Shell-Model Calculations for ${ }^{22} \mathrm{Na}$ and ${ }^{22} \mathrm{Ne}$

B. M. Preedom
Department of Physics, University of South Carolina, Columbia, South Carolina 29208, and Cyclotron Laboratory,* Michigan State University, E. Lansing, Michigan 48823
and
B. H. Wildenthal*
Cyclotron Laboratory,* and Department of Physics, Michigan State University, E. Lansing, Michigan 48823

Abstract

Shell-model calculations have been performed for the nuclei ${ }^{22} \mathrm{Na}$ and ${ }^{22} \mathrm{Ne}$. The model space is made up of all Pauli-allowed combinations of six particles in the orbits $0 d_{5 / 2}, 1 s_{1 / 2}$, and $0 d_{3 / 2}$. An inert ${ }^{16} \mathrm{O}$ core is assumed. The two-body interaction which is employed has been obtained by empirically modifying some of the matrix elements of Kuo's interaction in order to achieve an rms best fit between the observed energies of 72 levels in the $A=18-22$ region and the corresponding shell-model eigenvalues. Single-particle energies are taken from the ${ }^{17} \mathrm{O}$ spectrum. Calculated results for excitation energies, electromagnetic transition strengths, and spectroscopic factors for single-nucleon transfer are presented and compared with existing data.

I. INTRODUCTION

The shell model has been used successfully to describe the low-lying spectra of nuclei near neutron and proton closed shells. With the advent of sophisticated computer codes, ${ }^{1}$ it has become possible to calculate the properties of nuclei further from closed shells. In particular, it has been shown that many aspects of the collective features of nuclei several nucleons removed from ${ }^{16} \mathrm{O}$ in the $s-d$ shell can be well reproduced by shellmodel calculations in which all of the $s-d$ nucleons are active. ${ }^{2-5}$
Several aspects of the $A=22$ nuclei make them of particular interest from the standpoint of attempting to understand collective nuclear phenomena in terms of many-body microscopic calculations. These systems appear to be among the most highly deformed nuclei in the light-mass region. In addition, there have been extensive experimental studies of ${ }^{22} \mathrm{Na}$ and ${ }^{22} \mathrm{Ne}$ which have assigned spins and parities to many low-lying levels and have measured the strengths of many electric quadrupole and single-nucleon transfer transitions.
Since one wants to observe the fullest consequences of the two-body part of the nuclear Hamiltonian, it is desirable to study systems with as many active particles as possible. If the active particles are distributed without restriction over the three $s d$-shell orbits, the shell-model states for $A=22$ have dimensions as large as can be handled straightforwardly with our techniques. The $A=22$ systems thus constitute the best place to study the many-particle shell-model structure in
this region if one is to avoid introducing the additional complication of basis truncation within the $s-d$ shell space itself.

Finally, the $A=22$ systems are of interest because, despite significant successes in explaining some features of their behavior, several aspects of the structure of the low-lying levels seemed to be reproduced poorly by previous calculations. ${ }^{2,3,5}$ In general, the results of shell-model calculations reproduce the detailed features of doubly odd nuclei less successfully than those of doubly even and even-odd nuclei. Thus a fully successful accounting for the properties of ${ }^{22} \mathrm{Na}$ would significantly increase confidence in the shell-model description of the structure of nuclei in this region.

II. TECHNIQUES OF CALCULATION

The shell-model calculations presented here are of the same type as those presented in Ref. 2, hereafter referred to as HMWP, and the notations and conventions of this reference are used in the present paper. The derivation of the Hamiltonian used in the present work is discussed in detail in Ref. 6. Briefly, the single-particle energies were taken from the observed spectrum of ${ }^{17} \mathrm{O}$. For the $0 d_{5 / 2}, 1 s_{1 / 2}$, and $0 d_{3 / 2}$ orbits they are equal to $-4.15,-3.28$, and +0.93 MeV , respectively. The two-body matrix elements were obtained by adjusting selected two-body matrix elements of the " K $+{ }^{17} \mathrm{O}^{\prime \prime}$ interaction used in HMWP so as to reach an rms best fit between 72 experimental-level energies in the $A=18-22$ region and the corresponding shell-model eigenvalues.

The " $K+{ }^{17} \mathrm{O}$ " interaction of HMWP is one of the
realistic effective interactions calculated from the Hamada-Johnston potential by Kuo. ${ }^{7}$ Those two-body matrix elements of " $K+{ }^{17} \mathrm{O}$ " which do not involve the $d_{3 / 2}$ orbit were varied as free parameters in the fit procedure. In addition, the centroids of the $d_{5 / 2}-d_{3 / 2}$ and $d_{3 / 2}-d_{3 / 2}$ interactions were varied. All of the low-lying $T=0$ levels in mass 22 were included in the fitting-data set, in addition to the two $0^{+}, T=1$ levels.

The eigenvalues and eigenvectors which are obtained for $A=18-21$ nuclei with this new interaction ${ }^{6}$ are similar in most aspects to those obtained ${ }^{2}$ with " $K+{ }^{17} \mathrm{O}$," but quantitative agreement with experiment is somewhat better in essentially all cases. The main qualitative changes in the $A=18-21$ region which result from use of the new interaction are a raising of the centroids of the $s_{1 / 2}$ and $d_{3 / 2}$ single-particle strengths and a lessening of the level densities in the low-excitationenergy part of the spectra. The two-body matrix elements of both the original " $K+{ }^{17} \mathrm{O}$ " and of the
modified interaction used in the present work are listed in Table I.
The excitation energies and wave functions for states in the $A=22$ nuclei were taken as the eigenvalues and eigenvectors of the Hamiltonian matrix for a given J, T. The largest matrix in the present study was 537×537 for the $3^{+}, T=1$ states. The evaluation of the Hamiltonian matrix elements was done with the Oak-Ridge-Rochester shellmodel codes. ${ }^{1}$
Spectroscopic factors for single-nucleon-transfer transitions to states of a given nucleus are a primary key to the identification of a calculated state with an experimental level. The spectroscopic factors, S, presented here are calculated as in HMWP. In an isospin formalism S is independent of T_{z}, whereas the calculated cross section for the transfer to a particular nucleus is proportional to $C^{2} S$, where C is a Clebsch-Gordan coefficient dependent on T_{z}. The spectroscopic factor for a $0 d_{5 / 2}$ particle transfer from a state

TABLE I. The two-body matrix elements $\left\langle j_{a} j_{b} J T\right| V\left|j_{c} j_{d} J T\right\rangle$. The units are MeV and the phase conventions are from HMWP.

$2 j_{a} 2 j_{b} 2 j_{c} 2 j_{d}, J T$				Present	Kuo ${ }^{\text {a }}$				$2 j_{d}$, JT	Present	Kuo ${ }^{\text {a }}$
5	5	5	5,01	-2.1243	-2.4381	5	3	5	3	, 10	-5.3692	-5.8276
5	5	5	5,10	-0.9437	-1.0284	5	3	5	3	, 11	0.4058	-0.1257
5	5	5	5 , 21	-1.2312	-1.0358	5	3	5	3	, 20	-4.0520	-4.5271
5	5	5	5,30	-1.7788	-0.8589	5	3	5	3	, 21	0.3268	-0.2037
5	5	5	5,41	0.1611	-0.0502	5	3	5	3	, 30	-0.6127	-1.1313
5	5	5	5,50	-4.0232	-3.6640	5	3	5	3	, 31	0.6664	0.1316
5	5	5	1,21	-0.6594	-0.8542	5	3	5	3	, 40	-3.8359	-4.3137
5	5	5	1,30	-1.1865	-1.5654	5	3	5	3	, 41	-1.1485	-1.6603
5	5	5	3, 10	3.2056	3.1651	5	3	1	1	, 10	1.7345	1.7125
5	5	5	3,21	-0.4020	-0.3969	5	3	1	3	, 10	-1.9378	-1.9132
5	5	5	3,30	1.8986	1.8746	5	3	1	3	, 11	-0.0989	-0.0976
5	5	5	3,41	-1.3801	-1.3626	5	3	1	3	, 20	-1.5602	-1.5404
5	5	1	1,01	-1.4058	-0.9677	5	3	1	3	, 21	-0.7796	-0.7697
5	5	1	1,10	-0.4241	-0.5959	5	3	3	3	, 10	0.0388	0.0383
5	5	1	3,10	-0.2399	-0.2368	5	3	3	3	, 21	-1.0230	-1.0101
5	5	1	3, 21	-0.8471	-0.8364	5	3	3	3	, 30	2.1856	2.1579
5	5	3	3, 01	-3.8367	-3.7882	1	1	1	1	, 01	-2.2643	-1.9493
5	5	3	3,10	1.6417	1.6209	1	1	1	1	, 10	-3.4227	-3.1839
5	5	3	3,21	-0.9149	-0.9034	1	1	1	3	, 10	0.3125	0.3085
5	5	3	3,30	0.5060	0.4996	1	1	3	3	, 01	-0.7543	-0.7448
5	1	5	1,20	0.1766	-0.6222	1	1	3	3	, 10	-0.2154	-0.2127
5	1	5	1,21	-0.8495	-1.2879	1	3	1	3	, 10	-2.7861	-3.2771
5	1	5	1,30	-3.6603	-3.6919	1	3	1	3	, 11	0.7525	0.2167
5	1	5	1,31	0.7838	0.1723	1	3	1	3	, 20	-1.0974	-1.6099
5	1	5	3,20	-1.4674	-1.4488	1	3	1	3	, 21	0.2022	-0.3267
5	1	5	3,21	-0.2209	-0.2181	1	3	3	3	, 10	0.8097	0.7995
5	1	5	3,30	1.1709	1.1561	1	3	3	3	, 21	-0.2097	-0.2071
5	1	5	3,31	-0.0903	-0.0892	3	3	3	3	, 01	-0.2849	-0.8076
5	1	1	3,20	-2.6118	-2.5788	3	3	3	3	, 10	0.0576	-0.4695
5	1	1	3,21	-1.5710	-1.5511	3	3	3	3	, 21	0.6110	0.0770
5	1	3	3,21	-0.7531	-0.7436	3	3	3	3	, 30	-2.0873	-2.5872
5	1	3	3,30	0.0272	0.0269							

[^0]$\Psi^{J T}$ having n active nucleons to a state $\psi^{J_{0} T_{0}}$ having $n-1$ active nucleons is
$$
S\left(0 d_{5 / 2}\right)=n\left\langle\Psi_{J_{z} T_{z}}^{J T}(1 \ldots n) \mid\left[\psi^{J_{0} T_{0}}(1 \ldots n-1) \phi_{0 d}^{j=5 / 2, t=1 / 2}(n)\right]_{J_{z} T_{z}}^{J T}\right\rangle^{2},
$$
where $\phi_{0 d}^{j=5 / 2, t=1 / 2}(n)$ is the $0 d_{5 / 2}$ single-particle wave function for the nth nucleon. Analogous definitions hold for $0 d_{3 / 2}$ and $1 s_{1 / 2}$ nucleon transfer. Spectroscopic factors will hereafter be written as $S\left(d_{5 / 2}\right), S\left(d_{3 / 2}\right)$, and $S\left(s_{1 / 2}\right)$. When both $j=\frac{3}{2}$ and $j=\frac{5}{2}$ transfers are allowed to the same states, the factor
$$
S(l=2)=S\left(d_{3 / 2}\right)+S\left(d_{5 / 2}\right)
$$

TABLE II. Excitation energies in MeV for $A=22, T=0$. Excitation energy is taken as the energy increment above the 3_{1}^{+}state. The shell-model energy for this state is calculated to be -58.45 MeV compared with the experimental value of -58.52 MeV (with Coulomb contributions removed).

J_{n}	Exp ${ }^{\text {a }}$	Present	HMWP
0_{1}		7.54	5.41
0_{2}		10.14	8.25
1_{1}	0.58	0.22	-0.31
1_{2}	1.94	1.85	0.24
1_{3}	3.94	3.79	2.60
14	4.32	5.48	4.48
21	3.06	2.60	0.77
2	(4.36)	3.23	1.99
23		4.93	3.17
24		5.33	4.06
3_{1}	0	0	0
32	1.98	1.59	0.93
33	2.97	2.88	1.86
34		4.16	2.96
41	0.89	0.86	0.81
42		4.34	2.59
43		5.00	4.13
4		5.80	5.28
51	1.53	1.47	
5	(4.71)	4.44	
53		5.24	
61	(3.71)	3.83	
62		6.79	
63		7.48	
71		4.56	
72		8.47	
81		8.15	
82		11.51	
91		10.03	
92		13.09	
10_{1}		13.41	

[^1]will be compared with the experimental value.
Electromagnetic transition rates and moments are also calculated as in HMWP. The electric quadrupole operator is taken as
$\underline{Q}^{2}=\left(\tilde{e}_{p}+\tilde{e}_{n}\right) \sum_{k=1}^{A} \frac{1}{2} r_{k}^{2} \underline{Y}^{2}\left(\Omega_{k}\right)+\left(\tilde{e}_{p}-\tilde{e}_{n}\right) \sum_{k=1}^{A} t_{z}(k) r_{k}^{2} \underline{Y}^{2}\left(\Omega_{k}\right)$,
where $\tilde{e}_{p}=1.5 e$ and $\tilde{e}_{n}=0.5 e$ are assumed as the
TABLE III. Excitation energies in MeV for $A=22, T=1$. Excitation energy is taken as the energy increment above the 0_{1}^{\dagger} state. The shell-model energy for this state is calculated to be -57.79 MeV compared with the experimental value of -57.75 MeV (with Coulomb contributions removed).

J_{n}	$\operatorname{Exp}\left({ }^{22} \mathrm{Ne}\right)^{\text {a }}$	$\operatorname{Exp}\left({ }^{22} \mathrm{Na}\right)$	Present	HMWP
0_{1}	0	0	0	0
0_{2}	(6.24)	6.18	5.98	4.95
0_{3}			7.02	6.81
1_{1}	(5.36)		5.03	5.18
1_{2}			6.48	5.45
13			8.25	
1_{4}			8.82	
21	1.28	1.29	1.39	1.14
22	4.46	4.51	4.14	3.53
23	(5.33)		4.80	4.77
24			6.05	5.43
31	(5.64)		5.41	4.51
3_{2}			6.30	
$3{ }_{3}$			7.40	
34			8.14	
4_{1}	3.36	3.41	3.49	3.21
42	5.52		5.49	5.54
43			6.43	
44			6.84	
51			7.49	
52			8.61	
61	6.35		6.41	6.30
62			9.24	
71			10.88	
72			11.90	
81	11.01		11.13	
82			12.62	
91			15.50	
10_{1}			16.34	

${ }^{\text {a }}$ Where a spin assignment is tentative, the excitation energy is in parentheses.
total effective charges of the proton and neutron, respectively, r_{k} is the radial coordinate of the k th nucleon, and Y^{2} is the usual spherical harmonic operator of rank 2. The convention $t_{z}=\frac{1}{2}$ for a proton and $t_{z}=-\frac{1}{2}$ for a neutron is chosen.

For the electric quadrupole moment Q of a manyparticle state $\psi_{T_{z}}^{J T}(\alpha)$,

$$
Q=\left(\frac{16}{5} \pi\right)^{1 / 2}\left\langle\alpha J T, J_{z}=J, T_{z}\right| Q_{0}^{2}\left|\alpha J T, J_{z}=J, T_{z}\right\rangle,
$$

where Q_{0}^{2} is the z component of \underline{Q}^{2}.

For an $E 2$ transition from $\psi_{T_{z i}}^{J_{i} T_{i}}\left(\alpha_{i}\right)$ to $\psi_{T_{z f}}^{J_{f} T_{f}}\left(\alpha_{f}\right)$ the reduced transition amplitude is taken as
$B(E 2)_{i \rightarrow f}=\left(2 J_{i}+1\right)^{-1}\left\langle\alpha_{f} J_{f} T_{f}, T_{z_{f}}\left\|\underline{Q^{2}}\right\| \alpha_{i} J_{i} T_{i}, T_{z_{i}}\right)^{2}$,
where the reduced matrix element is reduced with respect to J only. In order to evaluate this matrix element, single-nucleon wave functions in each $\psi^{J T}(\alpha)$ were taken as harmonic-oscillator wave functions with $\hbar \omega=14.6 \mathrm{MeV}$.

TABLE IV. Transition rates for ${ }^{22} \mathrm{Na} T=0 \rightarrow T=0$ transitions.

FIG. 1. Calculated excitation energies for the $K=3$, $T=0 ; K=0, T=0$; and $K=0, T=1$ band members displaying the rotational $J(J+1)$ dependence.

TABLE V. Transition rates for ${ }^{22} \mathrm{Na}\left(T_{z}=0\right)$ and ${ }^{22} \mathrm{Ne}$ $\left(T_{g}=-1\right) T=1 \rightarrow T=1$ transitions.

$J_{n}(i) \rightarrow J_{m}(f)$		$\begin{gathered} B(E 2) \\ \left(e^{2} F^{4}\right) \end{gathered}$		$J_{n}(i) \rightarrow J_{m}(f)$		$\begin{gathered} B(E 2) \\ \left(e^{2} F^{4}\right) \end{gathered}$	
		${ }^{22} \mathrm{Ne}$	${ }^{22} \mathrm{Na}$			${ }^{22} \mathrm{Ne}$	${ }^{22} \mathrm{Na}$
2_{1}	0_{1}	48	56	5	4_{2}	1.3	
2	0_{1}	3.7	2.4	61	42	0.11	
O_{2}	21	15	13	6_{2}	4_{2}	11	
0_{2}	2_{2}	9.0	3.7	4_{3}	2_{1}	0.06	
3_{1}	$1{ }_{1}$	2.4		4_{3}	${ }_{2}$	12	
3_{2}	1_{1}	19		43	2_{3}	5.2	
1_{1}	$2{ }_{1}$	6.0		$5{ }_{1}$	3_{1}	8.5	
$1{ }_{1}$	$2{ }_{2}$	35		51	3_{2}	2.2	
		35		5	31	28	
$2{ }_{2}$	21	1.4	4.2	5	3_{2}	0.90	
23	2_{1}	5.2	6.8	6_{2}	51	39	
2	2_{1}	0.34	1.0	6_{2}	5	1.0	
31	2_{1}	2.2					
$3{ }_{2}$	21	0.86		71	5 5 5	11.9	
4	21	66	71	7_{1}	5_{2}	4.9	
42	2_{1}	0.65	0.39	71	6_{1}	0.00	
3_{1}	2	47		$7{ }_{1}$	6_{2}	20	19
3_{2}	2	1.0		72	5_{1}	4.3	
42	22	9.3		72	5_{2}	24	
2_{2}	4_{1}	0.05		72 7 7	61 6 6	1.2 3.4	
3_{1}	4	0.79		72	81	3.5	
32	4_{1}	1.5					
42	41	0.90			6_{1}	30	36
5	4_{1}	0.81		8	${ }_{6}$	0.77	
5	4	0.41		81	71	1.2	
61	41	53	62	82	61	5.0	7.1
62	41	0.07	0.00	82	6_{2}	11	
3_{2}	42	0.68		82	$7{ }_{1}$	9.6	
5_{1}	4_{2}	44					

For magnetic dipole transitions from $\psi_{T_{k i}}^{J_{i} r_{i}\left(\alpha_{i}\right)}$ to $\psi_{T_{\varepsilon f}}^{J_{f} T_{f}}\left(\alpha_{f}\right)$, the reduced transition probability is taken as
$B(M 1)_{i \rightarrow f}=\left(2 J_{i}+1\right)^{-1}\left\langle\alpha_{f} J_{f} T_{f}, T_{z_{f}}\left\|\underline{M}^{1}\right\| \alpha_{i} J_{i} T_{i}, T_{z_{i}}\right\rangle^{2}$, where again the reduced matrix element is reduced with respect to J only. The operator \underline{M}^{1} is taken to be the unperturbed free-nucleon $M 1$ operator

$$
\begin{aligned}
\underline{M}^{1}= & \sum_{k=1}^{A} \frac{1}{2}\left[\overrightarrow{\mathrm{l}}(k)+\left(g_{p}+g_{n}\right) \overrightarrow{\mathrm{s}}(k)\right] \\
& +\sum_{k=1}^{A} t_{z}(k)\left[\overrightarrow{\mathrm{I}}(k)+\left(g_{p}-g_{n}\right) \overrightarrow{\mathrm{s}}(k)\right],
\end{aligned}
$$

where $\overrightarrow{\mathrm{I}}(k)$ and $\overrightarrow{\mathrm{s}}(k)$ are the orbital and spin angu lar momenta of nucleon k; the units are nuclear magnetons, μ_{N}, and the convention $t_{z}=+\frac{1}{2}$ for a proton and $t_{z}=-\frac{1}{2}$ for a neutron has again been chosen. The free-nucleon orbital and spin gyromagnetic ratios for the neutron and proton have been assumed.
The magnetic dipole moment μ of a many-particle shell-model state $\mu^{J T}(\alpha)$ is calculated from

$$
\mu=\left\langle\alpha J T J_{z}=J T_{z}\right| M_{0}^{1}\left|\alpha J T J_{z}=J T_{z}\right\rangle,
$$

where M_{0}^{1} has only the z component of the vector operators \vec{I} and $\overrightarrow{\mathbf{s}}$ in \underline{M}^{1}.

III. RESULTS

A. Excitation Energies

Calculated and measured ${ }^{8,9}$ energies for the $A=22, T=0$ levels are presented in Table II. The new results are in noticeably better agreement with experiment than are those of the HMWP calculation, in particular for the 1^{+}states and the states outside of the ground-state $3^{+}, 4^{+}, 5^{+}$band. In their study comparing the results of seven dif-

FIG. 2. Calculated transition rates for $T=0 \rightarrow T=0$ transitions in ${ }^{22} \mathrm{Na}$.

TABLE VI. $B\left(E 2, J_{i} \rightarrow J_{f}\right)$ for ${ }^{22} \mathrm{Na}\left(e^{2} \mathrm{~F}^{4}\right) T=0 \rightarrow T=0$.

		Exp	Present	HMWP	$\begin{aligned} & \text { Arima } \\ & \text { etal. } \end{aligned}$	Rotational ${ }^{\text {b }}$
4_{1}	31	$94 \pm 15^{\text {c }}$	90	101.4	3.07	93.9
	4_{1}	$59 \pm 8^{\text {c }}$	79	90.9	40.02	87.8
51	31	$20 \pm 3^{\text {c }}$	21	25.2	9.75	22.8
61	5_{1}		57	69.2		71.7
61	4_{1}		32	37.9		40.5
32	1_{1}		69	66.0	7.33	
5	32		54		0.186	
12	31		12		0.150	
11	31	$0.03 \pm 0.01^{\text {d }}$	0.10	5.5	155.0	
32	3_{1}		0.06	0.2		
52	31		0.32		63.42	
52	4_{1}		0.62		53.09	

${ }^{\text {a }}$ Reference 5.
${ }^{\mathrm{b}}$ Rotational model calculated by HMWP.
${ }^{\mathrm{c}}$ Data of Ref. 14 as adjusted by HMWP.
${ }^{\mathrm{d}}$ Reference 15.
ferent Hamiltonians, HMWP found that only two produced spectra in which the first 1^{+}state came above the first 3^{+}state. These two Hamiltonians however were not as successful as the " $K+{ }^{17} \mathrm{O}$ " interaction in accounting for various other observables in the $A=18-22$ mass region. In addition to improving the agreement with the $T=0$ states, the relative spacings between the $T=0$ and $T=1$ states are also well reproduced. This $0^{+}(T=1)-3^{+}(T=0)$ spacing has been previously described by Kelson in terms of an even-even core rotator with two odd nucleons coupled to it. ${ }^{10}$

The calculated and observed ${ }^{11}$ excitation energies for the $A=22, T=1$ levels are presented in

FIG. 3. Calculated transition rates for $T=1 \rightarrow T=1$ transitions in ${ }^{22} \mathrm{Ne}$.

Table III. The assignment of 0^{+}to the $6.24-\mathrm{MeV}$ state is by Scholz et al., ${ }^{12}$ and that of 8^{+}to the $11.01-\mathrm{MeV}$ state by Broude et al. ${ }^{13}$ The present calculation again represents an improvement over previous calculations in agreement with observation. Comparing the present calculation with that of HMWP, it is seen that the $2^{+}(4.14-\mathrm{MeV}), 3^{+}$ $(5.41-\mathrm{MeV}), 0^{+}(5.98-\mathrm{MeV})$, and the $1^{+}(6.48-\mathrm{MeV})$ states are all in better energy agreement with their possible experimental counterparts. A comparison with the calculation of Akiyama et al. ${ }^{3}$ shows that the locations of the $2^{+}(4.14-\mathrm{MeV}), 1^{+}$ ($5.03-\mathrm{MeV}$), $3^{+}(5.41-\mathrm{MeV})$, and $2^{+}(6.41-\mathrm{MeV})$ states are in better agreement with experiment.

The observed levels of these nuclei are often interpreted in terms of rotations of intrinsically deformed shapes. The energies of levels in a rotational "band" ideally increase linearly with the quantity $J(J+1)$. The energies we calculate in the shell model exhibit this sort of behavior up to quite high J values. In Fig. 1, the calculated energies are grouped into what might be called $K=3, T=0 ; K=0, T=0$; and $K=0, T=1$ bands and plotted against $J(J+1)$. There is striking indication that some of the shell-model results for these six active particle nuclei can be discussed in ro-tational-model terminology. It can also be seen that the shell-model results tend to follow nature when nature deviates from the simple rotationalmodel scheme. These ideas will be pursued further in the following sections.

TABLE VII. $B\left(E 2, J_{i} \rightarrow J_{f}\right)$ for ${ }^{22} \mathrm{Ne}\left(e^{2} \mathrm{~F}^{4}\right)$.

				Arima		
J_{i}	J_{f}	Exp	Present	HMWP	et al. ${ }^{\text {a }}$ Rotational	

[^2]TABLE VIII. Comparison of calculated and experimental lifetimes (psec) for states in ${ }^{22} \mathrm{Na}$.

State	Calc	Jones et al. . ${ }^{\text {a }}$	Kavanagh ${ }^{\text {b }}$	Blaugrund et al. ${ }^{\text {c }}$	Paul et al. ${ }^{\text {d }}$	Pronko et al. ${ }^{\mathrm{e}}$	Warburton et al. ${ }^{\mathrm{f}}$	Warburton et al.g
$4{ }_{1}$	16	14.4 ± 0.7	18 ± 7	10.8 ± 1.8	13.4 ± 3	$11.1-\frac{11}{1.2}$	>8	
51	4.4	5.0 ± 0.7	3.2 ± 1		$\left\{\begin{array}{r} 3.4 \pm 0.8 \\ 3.14_{-0.62}^{ \pm 0.62} \end{array}\right\}$	$3.9+1.0$	3.8 ± 0.9	
$3{ }_{2}$	2.2				1.87 ± 0.35		$\left\{\begin{array}{l} 1.6 \pm 0.34 \\ 1.7 \pm 0.6 \end{array}\right\}$	
$3{ }_{3}$	1.8				0.060 ± 0.013		<0.14	
21	0.65				0.04 ± 0.01		<0.09	
61	0.096							0.052 ± 0.017

${ }^{\text {a }}$ Reference 18.
${ }^{\mathrm{b}}$ Reference 19.
${ }^{\text {c }}$ Reference 20.
${ }^{\mathrm{d}}$ Reference 21.
${ }^{\mathrm{e}}$ Reference 22.
${ }^{\mathrm{f}}$ Reference 23.
g Reference 24.

B. Transition Rates

We have calculated the strengths for the $E 2$ and M1 transitions which connect most of the low-lying levels of ${ }^{22} \mathrm{Na}$ and ${ }^{22} \mathrm{Ne}$, even though the majority of these are presently not experimentally determined. In addition to the obvious purpose of providing predictions for new experiments to test, we present these calculated strengths so that the various relationships between different model states may be traced and so that alternate techniques for performing microscopic nuclear structure calculations can be checked in detail against an exact shell-model calculation.

Reduced electromagnetic transition rates for various transitions in ${ }^{22} \mathrm{Na}$ and ${ }^{22} \mathrm{Ne}$ are presented in Tables IV and V. Table IV lists both the $B(E 2)$ and the $B(M 1)$ values for the $T=0 \rightarrow T=0$ transitions. The $B(M 1)$ rates between $T=0$ states are extremely weak because of Morpurgo's rule. The isovector contribution to the transition vanishes and, since the J part of the isoscalar term cannot

State	Calc	Jones etal. ${ }^{\text {a }}$	Kutschera et al. ${ }^{\text {b }}$
21	4.9	4.6 ± 0.5	
41	0.32		0.34 ± 0.05
21	0.0056		<0.023
61	0.064		$0.031+0.022$
Refer Refer averag	18. 25. Th existing	time of	vel repres

connect two orthogonal states, the effective \underline{M}^{1} operator reduces to a small term ($0.38 \overrightarrow{\mathrm{~s}}$). In Table V, the $B(E 2)$ values for transitions between $T=1$ states are presented. Most of the entries deal with ${ }^{22} \mathrm{Ne}$, while a few ${ }^{22} \mathrm{Na}$ values are presented to indicate the changes which arise when a proton is substituted for a neutron in the $T=1$ wave functions. The $\Delta T=1$ transitions in ${ }^{22} \mathrm{Na}$ are predicted to be universally weak, the largest values being $\sim 1.5 e^{2} \mathrm{~F}^{4}$ and the typical values much smaller.

In Fig. 2 all of the $T=0 \rightarrow T=0$ transitions having calculated $B(E 2)$ values greater than $8 e^{2} F^{4}$ are displayed. Two nominal rotational bands [by which we mean a group of levels which are connected by strong $E 2$ transitions and whose energies

TABLE X. Electric quadrupole and magnetic dipole moments.

	State J_{n}, T	$\begin{gathered} Q_{\text {calc }} \\ \left(e \mathrm{~F}^{2}\right) \end{gathered}$	$\begin{gathered} Q_{\exp } \\ \left(e \mathrm{~F}^{2}\right) \end{gathered}$	$\begin{aligned} & \mu_{\text {calc }} \\ & \left(\mu_{N}\right) \end{aligned}$	$\begin{aligned} & \mu_{\exp } \\ & \left(\mu_{N}\right) \end{aligned}$
${ }^{22} \mathrm{Na}$	$1_{1}, 0$			0.529	$0.540 \pm 0.009^{\text {a }}$
	$1_{2}, 0$			0.628	
	$3_{1}, 0$	22	$23 \pm 2^{\text {b }}$	1.78	1.746 ± 0.003^{c}
	4,0	6.8			
	$5{ }_{1}, 0$	-0.90			
	$22_{1}, 1$	-15		1.1	
	2,1	4.4			
${ }^{22} \mathrm{Ne}$	$22_{1}, 1$	-14	$-18 \pm 4^{\text {d }}$	0.68	
	$22_{2} 1$	2.3			

${ }^{\text {a }}$ This number is a weighted average of the values 0.535 ± 0.010 (Ref. 26) and 0.555 ± 0.017 (Ref. 27).
${ }^{\mathrm{b}} Q_{\text {exp }}$ obtained from intrinsic quadrupole moment $(+54 \pm 4)$ determined by Ref. 14.
${ }^{c}$ Reference 28.
${ }^{\mathrm{d}}$ Reference 17.
follow an approximate $J(J+1)$ sequence] are seen, with the 3_{1}^{+}and 1_{1}^{+}states as band heads, as well as a third possible band built upon the 1_{2}^{+}state. Each "band" is relatively well defined, with no large interband transitions. The experimental evidence for the existence of rotational bands in ${ }^{22} \mathrm{Na}$ has been summarized by Garrett et al. ${ }^{8}$ In a Nilsson-model interpretation, the level sequence starting with the 3_{1}^{+}state can be identified as a $K=3-T=0$ band based on the $\left(\frac{3}{2}+[211]\right)^{2}$ Nilsson
configuration. The observed levels of this sequence are the 3^{+}(ground state), $4^{+}(0.89-\mathrm{MeV})$, $5^{+}(1.53-\mathrm{MeV})$, and $6^{+}(3.71-\mathrm{MeV})$ states. The sequence starting with the 1_{1}^{+}state corresponds to the $K=0, T=0$ band of the same configuration. The suggested observed members are the $1^{+}(0.58-$ $\mathrm{MeV})$ and $3^{+}(1.98-\mathrm{MeV})$ states. Garrett et al. suggest that a third band based on the $\frac{3^{+}+}{2}[211]$, $\frac{1}{2}+[211]$ configuration with $K=1-T=0$ could also exist, with the observed members being 1^{+}(1.94

TABLE XI. Spectroscopic factors for single-particle transfer reactions leading to states in ${ }^{22} \mathrm{Na}$.

$J_{n} T$	E^{+}(MeV)		${ }^{21} \mathrm{Ne} \rightarrow{ }^{22} \mathrm{Na}$					${ }^{23} \mathrm{Na} \rightarrow{ }^{22} \mathrm{Na}$				
			$100 \times S(j)_{\text {calc }}$			$100 \times S(l) \exp { }^{\text {b }}$		$100 \times S(j){ }_{\text {calc }}$			$100 \times S(l) \exp ^{\text {c }}$	
	Calc	Exp	$\left(d_{5 / 2}\right)$	$\left(d_{3 / 2}\right)$	$\left(s_{1 / 2}\right)$	$(l=2)$	$(l=0)$	$\left(d_{5 / 2}\right)$	$\left(d_{3 / 2}\right)$	$\left(s_{1 / 2}\right)$	$(l=2)$	$(l=0)$
$0_{1} 0$	7.54			61								
$11_{1} 0$	0.22	0.58	76	7	2	65	4	20	2	1	21	<2
120	1.85	1.94	0	22	12	d	$<19{ }^{\text {d }}$	0	3	3		$<5{ }^{\text {d }}$
130	3.79	3.94	30	1	3	33	10	0	0	2	<1	3
140	5.48	4.32	8	7	0	3	<1	0	0	1	<1	<1
210	2.60	3.06	4	30	9	56	12	0	3	0	3	<1
$2{ }_{2}$	3.23	$4.36{ }^{\text {a }}$	2	13	20	<10	66	1	2	4	2	2
$2_{3} 0$	4.93		9	2	10			6	0	3		
$2{ }_{4} 0$	5.33		9	11	12			1	0	0		
$3{ }_{1} 0$	0.00	0.00	44	3		47		56	3		51	
$3_{2} 0$	1.59	1.98	42	0		27		36	1		25	
$3_{3} 0$	2.88	2.97	9	4		32		12	1		<2	
$3{ }_{4} 0$	4.16		1	21				3	2			
$4_{1} 0$	0.86	0.89	101			80		58			49	
420	4.34		1					0				
$4{ }_{3} 0$	5.00							0				
$4{ }_{4} 0$	5.80							1				
01	0.66	0.66		9		<40			2		<18	
$0_{2} 1$	6.64	6.83		5					0		<1	
$0_{3} 1$	7.68			1					0			
$1_{1} 1$	5.69		59	2	10			1		2		
$1_{2} 1$	7.14		0	1	48			1		4		
$1_{3} 1$	8.91		0	5	2			3	1	3		
$1_{4} 1$	9.48		0	33	7			0	3	0		
211	2.05	1.95	94	1	0	$<100{ }^{\text {d }}$	$<12{ }^{\text {d }}$	144	3	21	$<147{ }^{\text {d }}$	$<15{ }^{\text {d }}$
$2_{2} 1$	4.80	5.16	12	11	10	28	12	23	3	0	39	18
$2_{3} 1$	5.46		0	5	21			8	2	4		
$2_{4} 1$	6.71		0	0	2			6				
311	6.07		3	18				13	2	15		
$3{ }_{2} 1$	6.97		13	0				26	0	26		
$3{ }_{3} 1$	8.06		1	9				15	0	15		
$3{ }_{4} 1$	8.80		1	0				14	0	14		
411	4.15	4.07	3			4		42		42	44	
$4{ }_{2} 1$	6.15		25					5		5		
$4{ }_{3} 1$	7.09		16									
$4{ }_{4} 1$	7.50		4									

[^3]${ }^{\mathrm{d}}$ States at 1.94 and 1.95 MeV were unresolved.
$\mathrm{MeV})$ and $2^{+}(3.06 \mathrm{MeV})$. The choice of whether the 3^{+}member of this band should be the 2.97MeV or the $4.77-\mathrm{MeV} 3^{+}$state is unclear. The calculations shown in Fig. 2 indicate that the model state 3_{3}^{+}at 2.88 MeV [and hence the 3^{+}(2.97 MeV) empirical level] belongs in this group.

In Table VI the $B(E 2)$ values for the $T=0 \rightarrow T=0$ transitions in ${ }^{22} \mathrm{Na}$ are compared with existing experimental values ${ }^{14,15}$ and with the calculations of HMWP and of Arima et al. ${ }^{5}$ The rotational values are taken from HMWP. It is seen that there is good agreement between the experimental values and the present calculations and the rotationaland shell-model calculations of HMWP. In contrast, the calculations of Arima et al. are in complete disagreement with all other results, a discrepancy previously noted by those authors.
Transitions in ${ }^{22} \mathrm{Ne}$ having calculated $B(E 2)$'s greater than $8 e^{2} F^{4}$ are shown in Fig. 3. Three possible bands exist, with no large interband transitions. The $K=0$ ground-state band is well established experimentally, with observed levels as 0^{+}(ground state), $2^{+}(1.28-\mathrm{MeV}), 4^{+}(3.36-\mathrm{MeV})$, $6^{+}(6.35-\mathrm{MeV})$, and the $8^{+}(11.01-\mathrm{MeV})$ states. The apparent $K=2$ band built on the 2_{2}^{+}state was noted by HMWP, with the possible experimental partners for the $2_{2}^{+}, 3_{1}^{+}$, and 4_{3}^{+}levels as the 2^{+} $(4.46-\mathrm{MeV}), 3^{+}(5.63-\mathrm{MeV})$, and the $2 \leqslant J \leqslant 6$ (6.68$\mathrm{MeV})$ states. The band beginning with the 4_{2}^{+} state has not been previously suggested. This 4_{2}^{+} state was taken by HMWP as the 4^{+}state in the " $K=2$ " band. The 0_{2}^{+}state at 5.98 MeV can be identified with the empirical 0^{+}level at 6.24 MeV . It has the interesting property of sizable calculated transition probabilities to both the " $K=2$ "

FIG. 4. Spectroscopic factors for the ${ }^{21} \mathrm{Ne}\left({ }^{3} \mathrm{He}, d\right){ }^{22} \mathrm{Na}$ reaction. The length of the line is directly proportional to the magnitude of the spectroscopic factor.
and the " $K=0$ " bands.
In Table VII $B(E 2)$ values in ${ }^{22} \mathrm{Ne}$ from the present calculation are compared with experimental values ${ }^{15-17}$ and with those calculated by HMWP (shell-model and rotational) and by Arima et al. ${ }^{5}$ For the $K=0$ ground-state band, there is good agreement between all of the calculations and experiment, allowing for the discrepancy in the experimental values for the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition. However, the transition rates calculated by Arima et al. for the $6_{1}^{+} \rightarrow 4_{1}^{+}$and $8_{1}^{+} \rightarrow 6_{1}^{+}$transitions are somewhat larger than in the present calculation. The transitions $4_{2}^{+} \rightarrow 2_{2}^{+}, 4_{2}^{+} \rightarrow 3_{1}^{+}$, and $3_{1}^{+} \rightarrow 2_{2}^{+}$were taken by HMWP as transitions within the $K=2$ band because of the values shown in Table VII. Since the $4_{2}^{+} \rightarrow 3_{1}^{+}$transition has such a relatively low value in the present calculation and yet the 4_{2}^{+}state is strongly connected to higher states, as was seen in Fig. 3, it is concluded that this state does not belong in our " $K=2$ " band. A few other transitions are compared with values calculated by Arima et al. There is no obvious correlation in the values.
The only $B(M 1)$ values calculated for ${ }^{22} \mathrm{Ne}$ are for the $J_{i}^{\pi}, T=1 \rightarrow J_{f}^{\pi}, T=1$ transitions $2_{2} \rightarrow 2_{1}$ $\left(0.30 \mu_{N}^{2}\right), 2_{3} \rightarrow 2_{1}\left(0.014 \mu_{N}^{2}\right)$, and $2_{4} \rightarrow 2_{1}(0.197$ $\mu_{N}{ }^{2}$), where μ_{N} is the nuclear magneton.

The values of $B(E 2)$ for the two lowest transitions in the ground-state band of ${ }^{22} \mathrm{Mg}\left(T_{z}=+1\right)$ have also been calculated. For the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition, the present calculation gives a value of $64 e^{2} \mathrm{~F}^{4}$, smaller than the experimental value of $104_{-24}^{+44} e^{2} F^{4}$ (quoted in Ref. 5) and comparable to the value of $74.5 e^{2} \mathrm{~F}^{4}$ calculated by Arima et al. ${ }^{5}$ For the $4_{1}^{+} \rightarrow 2_{1}^{+}$transition, the present value of $77 e^{2} \mathrm{~F}^{4}$ is also close to the value of $83.1 e^{2} \mathrm{~F}^{4}$ calculated by Arima et al.

FIG. 5. Spectroscopic factors for the ${ }^{23} \mathrm{Na}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{22} \mathrm{Na}$ reaction. The length of the line is directly proportional to the magnitude of the spectroscopic factor.

C. Lifetimes and Moments

From the transition rates presented in the previous section it is possible to calculate partial and total decay widths for the various levels and thus determine their lifetimes. In Table VIII the calculated mean lifetimes for ${ }^{22} \mathrm{Na}$ levels are compared with existing data. ${ }^{18-24}$ A similar comparison ${ }^{18,}{ }^{25}$ for some states in ${ }^{22} \mathrm{Ne}$ is presented in Table IX.

Electric quadrupole (static) and magnetic dipole moments are shown in Table X along with some measured ${ }^{17, ~ 26-28}$ values. The calculated value of Q for the ${ }^{22} \mathrm{Na}$ ground state is in good agreement with the measured value, whereas the calculated value for the 2_{1}^{+}state in ${ }^{22} \mathrm{Ne}$ has the correct sign but is significantly smaller in magnitude than the observed value. Similar calculations by Arima et al. ${ }^{5}$ for ${ }^{22} \mathrm{Ne}$ gave a value ($-15.4 e \mathrm{~F}^{2}$) only slightly larger than the present value, whereas for the ground state of ${ }^{22} \mathrm{Na}$ they obtained the value $-9.36 e \mathrm{~F}^{2}$. For the ${ }^{22} \mathrm{Na}$ ground state, calculations by HMWP gave values of $22.1 e \mathrm{~F}^{2}$ for the $K+{ }^{17} \mathrm{O}$ interaction and $21.6 e \mathrm{~F}^{2}$ for an adiabatic rotational model. These values compare with the present value for ${ }^{22} \mathrm{Na}$ of $22 e \mathrm{~F}^{2}$.

The magnetic moments shown in Table X for the 1_{1} and 3_{1} states of ${ }^{22} \mathrm{Na}$ are also in close agreement with experimental values. The present value for the 3_{1}^{+}state $\left(1.78 \mu_{N}\right)$ is similar to those of HMWP $\left(1.82 \mu_{N}\right)$ and of Arima et al. $\left(1.83 \mu_{N}\right)$. However, for the 1_{1}^{+}state, the present value of $0.529 \mu_{N}$ is in better agreement with experiment than the value of $0.787 \mu_{N}$ obtained by Arima et al.

D. Spectroscopic Factors

Single-particle spectroscopic factors are presented in Table XI for the transfer reactions which connect ${ }^{21} \mathrm{Ne}$ and ${ }^{23} \mathrm{Na}$ with the $T=0$ and $T=1$ levels of $A=22$. The distributions of $l=0$ and $l=2$ strengths are shown in Figs. 4 and 5, with the lengths of the lines being directly proportional to the spectroscopic strengths. The experimental values are from the $\left({ }^{3} \mathrm{He}, d\right)$ reaction ${ }^{8}$ and the $\left({ }^{3} \mathrm{He}, \alpha\right)$ reaction. ${ }^{9}$ Since the ground-state spins of both ${ }^{21} \mathrm{Ne}$ and ${ }^{23} \mathrm{Na}$ are $\frac{3^{+}}{}{ }^{+}$, states with $J=0,3,4$ can be populated only by $l=2$ transfer, whereas the 1^{+}and 2^{+}states can be populated by both $l=0$ and $l=2$ transfers. The ${ }^{21} \mathrm{Ne}$ and ${ }^{23} \mathrm{Na}$ wave functions are calculated with the same Hamiltonian that we use for $A=22$. The model basis space for the $A=23$ calculation was truncated as described in Ref. 4.
The results for ${ }^{21} \mathrm{Ne}\left({ }^{3} \mathrm{He}, d\right)^{22} \mathrm{Na}$ are shown in Fig. 4. The ground-state $l=2$ strength is well accounted for. The only other accessible member of the ground-state band, i.e., the $4^{+}\left(4_{1}\right)$, also shows agreement. The $1^{+}\left(1_{1}\right)$ and $3^{+}\left(3_{2}\right)$ members of the $K=0$ band show agreement in relative $l=2$ strength, with the calculated strengths being about 30% too large.
The strengths of the $0^{+}, 2^{+}$, and $4^{+} T=1$ states also appear to be fairly well accounted for, with the 0^{+}strength predicted to be lower than the experimental upper limit shown. Because the 1.94 (1^{+}) and $1.95\left(2^{+}, T=1\right)$ states were experimentally unresolved, only a qualitative agreement between the $2^{+}, T=1$ states can be proposed. Ex-

TABLE XII. Spectroscopic factors for ${ }^{21} \mathrm{Ne} \rightarrow{ }^{22} \mathrm{Ne}$.

J_{n}	E*		$100 \times S(j)_{\text {calc }}$				$100 \times S(l)$ exp			
	Calc	$\operatorname{Exp}^{\text {a }}$	$\left(d_{5 / 2}\right)$	$\left(d_{3 / 2}\right)$	$\Sigma(l=2)$	$\left(s_{1 / 2}\right)$	$(l=2)^{\text {b }}$	$(l=0)^{\text {b }}$	$(l=2)^{\text {c }}$	$(l=0)^{\text {c }}$
0_{1}	0	0		9	9		≤ 22			
1_{1}	5.03	(5.36)	59	2	61	10	d	d	e	e
2_{1}	1.39	1.28	94	1	95	0	140	≤ 3	135	
2_{2}	4.14	4.46	12	11	23	10	24	6	34	11
23	4.80	(5.33)		5	5	21	d	d	e	e
3_{1}	5.41	(5.64)	3	18	21		12		24	
4_{1}	3.49	3.36	3		3		≤ 6			
4_{2}	5.49	5.52	25		25		33		56	

[^4]periment and calculation both say that the strength to the $4_{1}^{+}, T=1$ state is weak.
Transitions to members of the $K=1$ band built on the $1^{+}\left(1_{2}\right)$ state also are in qualitative agreement with the calculations. The unresolved 1.94 $\left(1^{+}\right)$and $1.95\left(2^{+}, T=1\right)$ states show an upper limit $l=0$ strength comparable to the calculated strength for the 1_{2} state. The 2_{1} and 3_{3} states show similar agreement with the $3.06\left(2^{+}\right)$and 2.97 $\left(3^{+}\right)$states, for both the $l=0$ and $l=2$ strengths.

Two other states in Fig. 4 show agreement between calculation and experiment. The $3.94\left(1^{+}\right)$ state agrees very well with the $l=2$ strength predicted for the 1_{3} state but has three times as much (0.10 vs 0.03) $l=0$ strength. The $4.36\left(2^{+}\right)$state can be identified with the 2_{2}^{+}state, although there is no quantitative agreement. Comparing the $l=0$ and $l=2$ strengths calculated for the other 2^{+} states, the 2_{2} state is the only one that has more $l=0$ than $l=2$ strength, which is the characteristic of the $4.36\left(2^{+}\right)$state.

There is also quantitative agreement for another state which is presented in Table XI but not shown in Fig. 4. The $5.16\left(2^{+}, T=1\right)$ state has experimental strengths of $0.12(l=0)$ and $0.28(l=2)$ as compared with the calculated strengths $0.10(l=0)$ and 0.23 ($l=2$).

The results for the neutron-pickup reaction ${ }^{23} \mathrm{Na}\left({ }^{3} \mathrm{He},{ }^{4} \mathrm{He}\right)^{22} \mathrm{Na}$ are displayed in Fig. 5. As before, transitions to the ground-state band show quantitative agreement between experiment and calculation. The observed relative strengths of the " $K=0$ " band also agree with the calculations, but the calculations predict larger over-all values, as was the case in the stripping reaction. The observed strengths for $T=1$ levels appear to agree rather well with the model results, except possibly in the case of the 0^{+}state, although for this state the experimental value displayed is an upper limit. For the higher-lying states, the observed strengths are very small, again in qualitative agreement with the predictions.
In Table XII, calculated spectroscopic factors are compared with experimental values ${ }^{29,30}$ for the ${ }^{21} \mathrm{Ne}(d, p)^{22} \mathrm{Ne}$ reaction. There is generally good agreement between the calculated and experimental values except for the 3_{1} state seen
for $E_{d}=10.2 \mathrm{MeV}$ and the 4_{2} state seen for E_{d} $=3.22 \mathrm{MeV}$.

IV. SUMMARY

The shell-model calculations presented in this paper for $A=22$ were made in the full basis of Pauli-allowed states for six nucleons distributed among the $0 d_{5 / 2}-1 s_{1 / 2}-0 d_{3 / 2}$ orbits. The calculations used an empirically modified version of Kuo's two-body Hamiltonian that was adjusted to give a best fit to 72 energy levels in this mass region, and the single-particle energy spectrum observed in ${ }^{17}$ O. A large number of observables were calculated with this Hamiltonian, and the predictions compared with other pertinent calculations and with experiments, wherever possible. These observables included excitation energies, electromagnetic transition rates and lifetimes of levels, electric and magnetic moments, and spectroscopic factors for single-nucleon transfer reactions. With only a few exceptions, the calculated quantities are in agreement with existing experimental data. These calculations thus provide a comprehensive theoretical framework for understanding observed phenomena of the $A=22$ systems, and this framework is rigorously connected to equally successful theoretical explanations of the lighter $s d$-shell nuclei. The various "rotational" aspects of the $A=22$ nuclei which are manifest in the experimental data are found to be calculable consequences of coherent motion among the nucleons distributed over the full $s d$-shell space. Moreover, the present calculations predict that these "rotational" phenomena extend through many presently unexplored levels. Finally, comparisons of the present results with those of previous calculations demonstrate the effects both of modifying the two-body Hamiltonian and of truncating the active model space.

V. ACKNOWLEDGMENTS

The authors would like to acknowledge many helpful discussions with Dr. J. B. McGrory, Also, one of us (B.M.P.) would like to thank the staff of the Michigan State University Cyclotron Lab for making his summer visit very enjoyable.

[^5]S. P. Pandya, in Advances in Nuclear Physics, Ref. 1, Vol. 4.
${ }^{3}$ Y. Akiyama, A. Arima, and R. Sebe, Nucl. Phys. A138, 273 (1969).
${ }^{4}$ J. B. McGrory and B. H. Wildenthal, Phys. Letters 34B, 373 (1971).
${ }^{5} \mathrm{~A}$. Arima, M. Sakakura, and T. Sebe, Nucl. Phys.

A170, 273 (1971).
${ }^{6}$ B. H. Wildenthal, to be published.
${ }^{7}$ T. T. S. Kuo, Nucl. Phys. A103, 71 (1967).
${ }^{8}$ J. D. Garrett, R. Middleton, and H. T. Fortune, Phys. Rev. C 4, 165 (1971).
${ }^{9}$ J. D. Garrett, H. T. Fortune, and R. Middleton, Phys. Rev. C 4, 1138 (1971).
${ }^{10}$ I. Kelson, Phys. Rev. 134, B267 (1964).
${ }^{11}$ R. W. Ollerhead, G. F. R. Allen, A. M. Baxter, B. W. J. Gillespie, and J. A. Kuehner, Can. J. Phys. 49, 594 (1971); P. Neogy, Ph.D. thesis, University of Pennsylvania, 1971 (unpublished).
${ }^{12} \mathrm{~W}$. Scholz, P. Neogy, K. Bethge, and R. Middleton, Phys. Rev. Letters 22, 949 (1969).
${ }^{13}$ C. Broude, W. G. Davies, and J. S. Forster, Phys. Rev. Letters 25, 944 (1970).
${ }^{14}$ E. K. Warburton, A. R. Poletti, and J. W. Olness, Phys. Rev. 168, 1232 (1968).
${ }^{15}$ S. J. Skorka, J. Hertel, and T. W. Retz-Schmidt, Nucl. Data 2, 347 (1966).
${ }^{16}$ K. Nakai, F. S. Stephens, and R. M. Diamond, Nucl. Phys. A150, 114 (1970).
${ }^{17}$ D. Schwalm and B. Povh, Phys. Letters 29B, 103
(1969); and private communication.
${ }^{18}$ K. W. Jones, A. Z. Schwarzchild, E. K. Warburton, and D. B. Fossan, Phys. Rev. 178, 1773 (1969).
${ }^{19}$ R. W. Kavanagh, Bull. Am. Phys. Soc. 12, 913 (1967).
${ }^{20}$ A. E. Blaugrund, A. Fisher, and A. Schwarzchild, Nucl. Phys. A107, 411 (1968).
${ }^{21}$ P. Paul, J. W. Olness, and E. K. Warburton, Phys. Rev. 173, 1063 (1968).
${ }^{22}$ J. G. Pronko, C. Rolfs, and H. J. Maier, Phys. Rev. 167, 1066 (1968).
${ }^{23}$ E. K. Warburton, J. W. Olness, and A. R. Poletti, Phys. Rev. 160, 938 (1967).
${ }^{24}$ E. K. Warburton, L. E. Carlson, G. T. Garvey, D. A. Hutcheon, and K. P. Jackson, Nucl. Phys. A136, 160 (1969).
${ }^{25}$ W. Kutschera, D. Pelte, and G. Schrieder, Nucl. Phys. A111, 529 (1968).
${ }^{26}$ A. W. Sunyar and P. Thieberger, Phys. Rev. 151, 910 (1966).
${ }^{27}$ H. Schmidt, J. Morgenstern, H. J. Körner, J. Braunsfurth, and S. J. Skorka, Phys. Letters 24B, 457 (1967).
${ }^{28}$ L. Davis, Jr., D. E. Nagle, and J. R. Zacharias, Phys. Rev. 76, 1068 (1949).
${ }^{29}$ A. J. Howard, J. G. Pronko, and R. G. Hirko, Nucl. Phys. A150, 609 (1970).
${ }^{30}$ B. Chambon, D. Drain, M. Yaker, G. Dumazet, G. Salmer, H. Beaumevieille, M. Lambert, and Nguyen Van Sen, Nucl. Phys. A136, 311 (1969).

Accurate Excitation Energies of ${ }^{27} \mathrm{Al}$ from 5.4 to 8.4 MeV and Identification of $T=\frac{3}{2}$ Levels*

E. A. Kamykowski and C. P. Browne
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556
(Received 8 May 1972)

> Excitation energies of 57 states in ${ }^{27} \mathrm{Al}$ from 5.4 to 8.4 MeV were measured with accuracy of ± 2 to $\pm 3 \mathrm{keV}$. Energies of particles from the ${ }^{27} \mathrm{Al}\left(p, p^{\prime}\right)^{27} \mathrm{Al}$ and ${ }^{29} \mathrm{Si}(d, \alpha)^{27} \mathrm{Al}$ reactions were measured with the Notre Dame $50-\mathrm{cm}$ broad-range spectrograph. In the range 5.4 to 7.0 MeV values agree within 5.5 keV with other recent $\left(p, p^{\prime}\right)$ work and within 4.6 keV with recent γ-ray work. Systematic discrepancies in the $\left(p, p^{\prime}\right)$ values increasing to 20 keV at 8.3 MeV are found. Resolution was sufficient to measure excitation energies separated by 5 keV . The existence of two pairs of closely spaced levels in the region of the first $T=\frac{3}{2}$ state was confirmed. The first and second $T=\frac{3}{2}$ levels were identified by the low cross section of the ${ }^{29} \mathrm{Si}(d, \alpha){ }^{27} \mathrm{Al}$ reaction. The value of this accurately measured proton spectrum for calibration purposes is discussed.

I. INTRODUCTION

This work was inspired by comments of Barnes, ${ }^{1}$ that the strong excitation by the ${ }^{29} \mathrm{Si}(d, \alpha)^{27} \mathrm{Al}$ reaction of a level ${ }^{2}$ at the position of the first $T=\frac{3}{2}$ state in ${ }^{27} \mathrm{Al}$, probably did not represent a strong violation of the isobaric-spin-selection rule but rather the existence of a $T=\frac{1}{2}$ level very near the $T=\frac{3}{2}$ level. We soon found disagreements between our excitation energies and those recently measured elsewhere and this led us to extend the work
to provide a very accurate set of excitation energies up to 8.4 MeV . An accurately known spectrum such as this, containing many sharply defined groups, should be very useful for energy calibration of spectrographs and other detectors. This range of excitation energies, which includes the second $T=\frac{3}{2}$ state, was measured with both the $\left.{ }^{29} \mathrm{Si}(d, \alpha)\right)^{27} \mathrm{Al}$ and ${ }^{27} \mathrm{Al}\left(p, p^{\prime}\right)^{27} \mathrm{Al}$ reactions.
A number of precision measurements of excitation energies of the ${ }^{27} \mathrm{Al}$ nucleus have been made through the years. Browne ${ }^{2}$ used the ${ }^{29} \mathrm{Si}(d, \alpha)^{27} \mathrm{Al}$

[^0]: ${ }^{\text {a }}$ Reference 7.

[^1]: ${ }^{\text {a }}$ Where a spin assignment is tentative, the excitation energy is in parentheses.

[^2]: ${ }^{\text {a }}$ Reference 5.
 ${ }^{\mathrm{b}}$ Rotational model calculated by HMWP.
 ${ }^{c}$ Reference 16.
 ${ }^{\mathrm{d}}$ Reference 17.
 ${ }^{\mathbf{e}}$ Reference 15.

[^3]: ${ }^{\text {a }}$ The spin assignment for the $4.36-\mathrm{MeV}$ state is tentative.
 ${ }^{\mathrm{b}}{ }^{21} \mathrm{Ne}\left({ }^{3} \mathrm{He}, d\right)$ experimental spectroscopic factors are from Ref. 8.
 ${ }^{c}{ }^{23} \mathrm{Na}\left({ }^{3} \mathrm{He}, \alpha\right)$ experimental spectroscopic factors are from Ref. 9.

[^4]: ${ }^{\text {a }}$ Spin assignment is tentative for states in parentheses.
 ${ }^{\mathrm{b}} E_{d}=10.2 \mathrm{MeV}$ (Ref. 29).
 ${ }^{c} E_{d}=3.22 \mathrm{MeV}$ (Ref. 30).
 ${ }^{\mathrm{d}}$ States at 5.33 and 5.36 MeV unresolved. $\Sigma\left(2 J_{f}+1\right) S_{\exp }(l=2) \leq 2.5$ and $\Sigma\left(2 J_{f}+1\right) S_{\exp }(l=0)=2.2$ compared with $\Sigma\left(2 J_{f}\right.$ $+1) S_{\text {th }}(l=2)=2.08$ and $\Sigma\left(2 J_{f}+1\right) S_{\text {th }}(l=0)=1.35$.
 ${ }^{e}$ States at 5.33 and 5.36 MeV unresolved. $\left(2 J_{f}+1\right) S_{\exp }(l=2)=2.76$ and $\Sigma\left(2 J_{f}+1\right) S_{\exp }(l=0)=2.03$ compared with $\left(2 J_{f}+1\right)$ $S_{\text {th }}(l=2)=2.08$ and $\Sigma\left(2 J_{f}+1\right) S_{\text {th }}(l=0)=1.35$.

[^5]: *Work supported in part by the National Science Foundation.
 ${ }^{1}$ J. B. French, E. C. Halbert, J. B. McGrory, and S. S. M. Wong, in Advances in Nuclear Physics, edited by M. Baranger and E. Vogt (Plenum, New York, 1969), Vol. 3.
 ${ }^{2}$ E. C. Halbert, J. B. McGrory, B. H. Wildenthal, and

