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Techniques have been developed for performing microscopic model DWBA calculations of inelastic nucleon-nucleus 
scattering using large basis shell-model wave functions to describe the nuclear states involved. For the case of 138Ba at a 
bombarding energy of 30 MeV, we obtain good fits to the data by including the exchange amplitude in the DWBA and 
assuming a state and multipole independent polarization charge. 

Major advances in the microscopic describtion of in- 
elastic proton scattering are being made through the 
use of realistic effective interactions [ 1, 2], the treat- 
ment of "core polarization" [3 -8 ] ,  and inclusion of 
the exchange amplitude in the distorted wave calcula- 
tion [1, 9 -11 ] .  The evolution from a ubiquitous col- 
lective model approach to a realistic microscopic ap- 
proach has recently been reviewed by Satchler [ 12]. 
Microscopic analyses of the (p, p') reaction have to 
date concentrated on doubly closed shell nuclei such 
as 160 and 40Ca, for which particle-hole wave functions 
are available, and on nuclei with one or two valence 
nucleons, where simple shell-model wave functions can 
be used. This note describes the expansion of such mi- 
croscopic analyses to the much larger number of nuclei 
which have many active valence particles and whose 
states can be described by large basis shell-model wave 
functions. 

We have made an initial application to the N = 82 
nucleus 138Ba. For 138Ba, we obtain good fits to the 
shapes of the angular distributions and find polarization 
charges which are essentially independent of the multi- 
polarity of the transition. 

The experimental data, shown in figs. I and 2, were 
obtained at 30 MeV bombarding energy, using protons 
from the MSU sector-focussed cyclotron and an Enge 
split-pole spectrograph to detect the scattered particles. 
Energy resolution was approximately 8 keV, FWHM. 
A full discussion of the experimental work will be given 
elsewhere [ 13]. 

* Research supported in part by the U.S. National Science 
Foundation 

Proton [14, 15] and neutron [16, 17] transfer 
reactions on the N = 82 nuclei indicate that Z= 50, 
N = 82 forms a good doubly closed core. The N= 82 
nuclei are formed by adding protons to this core; 
138Ba has six such valence protons. The basis space 
for the shell-model wave functions we use [18] con- 
sists of the lg7/2 and 2d5/2 orbits, plus one-proton ex- 
citations from this subspace into the 3Sl/2 or 2d3/2 
orbits. The two-body interaction for the shell-model 
calculation was parameterized in terms of the modi- 
fied surface delta interaction (MSDI),.with the four 
single particle energies and the two MSDI parameters 
fixed by fitting to energy levels of known jTr in the 
N =  82 nuclei from 136Xe through 140Ce. Eigenvalues 
and eigenfunctions calculated for N = 82 nuclei from 
A = 134 - 140 with this interaction give good agree- 
ment with experimentally known energy levels, pickup 
and stripping spectroscopic factors and electromagnetic 
data [18, 19]. 

In order to calculate inelasic scattering cross sections 
from these wave functions, it is necessary to obtain the 
structure amplitudes S(JiJfJ; TiTfT; ]lJ2), where the 
notation is that of Madsen [9, 20]. We have modified 
the Oak Ridge-Rochester shell-model codes [21] to 
calculate these amplitudes in a form convenient for 
use in DWBA calculations. The distorted wave calcula- 
tions in the present case were performed with the code 
DWBA 70 [22] of Raynal and Schaeffer, which inclu- 
des the knock-on exchange amplitude. This code is 
based on a helicity formalism [23] which automatical- 
ly accounts for all values of orbital angular momentum 
L and spin angular momentum S that can be transfer- 
red in a given transition. The exchange contribution is 
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Fig. 1. Comparison of the direct (dashed line) and direct + ex- 
change (solid line) calculations with the experimental data for 
2 +, 4 +, and 61" states in 13aBa. A polarization charge a e = 0.8 
was used in all of the illustrated calculations. 

very important  in these calculations, especially for the 
higher L transfers, as is seen in fig. 1. 

The pertinent details of  the inelastic scattering cal- 
culation are as follows. The optical model parameters 
of Becchetti and Greenlees [24],  which provide a very 
good fit to our own elastic scattering data, are used to 
describe the entrance and axit channels. Harmonic os- 
cillator wave functions w i t h ~ w  = 7.77 MeV are used 
to describe the bound states. The two-body interaction 
between the projectile and target nucleons had a Serber 
exchange mixture and a Yukawa radial dependence. 
The range of  the force was taken to be 1.4 F and its 
strength (F~pp 0 = - 9.0 MeV, where l~pp 0 is the S = 0 
part  o f  the proton-proton interaction) was chosen to 
be consistent with the results of  a recent survey of  in- 
elastic scattering analyses [25].  

The (p, p ' )  cross section we then calculate for the 
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Fig. 2. Comparison of the direct + exchange calculations with 
the experimental data for 2~, 4~ and (6~') states in 13aBa. 
Again, a e = 0.8 was used in the illustrated calculations. 

first 2 + state is a factor of  18 smaller than the data. 
Most of  this difference is explained, however, if the 
contribution to the cross section from nucleons out- 
side the explicit shell-model basis space is considered. 
In the case of  electromagnetic transitions these effects 
are accounted for by renormalizing the charge on the 
nucleons, i.e., by introducing a "polarization charge".* 

* The polarization charge is defined by 8 e = eeff - 1(1 -z)e .  
eef f is the effect ive  charge, and z=+l  for neutrons, -1  for 
protons.  See refs. [8,  2 7 ] .  
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Table 1 
Effective charges for transitions in 138Ba 

Transition L b) 6 c) 8 c) 

0 +~ 2 + 2 0.82 1.17 

0+~ 4 + 4 0.86 1,29 

0 +~ 61- 6 0.61 0.53 

0+~ 2 + 2 0.98 0.62 

0+~ 4~ 4 1.07 0.62 

0+~ (6+) a) 6 0.73 0.63 

a This state has not been unambiguously assigned 6 +, but its 
angular distribution, togther with the shell-model predic- 
tions, suggest this assignment. 

b This is the L transfer for the dominant amplitude. Non-nor- 
mal parity amplitudes also contribute to the cross section, 
and are included in the calculations, see ref. [ 1 ]. 

c Calculated from the relationship [(1 + fie(1 + 2N/Z)] 2 = 
trexp/Otheory where the theoretical cross section Otheory is 
calculated using the complete wave functions as described 
in the text. 

d Calculated as described in c, except that Otheo r.yis calculated 
using only the largest component of the particular wave 
functions involved. The shape of the predicted angular dis- 
tributions for these wave functions is substantially poorer 
than that given by the complete wave functions, particularly 
for the high spin states. 

Madsen [9] and McManus [8] have shown that one 
can similarly correct for finite basis-space effects in 
inelastic scattering by renormalizing the strength of  
the two-body force which mediates the transition. 
Thus one has an "effective force" for (p, p')  which is 
analogous to the "effective charge" for electromagnet- 
ic transitions. 

One can get an idea of  the amount of  core participa- 
tion in the low lying states of  138Ba by noting that for 
the wave functions used here, the calculated B(E2; 
2~ -+ 0~)is a factor of  3.2 too small [19] if no polar- 
ization charge fe is used. This implies that (1 + 6e)2 = 

= 0.8, or 6e = 0.8, To account for the contribution to 
the (p, p')  reaction o f  protons excited from the core, 
one therefore renormalizes the interaction strength 
Vpp to (1 + 6e)Vpp. However, neutron core excitations 
also contribute to (p, p')  cross sections and are, in fact, 
more important than those for protons, since the pro- 
ton-neutron two-body interaction Vpn is stronger than 

Vpp. If  it is assumed, as has been found by Bernstein 
[26] and Astner et al. [27] that contributions from 
neutron and proton core excitations are approxima- 
tely in the ratio o f  N / Z  (the ratio expected in a col- 
lective model picture), we need an additional term, 
(N/Z)6 e Vpn. For the Serber exchange mixture we 
use, Vpn = 2Vpp. Thus one obtains a total effective 
force of(1  + 6e) Vpp 4- 2 ( N / Z ) f  e Vpp = [1 + t~e(l + 
+ 2N/Z)] Vpp, i.e. the strength is increased by a fac- 
tor of (1  + re(1 + 2N]Z)).  This simple but reasonable 
model for core excitation predicts an enhancement 
factor of  17.2, compared to the 18 which is required 
to normalize the 2 + calculation to the data. 

With this good agreement as evidence for the vali- 
dity of  our model, we have inverted the process and 
have used the measured enhancement factors to ex- 
tract polarization charges for other transitions in 
138Ba, for which electromagnetic transition data are 
not available. Calculations of  cross sections were per- 

+ + 4~, + 6~statesin formed for the 2~, 22, 41 , 61 and 
138Ba. (The notation isJ~ r, where i refers to the first 
or second excited state of  spin and parity jTr.) The en- 
hancement factors were extracted by normalizing the 
experimental and theoretical integrated cross sections 
over the angular range of  the data. The results are 
shown in column 3 of  table 1 and we see that the 8 e 
are constant within the probable overall uncertainty 
in the analysis. The predicted angular distribution are 
shown in figs. 1 and 2. In all cases the theoretical cur- 
ves shown have been calculated with fie = 0.8, to show 
the agreement in both shape and magnitude which we 
obtain with a state and multipole independent polari- 
zation charge. 

We have also performed calculations including ten- 
sor forces [25],  and find that tensor force contribu- 
tions are negligible. The spin -orbit force may be im- 
portant for the 6 + state [28] and this possibility is 
being investigated further. 

We conclude with the following points. We have de- 
veloped techniques for using large basis shell-model 
wave functions in microscopic DWBA calculations of  
inelastic proton scattering. Such wave functions are 
now invailable for most nuclei up through the nickel 
isotopes, and for the zirconium, N = 82, and lead re- 
gions, making it possible for the first time to treat in- 
elastic scattering in a consistent fashion over a large 
part of  the nuclidic chart. The first application has 
been to 138Ba, and we obtain good agreement with 
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the experimental angular distributions providing that 
the effect of exchange and core polarization are in- 
cluded. In addition, comparison of predicted and 
measured cross sections indicates that the polarization 
charge parameter ~e for low-lying states in 138Ba is es- 
sentially state and multipole independent,  a result 

which does not  follow (see table 1) if one component  
wave functions are used. 
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