג ג	-0.191		ļ	0.211	1	1	0	863			-0.325	9			208			-0.391		
S-shell labels	D5	S1	D3	D 2	S1	$D_3$	<b>D</b> '	رت رو		D 3	$D_{5}$	S1	$D_{2}^{3}$	Q	S		$D_3$	$D_5$	S1	$D_3$	
Comiguration		ד כי	ю с		0 0	ۍ م		N	N		12	21	<b>،</b> دو	H		21 0		12	ю ,	21 .	
(s a trattero) z	C	<b>-</b> -	- 0	>		<b>°</b> °		0		ົ່	0		ກເ	-	_	אכ	ກເ	D	- +	4 C	
2(S-shell T's)		<del>،</del> ۲	о <del>г</del>	C		0 C		-		° -	c	<b>D</b> 0	n n			NC	າຕ	Ċ		ີ່	
2(coupled  T's)	•	4 61	4 07	>		റെ		5	10	- c	0	1 0	0 01 -	-	_		იი	0		1 6	
S-S seniorities	1		) eo	0	0	, –ı		0	10	• <del></del> -	0	10	• <del></del>		_	5 61	o ⊷i	0		, cı	
Listed components Occupation (D5) = 1	account 11.23, (S	for 81.6 51)=2.5	3% of the 0, <i>(D</i> 3) =	wave 3.27.	functior	<u>.</u>															
		A	=33 <b>,</b> 2 <i>J</i> ^π	= 5 ⁺ , 5	2T = 3,	E = 185.0	)23, e	genvec	or 1 of	this A	l, J, T.	Model	core=	16, din	nension	= 221.					
Amplitude	Ī	0.183		-0.23	1	-0 	185		-0.16	0	Î	.485		0.253		0	337		0.405		
S-shell labels	D5	S1 D	3 D5	S1	D3	D5 S	$1 D_3$	D5	SI	D3	D5	S1 D3	D	5 S1	D3	D5	S1 $D$	3 D	5 S1	D3	
Configuration	10	4	3 11	0	4	11	en en	11	ကဲ	ຕ	11	4 2	1	L 4	7	12	2	3	2	2	
2 (S-shell J's)	5	0	3	0	0	ഹ	1 3	5 C	Н	က	2	0 0		0	4	0	0	3	0 1	4	
2 (coupled J's)		01	10	വ	5		4 5		9	5		5 5		Ð	ດ		73	5		5 2	
2(S-shell $T$ 's)	0	0	3	07	4	-	1 3	H	щ	က	1	0		0	63	0	0	3	0 1	2	
2(coupled T's)	1	0			က	Ū	с С		0	က		1 3		н	က		0	33	Ч	က	
S-S seniorities	67	0		0	0			-	П			0		0	5	0	2	-	1	<b>0</b> 1.	
Listed components : Occupation $(D 5) = 1$	account 1.14, (S	for 72.3	% of the % (D3) =	wave f 2.80.	unction	•															

			A =	-34, 2.	t ^π =2 ⁴	⁺, 2 <i>T</i>	'=0, E	; = 203	.298,	eigen	vecto:	r 1 of	f this A	, J, T	, M	odel (	core =	16, di	mens	ion=1	.60					
Amplitude		-0-1	56		0.1	51		9	.196		I	0.155		0	.162			0.165			0.20	0		0.230		
S-shell labels	$D_{i}^{c}$	S.	1 D3	D	5 S	1 D	en en	D5	S1 L	)3	$D_{5}$	S1	D3	$D_5$	S1	$D^3$	$D_{5}$	S1	D3	D	S S1	D3	$D_{2}$	S1	D3	
Configuration	1(	~	0 0	1	0	4	4	10	4	4	10	4	4	10	4	4	11	2	ഹ		~	വ	11	က	4	
2(S-shell J's)	J	~	1 3	~	0	0	01	67	0	0	01	0	4	4	0	4	цЭ	7	က		~1 ~1	ខ	цэ		4	
2 (coupled J's)			1 2	~		0	0		67	2		07	01		4	2		က	07		ന	0		4	2	
2(S-shell T's)	-1	~	1		2	0	10	0	0	0	0	0	0	61	0	0	-	0		. 1	0 	-	-	Н	0	
2(coupled T's)			1 0	~		2	0		0	0		0	0		0	0			0		-	0		0	0	
S-S seniorities	J	· · ·	1	<b></b> J	0	0	62	c7	0	0	62	0	5	61	0	01		01	Ч		сл г	က	П	1	0	
Amplitude	J	0.208			ں ا	0.145			0	.231			0.14	14			0.15	5		-	0.175			10 1	33	
S-shell labels	D5	S1	$D_{i}^{c}$	ŝ	D5	S1	D3	1	5	S1	D3	D	5 S1	D	က	$D_5$	S1	$D_{i}$	~	$D_5$	S1	D3	D	5 SI	D .	က
Configuration	11	4	U)	e	12	Ч	ß		12	07	4	Н	2		4	12	67	4	بنبو	12	01	4	1	0		e
2(S-shell J's)	2 1	0	υ <b>τ</b> υ		0	Ч	က		0	0	0	-	0		0	0	0	4.		0	07	4		Г С		e
2(coupled  J's)		2	54	5		Ē	7			0	7		54		5		2		~1		01	0		-		5
2(S-shell T's)	Ч	0		-	0	Ч			0	61	61	-	0	_	0	0	0	-	~	0	0	0				ч
2(coupled T's)		1	9	0		Ч	0			01	0		0	~	0		0	)	~		0	0				0
S-S seniorities	<b>1</b>	0	-	1	0	۲	1		0	0	7	-	0	~	0	0	2		~1	0	7	4				Ч
Listed component Occupation (D5)	s accour =11.19,	nt for (S1)	- 73.2% =2.84,	% of th , (D3)	e wav =3.97	ve fur. 7.	action.																			
			A =	=34, 2.	J ¹ =2	+, 21	. =0, <i>1</i>	3 = 205	3.016,	eiger	ivecto	r 2 o	f this 1	I, J,	T.	lodel	core -	=16, ó	imen	sion=	109.					
Amplitude	0,2;	81	1	0.14	61	1	0.1	ິ ວິເວ		0.24	6 6	6	0.19	, 1 10	ŝ		[42 20	ļ	21 8 0 -	67 DO	ç	0.241	¢		.602	ç
S-shell labels	D5 S.	D	3 T	05 S1	<u>n</u>	3 7	05 S.	1 D:		5 S1	$D_{3}$	D	5 SI	$D_{3}$	Ä	S	EU J	à	S.	Л3	ä	N N	D3	с П	7 TS	
Configuration	10	না	4	10 4	۷'	स्र	11	~			4	-	5	4	1	~1	4	H	ຕາ ~1	ς, το	H	η 1 1	<b>က</b> (	12	4	21
2 (S-shell J's)	0	0	5	4 (	~	5	- D	0	~	2	-12		000	01	-		4	_	1		0	-	ŝ	0	0	N
2(coupled J's)	-	0	67	4		2	-•	10	~	4.	1		0	07		. 1	0		÷	07		Η	07		0	07
2(S-shell T's)	2	0	5	5		2		ت م	_'	1	5		0 2	0	-	<u> </u>	0	0	1		0		Ч	0	0	0
2(coupled T's)	- 1	2	0	vN	~	0		1	~	54	0		7	0		0	0		Ч	0		Ч	0		0	0
S-S seniorities	0	0	01	2	,, ,,	5	1	0	1	1	~		0 0	07	-	,1 (	5	-	1	<del>ෆ</del>	0	-	<b>н</b> .	0	0	27
Listed component	ts accour	nt foi	r 73.7	% of th	e waı	ve fur	action.																			
Occupation (D5)	=11.38,	(S1)	=3,32	2, (D3)	= 3,3(																					
			A =	=34, 2,	J ^π =4	+, 27	. =0 <b>,</b>	3 = 202	2.557,	eiger	Ivecto	r 1 o:	f this 1	1, J, 1	r. M	odel	core =	:16 <b>,</b> d	imen	sion = ]	30.					
Amplitude		Ŷ	147		0.1	164		Ĭ	.271		0	.287		5	.384			-0.14	4		0.19	7		-0.53	_	
S-shell labels	D.	5 S	1 DS	3 D	5 S	11 L	)3	D5	S1	<b>D</b> 3	$D_{5}$	S1	D3	$D_{5}$	S1	D3	D	5 S1	D3	D	5 S:	$D_3$	D	S1	D3	
Configuration	1(	0		5	10	က	2	11	က	4	11	က	4	11	4	က	11	4	က	-i	01	ເບ	1;1	ς Ω	က	
2(S-shell J's)		0	1.	e S	07	1	e S	5	1	4	2		4	2	0	က		0	5		0	со -	U		က	
2 (coupled J's)			1 4	4		1	4		4	4		4	4		വ	4		2	4			4		1	4	
2 (S-shell $T$ 's)		67	1		0		1		÷	0	Н		62	Ч	0	H	. 7	0	1		0	-	Ŭ	-	-	
2(coupled T's)			1 (	0			0		0	0		0	0		Ч	0			0		<b>F</b> . <b>1</b>	0		1	0	
S-S seniorities	-	0	1	1	~	1	1	7	H	0	-		01	-	0	-	.4	0	က	-	0	-1	Ŭ	-	-	

2(coupled T's)1010S-S seniorities01121Listed components account for 69.4% of the wave function.OccupationD5=11.18, (S1) = 3.00, (D3) = 3.82.

1754

A = 34,  $2J^{\pi} = 4^{+}$ , 2T = 0, E = 201.892, eigenvector 2 of this A, J, T. Model core = 16, dimension = 130.

D5 S1 D3 12 3 3 0 1 5 4108 -0.280 $\neg$   $\neg$   $\neg$ 0 0 D5 S1 D3 4 4 40 0 8 0.161 12 2 2 01 0 0 2 0 C 0 D5 S1 D3 4 4 0 0 2 0.448 2 0 0 0 0 2 12 0 -0.205 D5 S1 D3 ഹവ 0 3 4 -12 0 0 c -0.171 D5 S1 D3 0 ო က 4 1 4 0 0 2 C 11 ഹ 0.164 D5 S1 D3 က က 4 0 0 11 ഹ -0.306 D5 S1 D3 4 9 0 0 0 က ч 4 -2 -11 ഹ H ч -0.165 D5 S1 D3 4002 4 2 က ч 4 н 2 -11 വ ÷ -0.158 D5 S1 D3 ഹ 0 က 4 1 2 0 с ол 0 11 ---ഹ -0.191 D5 S1 D3 9 ဖ 4 0 0 2 ---11 ഹ D5 S1 D34 2 2 0 0.340 4 0 0 0 0 2 10 0 2 0 D5 S1 D3 ß က ഹ 0 1 0.177 10 3 ч - --2 0 0 S-S seniorities S-shell labels 2(S-shell T's)2 (coupled T's)2(coupled J's)Configuration 2(S-shell J's)Amplitude

Listed components account for 73.3% of the wave function.

Occupation (D5) = 11.07, (S1) = 2.69, (D3) = 4.24.

D3000000 -0.666 S1 4 0 0 0 0 C  $D_5$ 12C 0  $\sim$ D3က 0.264 S1 с н D5120 C c A = 34,  $2J'' = 6^+$ , 2T = 0, E = 203.914, eigenvector 1 of this A, J, T. Model core = 16, dimension = 149. 0.158 5 S1 က  $D_5$ 12C D39 9 000 4 -0.268 5 S1 0 73 0 10 10 0  $D_5$ 120 C 0  $D_3$ 6 5 3 10 က -0.177 S1 0 102 c 4  $D_{5}$ ŝ П D34 00000 0.266 S1 က 5 1 -4  $D_5$ ഹ Π D3 5 6 1 3 3 0.152S1 2 2 က 0 2 Listed components account for 88.0% of the wave function.  $D_5$ ŝ Ξ D39 0 2 0 2 Occupation (D 5) = 11.42, (S1) = 3.50, (D 3) = 3.08. 0.166 S1 4 0 4 0 0 10 D510 4 2 2 00000 4 S1 D3 -0.3410 0 0 10 4 0  $D_5$ 10 0 2 0 2(S-shell T's)2(coupled T's)S-S seniorities S-shell labels 2 (coupled J's) Configuration 2(S-shell J's) Amplitude

A = 34,  $2J^{\pi} = 8^+$ , 2T = 0, E = 201.724, eigenvector 1 of this A, J, T. Model core = 16, dimension = 115.

Amplitude	Ĩ	0.225		0	163		; <b>*</b> 0	203		0	311		0	239		Ŷ	.291		0	334		0.5	33		0.5(	2
S-shell labels	$D_5$	S1	D3	$D_5$	S1	D3	$D_5$	S1	<b>D</b> 3	$D_{5}$	S1	D3	D5	S1	D3	D5	S1	33	D5 S	1 L	33	D5 S	1 D	3 D	5 S.	. D3
Configuration	10	က	0 D	10	က	5 2	10	4	4	11	လ	4	11	က	4	11	4	n	11	4	က	12	ч	5 1	61	က 
2 (S-shell $J'$ s)	0	Ч	7	2	H	7	4	0	9	വ	<del>,</del> 4	9	5 2	Ч	ø	5	0	വ	5 D	` 0	7	0	L	7	0	7
2(coupled J's)		Ч	80		H	80		4	80		4	ø		4	80		വ	80		5	80		1	80		80
2 (S-shell $T$ 's)	01	Ч	1	0	1	1	0	0	0	Ч	٦	0	Ч	Ч	0	г	0	г	1	0	1	0	1	1	0	-
2 (coupled T's)		٦	0		1	0		0	0		7	0		0	0		Ч	0		Ч	0		1	0		0
S-S seniorities	0	Ч	က	0	Ч	က	61	0	~	Ч	٦	0	1	Ч	4	Ч	0	က	1	0	റ	0	Ч	3 S	0	භ
Listed componen	ts acc	ount i	for 84.	.4% of	the w	rave fr	unction	1.																		

Occupation (D5) = 11.20, (S1) = 3.08, (D3) = 3.72.

A = 34,  $2J^{\pi} = 0^+$ , 2T = 2, E = 203.497, eigenvector 1 of this A, J, T. Model core = 16, dimension = 66.

D3 0 0 2 0 2 0 2 0 0 0.664 S10 0 0 c 4 0  $D_5$ 12c D38 H O H 8 8 0.166S1с н Ч <del>, I</del> D512.0 C C D30 0 0 10 4 4 -0.283 S1 0 12 0  $\sim$ 0 2 D5120 C Ċ D34 000000 0.224S12  $D_{5}$ 12 0 0 0 ~ ~ ~ D34 0 201 S1 က ч 4 Ч 2 9  $D_5$ Н ŝ D300000 0.150 S14 0 2 0 0 C  $D_5$ 10 2 0 2 Listed components account for 85.5% of the wave function. D300 4 0 0 -0.387 S1 0 0 0 2 C  $D_5$ 10 0 2 0 D30 0 0 70 0 0.206 S10 12 4 0 0 0  $D_{5}$ 0 100 2 S-S seniorities 2(coupled T's)2 (S-shell T's) S-shell labels Configuration 2(coupled J's)2 (S-shell J's) Amplitude

Occupation (D 5) = 11.34, (S 1) = 3.45, (D 3) = 3.22.

D5 S1 D3 0 0 7 0 0 7 .295 0,0 0 0 0 0 12 0 0 c D5 S1 D30 0 0 0 0 4 -0.487 2 2 120 C D5 S1 D3 ŝ 0 01 00 -0.160÷1 Η 12 0 C C S1 D3 9 0 0 0 2 2 -0.228 0 0 0 0 0 0  $D_5$ 0 120 C D5 S1 D34 4 0 0 2 2 0.355 က 01 -Ξ ഹ D5 S1 D3ഹ က 0 OL H 0.311 0 3 10 10 1 0 11 ŝ D5 S1 D39 4 0 2 2 0.157Ч 4 0 티 ഹ D5 S1 D3 0 2 2 4 4 0 0.160 4 0 4 0 0 0 10 2 4 2 D5 S1 D320 4 0 0 4 -0.2144 0 10 0 C 0 of the wave function. 10 0 0 2 D5 S1 D34 0 2 0 C 0 -0.290 Occupation (D 5) = 11.08, (S1) = 2.55, (D 3) = 4.370 4 0 C 2 10 0 0 D5 S1 D3 ഹ က 0 2 1 -0.182Listed components account for 88.3% က н က 0 10 4 D5 S1 D30 10 9 0 0 0.212 0 0 0 5 0 2 10 က 0 2 S-S seniorities 2(S-shell T's)2(coupled T's)S-shell labels Configuration 2(coupled J's)2(S-shell J's)Amplitude

A = 34,  $2J^{\pi} = 0^+$ , 2T = 2, E = 199.454, eigenvector 2 of this A, J, T. Model core = 16, dimension = 66.

A = 34,  $2J^{\pi} = 2^{+}$ , 2T = 2, E = 199.663, eigenvector 1 of this A, J, T. Model core = 16, dimension = 148.

с с с н с н D5 S1 D3 0.575 က Ч -12 0 D5 S1 D32 0 0 2 2 4 -0.162C 2 2 0 0 2 120 0 0 S1 D3 ഹ 0 0 0.256 H - $D_5$ 12 0 C С S1 D3 1043 01 00 -0.177c 0 ŝ  $D_{5}$ П ഹ -----D5 S1 D3က 50 N 00 0.193 4 H ß D5 S1 D3က -0.1464 0 0 0 С Ξ ഹ -D5 S1 D32 4 2 2 2 0.160 က 0 -4 ---Η ഹ D5 S1 D34 0 0 0 0 4 -0.209 က 2 1 ŝ ----D5 S1 D34 4 2 2 2 0 0.182 က H 2 ----Ξ ഹ S1 D39 0 0 0 0 4 0.142---0 4  $D_5$ 吕 ഹ щ S1 D3 ഹ က 3 50 ----0.145က Н 10 2  $D_5$ 0 2 D5 S1 D3ŝ က ÷ က 2 -0.262 က ----100 0 2 S-S seniorities 2(S-shell T's)2(coupled T's)S-shell labels Configuration 2 (coupled J's) 2 (S-shell J's) Amplitude

Listed components account for 72.5% of the wave function. Occupation (D5) = 11.23, (S1) = 2.86, (D3) = 3.91.

4

dimension = $218$ .
Model core=16,
$_{T}$ .
ч,
of this A,
eigenvector 1
E = 201.511,
2T = 2,
$2J^{\pi} = 4^{+}$
A = 34,

Amplitude	0	.172		0	.180		1	174		Ŷ	.247		Î	.177		0	156		-0.1	157		-0.1	52		0.274		Ť	0.375	10	Ŷ	533	
S-shell labels	D55	51 L	03 D	5 S	1 D	3 L	5 S	1 D	3 L	5 S	1 D	3 1	95 S	1 D	3 L	05 S	1 D	3 D	5 S]	1 D3	Q	5 S1	$D_3$	$D_5$	S1	D3	$D_5$	S1 I	03 1	05 S	1 D	က
Configuration	10	က	5 1	0	4 4	4	10	4	4	5	сr	4	11	4		12	-	1	01	2	H	2	4	12	က	က	12	က	က	12	4	2
2(S-shell J's)	0		ŝ	0	0	4	4	0	0	5 2	T	0	വ	0	ന	0	-	<u>د</u>	0	6	-	0 (	4	0	ч	က	0	Ч	က	0	0	4
2 (coupled J's)		ч	4	-	0	4		4	4		4	4		5 L	4		-	<del></del>	0	) 4		0	4			4		Ч	4		0	4
2(S-shell  T's)	01		e S	5	0	5	©1	0	4	1	1	4	÷,	0	က	0		~	0	3	-	2	0	0	Ч	Ч	0	H	က	0	0	0
2(coupled  T's)			2		2	5		2	73		2	2		1	5			ó	64	2		0	0		Ч	07		Ч	~		0	2
S-S seniorities	0		щ	0	0	2	7	0	0	Ч	1	0	н	0	Ч	0		اسر	0	2		0 (	7	0		Ч	0		ч	0	0	2
Ticked common but				1	с. Е	5			:																							

Listed components account for 75.7% of the wave function. Occupation (D5) = 11.40, (S1) = 3.25, (D3) = 3.35.

	477       -0.186         1 D3       D5 S1 D3         1 D3       D5 S1 D3         1 3       12       4         1 3       0       4         1 4       0       4         1 1       0       2         1 1       0       2         1 1       0       2         1 1       0       2
	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ion=218.	$\begin{array}{c} 0.168\\ D5 \ S1 \ D\\ 12 \ 2 \\ 0 \ 2 \\ 0 \ 0 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \\ 0 \ 2 \ 2 \\ 0 \ 2 \ 2 \ 2 \\ 0 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$
16, dimens	$\begin{array}{cccc} -0.264 \\ D5 & S1 & D3 \\ 12 & 2 & 4 \\ 0 & 0 & 4 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \\ \end{array}$
Iodel core=	$\begin{array}{cccc} -0.213 \\ D5 & S1 & D3 \\ 12 & 1 & 5 \\ 0 & 1 & 3 \\ 0 & 1 & 4 \\ 0 & 1 & 3 \\ 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array}$
A, J, T. W	$\begin{array}{c} -0.152 \\ D5 S1 D3 \\ 11 4 3 \\ 5 0 5 \\ 5 4 \\ 1 0 1 \\ 1 2 \\ 1 0 3 \\ 1 0 3 \end{array}$
tor 2 of this	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0, eigenvect	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2, $E = 200.54$	$\begin{array}{c} -0.144\\ D5 S1 D3\\ 11 3 4\\ 5 1 4\\ 6 1 4\\ 1 1 2\\ 1 1 2\\ 1 1 2\\ 1 1 2\end{array}$
$\pi = 4^+$ , $2T = 3$	0.148 D5 S1 D3 11 2 5 5 2 3 3 4 1 0 3 1 2 1 1 2 1 he wave fun
A = 34, 2J	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Amplitude S-shell labels Configuration 2(S-shell J's) 2(coupled J's) 2(S-shell T's) 2(S-shell T's) S-S seniorities Listed componen Occupation $D$

A = 34,  $2I^{\pi} = 6^+$ , 2T = 2, E = 199.220, eigenvector 1 of this A, J, T. Model core = 16, dimension = 208.

1 D3	က	2	9	Н	01	З
.15. S1	က	Ч	۲	H	н	٦
-0	12	0		0		0
$D_3$	က	ŋ	9	٦	01	က
.291 S1	က	Ч	Ч	Ч		Ч
$D_{5}$	12	0		0		0
5 D 3	4	4	9	01	0	01
51.	01	01	2	0	0	0
D 5	12	0		0		0
3 D3	4	9	9	0	0	0
.25 S1	01	0	0	07	01	0
$D_{5}$	12	0		0		0
33 D3	ß	വ	9	Н	07	က
0.1( S1	Ч		Ч	н		Ч
	12	0		0		0
$^{18}_{D3}$	က	က	9	က	01	
0.14 S1	4	0	ß	0	Η	0
$D_5$	11	5 2		Ч		1
16 D3	က	က	9	1	07	1
0.4 S1	4	0	ŝ	0	Ч	0
	11	ŝ		Ч		1
$D_{3}^{24}$	4	4	9	07	0	01
0.22 S1	က		4	Ч	0	-
$D_5$	11	S		Ч		1
$D_{3}$	4	4	9	0	2	01
.141 S1	က	٦	4	Ч	0	<del></del> 1
$D_5$	11	വ		-		1
$D_{3}$	2	က	9	က	07	Ч
5.20 S1	2	0	ഹ	0	-	0
–( D5	11	ß				-1
$D_{D3}^1$	4	4	9	2	01	2
.20 S1	4	0	Ċ1	0	0	0
$D_{5}$	10	2		0		2
6 D3	4	9	9	01	01	2
.14 S1	4	0	0	0	2	0
$-(D_{5}$	10	0		0		0
olitude tell labels	liguration	shell J's)	upled J's)	shell $T$ 's)	upled T's)	seniorities
Amj S-sł	Con	Z (S-	2(co	2(S-	2(co)	S-S

Listed components account for 67.7% of the wave function. Occupation (D5) = 11.11, (S1) = 2.92, (D3) = 3.96.

 $\$  *Research supported in part by the National Science Foundation.

- †Research supported by the U. S. Atomic Energy Com-
- mission under contract with Union Carbide Corporation. ¹P. M. Endt and C. van der Leun, Nucl. Phys. <u>A105</u>, 1 (1967).
- ²K. H. Bhatt, Nucl. Phys. <u>39</u>, 375 (1962); G. R. Bishop, *ibid.* 14, 376 (1959).
- ³C. Broude, L. L. Green, and J. C. Willmott, Proc.
- Phys. Soc. (London) 72, 1122 (1958); K. Ramavataram,
- Phys. Letters 21, 690 (1966); V. H. Webb, N. R. Roberson, R. V. Poore, and D. R. Tilley, Phys. Rev. 170, 979
- (1968).
   ⁴V. K. Thankappan and S. P. Pandya, Nucl. Phys. 39,

¹V. K. Thankappan and S. P. Pandya, Nucl. Phys. <u>39</u>, 394 (1962).

- ⁵B. Castel, K. W. C. Stewart, and M. Harvey, private communication; and to be published.
- ⁶P. W. M. Glaudemans, G. Wiechers, and P. J. Brussaard, Nucl. Phys. 56, 529, 548 (1964).
- ⁷M. C. Bouten, J. P. Elliot, and J. A. Pullen, Nucl. Phys. A97, 113 (1967).
- ⁸T. T. S. Kuo and G. E. Brown, Nucl. Phys. <u>85</u>, 40 (1966). ⁹T. T. S. Kuo, Nucl. Phys. <u>A103</u>, 71 (1967); and private communication.
- ¹⁰E. C. Halbert, J. B. McGrory, B. H. Wildenthal, and
- S. P. Pandya, in *Advances in Nuclear Physics*, edited by M. Baranger and E. Vogt (Plenum, New York, 1971),

Vol. IV.

- ¹¹B. H. Wildenthal, E. C. Halbert, J. B. McGrory, and T. T. S. Kuo, Phys. Letters <u>32B</u>, 339 (1970); and to be published.
- ¹²I. Talmi, Rev. Mod. Phys. 34, 704 (1962).
- ¹³R. Arvieu and S. A. Moszkowski, Phys. Rev. <u>145</u>, 830 (1966).
- ¹⁴P. W. M. Glaudemans, B. H. Wildenthal, and J. B. Mc-Grory, Phys. Letters <u>21</u>, 427 (1966).
- ¹⁵P. W. M. Glaudemans, P. J. Brussaard, and B. H. Wildenthal, Nucl. Phys. A102, 593 (1967).
- $^{16}\mathrm{B.}$  H. Wildenthal, Phys. Rev. Letters <u>22</u>, 118 (1969).  $^{17}\mathrm{P.}$  W. M. Glaudemans and B. H. Wildenthal, unpublished. (A brief description of this code is given in an
- Appendix to Ref. 10.) ¹⁸J. B. French, E. C. Halbert, J. B. McGrory, and
- S. S. M. Wong, in Advances in Nuclear Physics, edited
- by M. Baranger and E. Vogt (Plenum, New York, 1969), Vol. III.
- ¹⁹B. H. Wildenthal, J. B. McGrory, E. C. Halbert, and P. W. M. Glaudemans, Phys. Letters 27B, 611 (1968).
- ²⁰A. E. L. Dieperink and P. W. M. Glaudemans, Phys. Letters <u>28B</u>, 531 (1969).
- ²¹A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic, New York, 1963).
- ²²B. H. Wildenthal, contribution to Queen's University Summer Seminar in Nuclear Theory, 1970 (unpublished).
- ²³B. H. Wildenthal and J. B. McGrory, Bull. Am. Phys. Soc. 16, 44 (1971).
- ²⁴M. H. Macfarlane and J. B. French, Rev. Mod. Phys. <u>32</u>, 567 (1960).
- ²⁵R. H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge National Laboratory Report No. ORNL-3240, 1962 (unpublished).
- ²⁶P. W. M. Glaudemans, P. M. Endt, and A. E. L.

- Dieperink, to be published. (The wave functions used in this reference, and circulated in a University of Utrecht report by P. W. M. Glaudemans and J. A. C. Bogaerts, are the MSDI wave functions calculated in the work we report here.)
- ²⁷A. C. Wolff and H. G. Leighton, Nucl. Phys. <u>A140</u>, 319 (1970).
- ²⁸M. Betigeri, R. Bock, H. H. Duhm, S. Martin, and R. Stock, Z. Naturforsch. <u>21a</u>, 980 (1966).
- ²⁹C. A. Whitten, Jr., M. C. Mermaz, and D. A. Bromley, Phys. Rev. C 1, 1455 (1970).
- ³⁰R. L. Kozub, Phys. Rev. 172, 1078 (1968).

³¹C. M. Fou and R. W. Zurmuhle, Phys. Rev. <u>151</u>, 927 (1966).

³²G. Th. Kaschl, G. Mairle, U. Schmidt-Rohr, and G. J. Wagner, Nucl. Phys. <u>A136</u>, 286 (1969).

- ³³B. H. Wildenthal and P. W. M. Glaudemans, Nucl.
- Phys. <u>A108</u>, 49 (1968). ³⁴M. C. Mermaz, C. A. Whitten, Jr., and D. A. Brom-
- ley, Bull. Am. Phys. Soc.  $\underline{13}$ , 675 (1969); and private communication.
- ³⁵H. G. Leighton and A. C. Wolff, Nucl. Phys. <u>A151</u>, 71 (1970).
- ³⁶B. H. Wildenthal, G. M. Crawley, and W. McLatchie, Bull. Am. Phys. Soc. 15, 530 (1970).
- ³⁷W. G. Davies, J. C. Hardy, and W. Darcey, Nucl. Phys. A128, 465 (1969).
- ³⁸C. E. Moss, R. V. Poore, N. R. Roberson, and D. R. Tilley, Phys. Rev. <u>174</u>, 1333 (1968).
- ³⁹R. C. Bearse, D. H. Youngblood, and J. L. Yntema, Phys. Rev. 167, 1043 (1968).
- ⁴⁰B. W. Hooton, O. Hausser, F. Ingebretsen, and T. K. Alexander, Can. J. Phys. 48, 1259 (1970).
- ⁴¹A. Graue, L. H. Herland, J. R. Lien, G. E. Sandvik,
- E. R. Cosman, and W. H. Moore, Nucl. Phys. <u>A136</u>, 577 (1969).
- ⁴²R. A. Morrison, Nucl. Phys. <u>A140</u>, 97 (1970).
- ⁴³G. I. Harris, A. K. Hyder, Jr., and J. Walinga, Phys. Rev. 187, 1413 (1969).
- ⁴⁴R. C. Haight, Ph.D. thesis, Princeton University, 1969 (unpublished).
- ⁴⁵H. Ohnuma et al., Nucl. Phys. A149, 141 (1970).
- ⁴⁶J. R. Durrell and R. D. Symes, Phys. Letters <u>31B</u>, 358 (1970).
- $^{47}\mathrm{B}.$  H. Wildenthal and E. Newman, Phys. Letters <u>28B</u>, 108 (1968).
- ⁴⁸A. Graue, L. Herland, J. R. Lien, and E. R. Cosman, Nucl. Phys. A120, 513 (1968).
- ⁴⁹K. Nakai, J. L. Quebert, F. S. Stephens, and R. M. Diamond, Phys. Rev. Letters 24, 903 (1970).
- ⁵⁰G. T. Garvey *et al.*, Phys. Letters 29B, 108 (1969). ⁵¹H. D. Graber and G. I. Harris, Phys. Rev. <u>188</u>, 1685 (1969).
- ⁵²P. M. DeLuca, J. C. Lawson, and P. R. Chagnon,
- Bull. Am. Phys. Soc. 15, 566 (1970); and private communication.
- ⁵³J. R. Erskine, D. J. Crozier, J. P. Schiffer, and W. P. Alford, Phys. Rev. C 3, 1976 (1971).
- ⁵⁴B. H. Wildenthal and E. Newman, Phys. Rev. <u>174</u>, 1431 (1968).
- ⁵⁵C. E. Moss, R. V. Poore, N. R. Roberson, and D. R. Tilley, Nucl. Phys. A144, 577 (1970).