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The nuclear shell model is analysed as & generic example of & many-fermion quan.
tum system with strong interaction. The exact solution of the eigenvalue problem
with a realistic residual interaction in truncated Hilbert space gives the energy
spectrum and cigenstates which are the complicated superpositions of basic config-
urations projected onto good angular momentum and isospin. Although the energy
spectra reveal the standard signatures of quantum chaos in local level statistics,
they do not reflect the evolution of complexity along the spectrum. The complax-
ity and similarity of individual states are studied by means of information entropy
in the shell model basis. The interrelation between quantum chaos, Fermi liquid
theory and thermalization is discussed.

1 Introduction

Although the mumber of publications devoted to quantum chaos increases ex-
ponentially, see for example!,3:348.678 ang references therein, with the rate
which exceeds tbe rate for the entire volume of scientific publications by a
factor 4, one of the main physical questions remains unanswered: What jg the
role of chaotic dynamics in aectual many-body quantum systems with strong
interaction between the constituents?

We will not diseuss hem the for mal problems of the rigorous definition
of quantum chaos. We just mention in this connection that, contrary to the
widely accepted viewpoint that quantum chaos exists only as a shadow of clas-
sical chaoticity, the situation seems to be opposite: classical chaos is a transient
phenomenon specific for the short wavelength limit. After some time which
in reality can be very long, quantum spreading prevails over the divergence
of semiclassical trajectories. However this theoretical statement does not fa.
cilitate the real problem of addressing the physical question of the preceding
parageaph. [t can be done only by the analysis of specific realistic systems.

Such an analyst frequently has two limitations. First, it is carried out
for the simplest systems with a small number of degrees of freedom. The
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prototypical case is a quantum billiard where "one-body chaos” is generated
by the shape of the potential. Second, the analysis often stops at the level
statistics assuming that the Wigner nearest level spacing distribution and/or
the spectral rigidity display generic signatures of quantum chaos. The first
limitation eliminates such an important source of chaotic dynamics as particle
interaction which distinguishes realistic " many-body chaos” ®. The second
limitation deliberately excludes from the consideration the evolution of chaotic
signatures along the spectrum which is hidden in the structure of generic wave
functions. '

Our approach }%:11:13 hag 5 primary goal to overcome these limitations.
Atomic nuclei present an appropriate object for such studies by the multitude
of reasons:

¢ the nucleus is a strongly interacting Fermi system;

e nuclear spectroacopy shows onset of chaos in the local level statistics at
relatively low excitation energy of 3-5 MeV 13,14.15,

* Bohr’s picture of compound states 15 which is the base of all statisti-
cal approaches to nuclear phenomena strongly resembles the notion of
quantum chaos;

e many experimental results as, for example, Porter-Thomas distribution
of widths of neutron and proton resonances 1'23, enhancement of weak
interactions 17, parity nonconservation in fission 18, spreading width of
isobaric analog states19:2%, saturation of widths of giant resonances 3122,
narrowing of multiple giant excitations 2324, fluctuations in rotational
cascades 2526 and so on, were interpreted in terms of chaotic dynamics;

e shell model calculations determine the semiempirical hamiltonians which
work well in the region of available spectroscopic information ?” and can
be extrapolated beyond this region;

e it is possible to satisfy the conservation laws and ensure that the eigen-
states have correct exact quantum numbers;

e the corresponding dimensions, of the order 10%, are sufficient for obtain-
ing statistically reliable results, and, at the same time, are practical to
be effectively and rapidly handled 22,

Encouraging studies have already been carried out using realistic models
79,30,31,32,33 g1 d simplified schemes34:3%. Similar work was performed for heavy
atoms with dimensions of several hundreds 36,
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2 Shell-model calculations

We base our analysis on the exact diagonalization of the effective semiempiri-
cal hamiltonian H in a large N x N Hilbert space spanned by a truncated set
of shell-model] configurations. Each configuration is characterized by the dis-
tribution (”partition”) of independent fermions over available spherical single-
particle orbitals. Within a configuration, various ways to occupy the magnetic
substates of the j-levels give rise to the “m-scheme” Slater determinants.

The hamiltonian H keeps rotational and isospin invariance. The necessity
of using the appropriate J*T states was demonstrated in the first studies of
quantum chaos in the shell model ?°. The basis states jk) have good quantum
numbers of the total angular momentum J, its projection M, parity =, isospin
T and its projection T3. Therefore they are far from being simple Slater de-
terminants. This ”premixing” is absent in the analysis of high spin rotational
bands in the framework of the cranking model 26.

The effective shell-model hamiltonian H consists of the independent pat-
ticle (one-body) part Ho and the residual interaction H’ of the two-body
type. The unperturbed hamiltonian H, describes noninteracting fermions in
the mean field of the appropriate spherical core. In the projected basis |k}, the
residual interaction H’ has both diagonal and off-diagonal matrix elements.
The diagonal part already lifis some degeneracy within a partition. Full di-
agonalization in each sector with given exact quantum numbers leads to the
stationary states |a},

Hla} = Eg4la), (1)
which can be represented by superpositions of unperturbed states |k),
la) = 3 CEIk). (2)
k

The orthonormalized amplitudes C can be taken as real in the case of the
interaction invariant under time reversal. A number N, of significant compo-
nents |k) characterizes the delocalization of a state |a) in the given basis. The
corresponding amplitudes have an order of magnitude Ny V2 A completely
delocalized function would have N, close to the space dimension. Direct es-
timates 17 show that the matrix elements of simple operators between such
complicated states are suppressed ~ N5 1/2 if the coefficients (2) are chaotic
(" N-scaling”), the phase coherence is absent and only the weights W& ~ N1
are important for the estimates. With the level density enhanced roughly by
a factor N,, this qualitatively explains enhancement of weak interactions and
saturation of the spreading widths.



We will discuss mostly the results for a system of valence particles in
one major shell, for example 12 particles in the sd shell (24 states including
0dg;3, 0ds;; and 1sy7) when the one-body part of the total hamiltonian is
due to the core 10. This system mimics (for T3 = 0) a subset of states in the
%831 nucleus. We use the Wildenthal hamiltonian 27 obtained by fitting more
than 400 binding energies and excitation energies for the sd-shell nuclei; for
the recent comparison of experiment and theory in 22Si see ®”. Similar studies
were performed using the ” proton-neutron” (p - n) formalism with no explicit
isospin where we used, along with the Wildenthal interaction rewritten for
the p — n scheme (WPN), the interaction (WPNC) which explicitly violates
isospin on the experimentally allowed level3%. All calculations were carried out
with the computer program OXBASH?2, which uses the m-scheme basis states
together with the projection operators to construct and diagonalize matrices
with good J and T' in the isospin formalism and good J in the p—n formalism.

Taking into account J and T conservation, there are 63 non-vanishing
two-body matrix elements {(j1j2)s7|H’|(j3js)s7} in sd-shell space. Being in
general of the order of an MeV, the two-body matrix elements are not random;
for example they show pair correlations in the T = 1 states with even angular
momenta. In our calculations, we mostly use the J*T = 2%0 and 0+0 classes
of states, with dimensions 3276 and 839, respectively.

The signatures of quantum chaos come exclusively from the particle inter-
action (Hy is very simple and does not lead to one-body chaos). Some relevant
properties of the hamiltonian can be noticed prior to actual diagonalization.
Long ago such analyses were carried out by statistical spectroscopy 3.

Diagonal matrix elements are dominated by the one-body part Hy. The
two-body diagonal contributions split the degenerate levels within the parti-
tions so that each partition partly overlaps with the other partitions. In our
A = 28 example, the diagonal part of the hamiltonian is spread from —120
MeV to —60 MeV. The basis states [k) will be mixed by the off-diagonal part
H'. Due to the premixing related to J and T projection, the two-body ma-
trix elements between the many-body basis states are reduced by an order of
magnitude. as it should be according to the N-scaling!?: the dimension of a
partition is typically 102 and the reduction factor is ~ N=1/2,

Without the full knowledge of the strength function, one can describe the
fragmentation of simple states by its lowest moments 3°. The centroid £}
of the energy distribution of the basis state |k) coincides with the diagonal
element Hy;. The spread of the unperturbed energies due to the diagonal
elements of the interaction can be characterized by the rms deviation Ag of
the centroids £} from the energy center; for the 2+0 states Ag =~ 8 MeV. The
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Figure 1;: Energy dispersions o) of basis 2% 0 states

energy dispersion of basis states due to the off-diagonal interaction is

o} =) (Ba— Ea)Wg = 3 (H)). (3)
« I(#k)

The energy dispersion (3) of individual 2%0 basis states turns out (Fig. 1)
to be uniform, o3 = @ = 10 MeV over the entire space. The remnants of
the partition structure are visible at the low edges of partitions. This might
be caused by a random choice of the initial simple states in the projection
procedure. The dispersion o, is closely related to the spreading width (in the
"strong coupling” case33:40 T = 25). The uniformity of the dispersion supports
the idea of saturation2? which has important consequences for damping of giant
resonances.

Since variations of the effective spreading (3) of the basis states around
the mean value & are small, one can work out *! a simple truncation method
to reduce a huge shell-model hamiltonian matrix to a manageable size. The
method was tested for the sd and fp shells and was proven to be very efficient.
In the middle of the fp shell (JT dimensions of the order of a few million) the
size of the matrix is effectively reduced to a few thousand.

The partition structure gives rise to distinct band-like features. As a rule,
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the interaction between the states |k), which are widely separated in centroid
energy Ej, is weaker than between the close configurations. This interaction
energy range can be measured using the definition 42

uz = ;12- X':(Ek - E!)zlf?kllz- (4)

The banded structure of the shell-model hamiltonian within the J*T class is
the reflection of the selection rules specific for the two-body interaction. In
contrast to the banded random matrices (BRM) 434448 which have no regular
diagonal structure or the closer two-body random ensemble 2%, our hamilto-
nian mairix is neither random nor banded in the strict meaning of this term
because it is impossible to reach a precisely banded form by reordering. The
effective width of the band is w =3 7.6 MeV both for 00 and 2+0 states. This
corresponds to b = 200 {0 250 unperturbed states within the band. The param-
eter 42 /N is therefore very large in our case which implies that the localization
properties of the eigenstates are different from those considered in 5.
The primary characteristic of the spectrum is the level density

P(E) = 8§(E - E,). (5)

It is normalized to the total number of states, [dEp(E) = N. The total
dispersion of energy

A= j dE(E - BYp(E) = % + AL (6)

consists of (added in quadratures) the spread of centroids defined by the di-
agonal part of the hamiltonian and the fragmentation width (3) due to the
oft-diagonal part. With the above-mentioned values of # and Ag for the 2+0
states we get op = 13 MeV.

The random matrix theory usually considers matrix elements of the hamil-
tonian as random normally distributed variables. Canonical Gaussian ensem-
bles with no regularly increasing diagonal elements have nothing to do with
the evolution along the spectrum (”secular” behavior) and can properly ac-
count for the local correlations and fluctuations only. Moreover, the actual
distribution of off-diagonal matrix elements in the ”"natural” shell model basis
is quite different from Gaussian. The analysis 3 of the similar problem for a
heavy atom showed that the actual distribution can be written in the form
analogous to the Porter-Thomas distribution,

Pn(ﬁtl) = %[(21?)"‘“1‘(& + 1)]—1”?“158-]}?..[]23 M
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Figure 2: The distribution of ofi-diagonal matrix clements (in MeV) between the 240 states
(histogram), dashed line - pure exponential fit, eq.(7) with x = 0, solid line - fit with x = -2,

where I' stands for the I-function and x is a numerical parameter. The dis-
tribution of matrix elements found in the shell-model calculations ¢ and in
the interacting boson model*7 also agree with (7). Since our study reveals a
very similar picture, the conclusion is plausible that this class of distributions
is generic for the many-body interactions in heavy atoms or nuclei. For the
distribution (7) taken literally for all values of Hu, the mean absolute value
of Hy; is 2(x + 1)H. The power « found in 3¢ is close to the Porter-Thomas
value -1/2.

The Porter-Thomas distribution for the reduced widihs of the resonances
follows from the Gaussian distribution for the decay amplitudes A if the pro-
portionality v o |A|? is assumed. Therefore eq.(7) implies that the normally
distributed quantities in the realistic case are not the off-diagonal matrix ele-
ments themselves, as would be the case in Gaussian random matrix ensembles,
but rather some quantities resembling square roots of them. The reason might
be the domination of multipole-multipole forces. This is by construction the
case in the interacting boson model. The Coulomb interaction in atoms is
actually determined by a small number of low multipoles. The apecific role of
the pairing and quadrupole interactions in nuclei is also well known.

The distribution (7) diverges at small values of the matrix elements if
& € —1. In the actual analysis it is difficult to make a precise fit to this region.
Fitting the rest of the histogram we allow all values of k. The distribution
function for 5.36x10° off-diagonal matrix elements between the 2+0 states
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is shown in Fig. 2. Except for the region around zero and extreme wings
corregponding to the exceptionally big elements, the distribution is in good
agreement with expression (7) for k = —2. The fit covers a change of matrix
elements by four orders of magnitude. The off-diagonal matrix elements for
the 00 states agree with the distribution (7) at x = —1. The origin of the
apparent difference in the preexponent factor for different classes of states is
not clear at this point.

3 Level statistics

The total density p(E) of states with given values of exact integrals of motion
vanishes at boundaries of the finite spectrum, being maximum in the middle.
The GOE predicts the Wigner semicircle rule for the level density. On the
other hand, due to the two-body character of interaction there is a noticeable
number of vanishing matrix elements in the truncated configuration space, and
all many-body matrix elements are determined by a small number of the two-
body matrix elements. However the realistic interaction is not strong enough to
destroy completely the partition structure. In such cases, we should expect the
level density p(E) to be closer to the Gaussian shape ®. The transition from
Gaussian to semicircle level density occurs 433 when many-body forces are
introduced, lifting the selection rules for interactions between the partitions.
The two-body matrix elements are the same for all classes of states with various
J and T which can induce the correlations between the classes,

Depicting the level densities for 0+0 and 2+0 states as histograms we
can fit both of them, Fig. 3, by the Gaussians with the same values of the
centroid Ep = —90 MeV and the dispersion og = 13 MeV predicted above.
The Gaussian shape of the level density, with the smaller dispersion Ag ~
8 MeV, is formed entirely due to the combinatorial nature of the fermionic
excitation spectrum already for the unperturbed energies Hi; with no off-
diagonal interaction. In the p — n formalism, we get practically the same
results for the level density of the superpositions of the states with different
(all) isospins. The different isospin sectors have similar properties defined by
a common two-body interaction.

- We can also generate the random matrix ensemble defined by the actual
exponential distribution of the matrix elements (7). Then the many-body ma-
trix elements are uncorrelated, and the level density agrees with the semicircle
law. The difference between the empirical Gaussian level density and the semi-
circle should be ascribed to the correlations within the many-body hamiltonian
determined by a small number of two-body matrix elements regardless of their
regularity or randomness. The initial part of the spectrum agrees also with the
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Figure 3: Level densities for the 0*0 with no off-diagonal interaction (panel a) and for the
00 and 2+0 states with the realistic hamiltonian, panels b and c, respectively. The results
of calculations are shown by the histograms and Gaussian fits by the dashed lines.

Fermi-gas level density ? but at high excitation energy the Fermi-gas approach
breaks down due to limitations of the finite Hilbert space.

The degeneracies caused by the shell structure in the spherical mean fieid
are lifted by the residual interaction. In the stochastic limit, the mixing by
the off-diagonal hamiltonian leads to the level repulsion and to a more uniform

level spacing distribution. It results in the nearest level spacing distribution
close to the Wigner surmise

Pwy(s) = -;-ae'('l 0e? (8)

- The linear repulsion and Gaussian tail are the distinctive features of chaotic

level statistics in contrast to the Poisson distribution of random events Pp(s) =
e~* characteristic for integrable systems. Here s = (Eyy1 — Eo)/D = a1 —
Ea is the nearest neighbor spacing in units of the local average spacing D.
This rescaling, or unfolding?, E, —+ &,, is important to separate local level
correlations from the global secular behavior.

Fig. 4 shows the nearest level spacing distribution P(s) for 0*0 states
and the variable residual interaction. The relative intensity of the off-diagonal
matrix elements is equal to A = 0.0,0.1 and 0.2, respectively. The noninter-
acting case reveals the Poisson-like distribution. The transition to the Wigner
distribution occurs at A as0.2 of the realistic value, when typical off-diagonal
matrix elements are of the order of the mean level spacing. The level spacing
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distribution is universal as can be seen for the other J™T classes. An analy-
sis shows that the interpartition interaction is responsible for establishing the
Wigner level spacing distribution. Diagonalization within the single largest
partition alone both for 010 and for 2+0 states, results in a distribution with
an excess of small and large spacings. Qualitative features of the Wigner dis-
tribution appear after the diagonalization is performed in the model space of
the three largest partitions. The p—n formalism reveals the intermediate level
spacing distribution due to the absence of mixing and repulsion between levels
of different isospin. It is known that a superposition of many independent level
sequences leads to the Poisson limit 4%,

An interesting theoretical problem is related to the precise form of the
level repulsion at small distances s. The GOE and regular dynamics predict
the behavior P(s) x s°, s — 0, with =1 and 8 = 0, respectively. There
is no consistent theory explaining how the Poisson level spacing evolves into
the Wigner distribution as the stochastization occurs and levels repel each
other. Various scenarios include (i} a decreasing finite value of P(s = 0)
determined®° by the regular and chaotic volume fractions of the classical phase
space (the similar change was found ®"%2 if the decay channels are open and
the levels acquire the finite lifetime); (ii) the fractional power law P(s) ~
87, 0 < B < 1%, uged with variable success in interpolation formulae 37
(the correlation of # with the localization of wave functions was pointed out
in 7); (iii) the linear repulsion in a narrow region of spacings comparable to
the magnitude of perturbation as implied by perturbation theory; (iv) the
logarithmic singularities ~ In{1/s) due to the presence of strictly forbidden
5% or exponentially small *® matrix elements. The perturbative arguments do
not take into account the abundance of small off-diagonal matrix elements
which seems to be a generic feature of realistic systems. In the semiclassical
domain it can occur if the classical phase space consists of separated parts. The
degeneracy of the states localized in different areas would lead to the Poisson
distribution of level spacings. However the quantum tunneling restores the
communication between those areas, To study the region of & < 1 with high
precision, one needs much better statistics. It can be achieved combining
properly the data for different classes of states and for the variable interaction
strength.

It is known 3.5¢:57 that chaotic dynamics lead to rather rigid spectra. The
level repulsion creates a sequence of levels which ” crystallize”; the fluctuations
are suppressed in comparison with a pure random sequence. As an appropriate
quantitative measure, the spectral rigidity A(L) is used,

4L
A =mip [ FNE) - 4z - B).. ®)
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Figure 4: Nearest level spacing distribution (histograms) compared to the Wigner surmise
{solid lines) and the Poisson distribution for the 0+0 states at different interaction strength
A =0, 0.1 and 0.3 (panels a,b and c, respectively).

]

Here the average is taken of integral deviations of the cumulative unfolded level
number N'(£) from the best linear fit over various (overlapped) segments of
length L. For a random level sequence with the Poisson nearest level spacing
distribution, the deviation grows linearly, A(L) = L/15. For the chaotic case
and the Wigner distribution (8), the spectra are rigid. Starting at small L
with the same linear behavior, the deviation grows logarithmically at L 3 1,

A(L) = ;15-'1n L - 0.007. (10)

In the semiclaesical limit 57, A(L) is expected to saturate at a nonuniversal
value of L = Lmae = 2¥A/tmin D determined by the shortest periodic orbits
with a period tmin. The number L., measures the Weisskopf recurrence time
of a wave packet, 2xrh/D, in natural units of the shortest period. At L > Lo,
one expects pseudooscillatory behavior with constant A(L).

Using our 2+0 states we trace the behavior of A(L) up to very large L. The
results, Fig. 5, display an agreement with the GOE prediction with no evidence
of saturation up to L = 150. At higher L, the spectral rigidity decreases
revealing the upbend from the GOE curve. Such behavior is known in "one-
body chaos” (anisotropic Kepler problem®3, Sinai billiard 3? or the experiment
with a superconducting stadium billiard %°) where the deviations start at much
smaller L. According to Mottelson's conjecture ®!, the remnants of regular
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Figure 5: The spectral rigidity A(L) for the 30 states in the Limit of large L, L < 1200
(panel s} and L < 2000 (panel b); squares {calculations), dashed line (Poisson statistics)
and solid line (the GOE prediction).

behavior determine dynamics at times too short to resolve the signatures of
chacs. For the stadium billiard ®® the effect is due to the marginally stable
"bouncing ball” orbits. In®? the upbend point Ls; was associated with the
inverse Lyapunov exponents which give the time scale for the development of
classical chaos. The upbend of the curve A(L) starting at L = 200 corresponds
to the energy interval é¢ 2 7 MeV. This behavior lasts up to the highest values
of L = 2000 attainable for our computations.

An additional analysis has to be performed to pin down the factors re-
sponsible for the’upbend. In many-body dynamics within one major shell,
the available regular energy parameters are the single-particle level spacings
de = 3 to 7 MeV which would give Ly = 100 to 200. One could also think of
the "scars” related to quasiperiodic motion induced by the coherent two-body
matrix elements as pairing. In this case one would expect the saturation of
A(L) at Lg ~ 100 to 180. The inverse lifetime of the simple configurations
can be estimated by the fragmentation width (3), # ~ 10 MeV. One can argue
that at times shorter than t; =~ 1/2 the chaotic component of the evolution is
still of minor importance. It would lead to the upbend of the spectral rigid-
ity at Lq = &/v2D =~ 200 which approximately agrees with the observation.
However, the time interval {4 cannot in general be identified with the inverse
Lyapunov exponent. In contrast to the exponential decay, the survival ampli-
tude decreases as a Gaussian function. The decrease takes place even in the
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case of regular dynamics if the initial state is not an eigenstate of the hamil-
tonian. Another plausible explanation can be associated with the range of the
interaction between the simple configurations. We measured this range by the
parameter wy, eq.(4), which determines the effective band width ~ 7.5 MeV
and the corresponding value of L between 200 and 250. At shorter time inter-
vals, the band boundaries are not resolved so that motion in the configuration
space is analogous to that in the full GOE matrix.

Important information on the stochastization process can be obtained from
the level and wave function dynamics as a function of external parameters
8,62 Apparently, decorrelation of observables under the change of parameters
obeys, in the stochastic regime, universal laws where only the scale factors are
specific for a given system ®2. The strength X of the residual interaction can be
taken as a natural control parameter in many-body dynamics. The curvature
distribution of unfolded energy levels £,(}) in the sd-shell model takes the
GOE form %455 at X 24 0.3, in parallel to the level spacing distribution 2.

4 Complexity of wave functions

In the random matrix ensembles, amplitudes C§ of eigenstates (5) become
random variables. Distribution functions for these amplitudes are known for
canonical Gaussian ensembles®®®. The GOE case corresponds to complete de-
localization when all N components C§ for various k contribute equiprobably
to the total normalization, and all N eigenfunctions |a) have the same distribu-
tion of components. We are interested in the limit N 33 1 when the individual
amplitudes are normally distributed with C' = 0 and C? = 1/N. The ampli-
tudes in the GOE are slightly correlated ¥ due to the orthonormalization.
Thus, in the limit N » 1

Wowp = N}-,-(l +26°05,)), (1)

In a gradual transition from regular to stochastic dynamics, the number N, of
principal components of the stationary state |a) increases along with excitation
energy towards the limit of complete delocalization. In a given energy range,
E = E,, the distribution of components C{ presumably is similar to the
Gaussian but with the local width (C#)? = 1/N,.

Information entropy 67:5%.7:%% j5 a suitable candidate for measuring the
degree of complexity of individual wave functions. It is defined for a given
normalized function |a), expanded as in eq.(2) with the aid of a given basis
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|k}, in terms of the weights of the components,

S*=-3 WehWwe. (12)
k

Being dependent on the choice of the reference basis |k), this quantity reflects
a complicated relationship between the eigenbasis and the basis of representa-
tion. The entropy of eigenstates in their own eigenbasis, W — 52, vanishes.
The formal maximum of the functional (12) corresponds to the equiprobable
distribution, W = const = N~!, when §* = InN. In the local Gaussian
approximation, the weights fluctnate around (N,)~! which implies” that the
average over the ensemble value of entropy is smaller,

3% = In(0.48N,) + O(1/N.). (13)

The entropy S (12), or the corresponding length in Hilbert space, {§ = exp 5%,
characterizes the degree of delocalization of a given eigenfunction |a) with
respect to the original basis. The deviation of I from the GOE limit 0.48N
indicates the incomplete mixing of basis states. For a similar purpose one can
use *8 the moments of the distribution of amplitudes,

M2 =3 (W, (14)
]

which are also related to the number of principal components of a given eigen-
state. The second moment (participation index) Mg determines the average
W3, for the Gaussian average M§* = 3/N“. The entropy (12) (or /%) empha-
sizes the small components of the eigenfunctions, whereas the higher moments
(14) emphasize the larger components.

Fig. 6 shows the calculated information lengths I for all 3276 states 210.
We see the strong correlation between information entropy and conventional
thermodynamic entropy ~ Inp defined by the level density, Fig. 3. In the
most chaotic (middle) part of the spectrum the information entropy reaches
about 90% of the GOE value (13). The regular behavior of information entropy
allows one to consider this quantity as a function of the excitation energy and,
therefore, as a thermodynamic variable. However, if one goes to the case of
degenerate single-particle orbitals, the chaotic limit is reached for a significant
portion of 010 and 2+0 states. In this case information entropy ceases to be
sensitive to the spectral evolution.

Information entropy behaves similarly in different isospin sectors. In Fig.
7 it is presented for the 0%0 states of Mg in the p — n formalism. Here the
GOE value of the entropy is 560. Regardless of the computational procedure,
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Figure 6: Information length of the 20 states as a function of energy, part a, and in the
a-scale, part b. The horisontal solid ine corresponds to the GOE value 1578,

the eigenstates have a certain isospin. However, their information entropies
are calculated in the p — n basis where the basis states are mixed in isospin.
Therefore the GOE limit refers to the total dimension of N = 1161 rather
than to the partial dimensions of the 07" classes. The families of the states
belonging to different isobaric classes can be distinguished by the sequences
starting at the corresponding threshold energies.

The overall suppression by a factor A of the interaction strength changes
the results drastically. As we saw, the onset of chaos in the local level statistics
occurred at a relatively weak interaction strength. The information enfropy
of the 0+0 states at A = 0.4 evolves regularly as a function of energy but the
localization length is strongly diminished roughly in proportionality to .

The behavior of information entropy found in the above example is genenc
The calculations were also performed for N = 1183 0%0 states in *C in a
model space of the first four omllator shells, taking into account (0 + 2)Aw
excitations, with the interaction”® which contains a cross-shell part. In Fig. 8
we can clearly differentiate the states with the lowest c.m. energy (first arch)
from those with the excited c.m. motion {second a.rch) They have the same
degree of internal complexity.

Two important features of our results are to be stressed. (i} The infor-
mation entropy was calculated in the original basis for all individual eigen-
functions with no averaging elements. The eigenfunctions, adjacent in energy,
could have different atructure and localization properties which would lead to
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Figure 8: Information length for 1183 20 states in 13C calculated with the Warburton-
Brown interaction"® in 4 major oscillator shell space for (0+2)Aw excitations; states with

and without center-of-mass motion are differentiated in the a-scale. The solid line shows the
GOE valua.
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strong fluctuations. Instead, the degree of complexity regularly evolves along
the spectrum reflecting common features of neighboring eigenstates. Being a
function of excitation energy only, the degree of complexity can therefore be
considered as a thermodynamic variable. (i) The localization of the eigen-
functions in the shell model basis depends strongly on the strength of the
interaction relative to the stabilizing influence of the mean field. This con-
firms the general trend of the mean field to quench the chaotic signatures of
many-body dynamics 571,

The results for the "natural” mean field basis can be compared with cal-
culations using different representations. The SU/(3) model ™ explains from
the group-theoretical viewpoint the appearance of quadrupole deformation and
rotational bands. In the basis of the SI/(3) eigenfunctions, almost all eigenvec-
tors are completely delocalized. This basis with the degenerate single-particle
levels turns out to be almost random with respect to stochastization, analo-
gously to a pure random basis which can also be used as a representation basis
for comparison. A certain self-consistency between the representation basis
and the residual interaction is necessary to achieve a meaningful description of
stochastization. The mean field basis which separates in an optimal way local
ﬂ:lctuations from the global evolution is the most appropriate for this purpose
6

The use of the moments (14) of the distribution function of the components
can give complementary information. The effective number of principal com-
ponents (N PC) as defined from the participation index, (N PC)* = (M§)?,
is strongly correlated with the level density and the information entropy. It
also does not reach the GOE limit N/3 = 1091. The deviation is about 12%
for the middle part of the spectrum. To see how close is the structure of the
eigenfunctions to the random superposition of N, basis states, one can elimi-
nate the local average value of N, by calculating various ratios of moments, for
example {$ /(N PC)*. For a Gaussian distribution, this ratio has the universal
value 1.44. The results for the majority of the eigenvectors are close to this
expectation.

In the Gaussian BRM ensemble 45 the localization length of eigenstates
is proportional to the square of the local level density p{E). We found that,
except for the edges of the spectrum, the localization length Is is approxi-
mately proportional to p(E) rather than to its square. This means the strong
correlation between thermodynamic entropy ~ Inp and information entropy.

In the GOE the components of the eigenvectors are dynamically inde-
pendent. The only source of correlations is the unitarity of the transformation
from the original basis |k) to the eigenbasis |a}. The correlations of the weights
W§, eq. (11), are weak and die out for large N. In contrast to the GOE, the
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realistic strongly interacting system has dynamical correlations as pairing built
in.

We calculated the correlation functions N?WZW,* of different components,
{ — k=1,10,100, and 400. They are close to unity for majority of states in
qualitative agreement with the GOE (11) but the short range correlations do
still exist. The adjacent components, I = k + 1, display a pattern almost
identical with that for the diagonal case [ = k, with the same enhancement
1.2 with respect to the GOE. The correlation function for { = k + 10 is also
enhanced by the factor 1.2 in the middle. If the normalization factor in the
definition of the correlation function were taken as N2 instead of N2, in the
middle part of the spectrum one would receive No/N = (1.2)~1/2 = 0.9 in
agreement with what we extracted from information entropy and the N PC.
The long range correlation functions, ! = k + 100 and I = k + 400, are close to
unity with correlational edges strongly suppressed. The correlation length of
the order of 100 in the k-scale, or of the order of 10 MeV in the energy scale,
agrees with the magnitude of the energy dispersion of eq.(3) which is related to
the fragmentation of the basis states and the spreading width. The correlation
function of the adjacent components WZ W, | multiplied by [exp(5*)/0.48]2,
or by [3(N PC)°J?, would be equal to unity for the Gaussian distribution with
an effective local number of states N,. These products approach unity in the
middle part but they still depend on excitation energy. The effective number
of components is smaller than the decorrelation factor in (11), except for the
most complicated states. It means that decorrelation occurs faster than the
delocalization of the wave functions, and the actual distribution function of
the eigenvector components systematically deviates from the local Gaussian.

In using information entropy or other similar measures one needs to distin-
guish a genuine chaotic behavior from the complexity associated with collective
motion or with the improper choice of the basis. Collective excitations [¢) also
can be presented by superpositions (2). In this case the amplitudes C{ are
coherent with respect to a certain simple (one-body in the RPA) operator Q.
The phases of the amplitudes C§ are synchronized with those of the matrix
elements ;o for a transition between simple states, for example the ground
state |0) and a 1p — 1A state |k). The partial amplitudes add constructively
so that the transition probability |[0) — |c) is enhanced, as compared to the
elementary transition |0} — |k}, by a factor N which is a number of coherent
components contributing to the wave function |c). If N° is large, our mea-
sures of complexity will signal an appearance of a complicated state which has
nothing to do with chaos.

However (i) the fraction of collective states is small (~ 1/N*), (ii) the
degree of collectivization in nuclei N is small compated to the degree of com-
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plexity of typical complicated states (in heavy nuclei N° =~ 10? for low lying
excitations of vibrational or rotational type but N ~ 10% for neutron reso-
nances), and (iii) in a realistic many-body system only the lowest collective
states are approximately stationary, but in that energy domain there is no
chaos anyway. Collective states at higher excitation energy are strongly mixed
(damped), so the only surviving signature of collectivity ("scar”) could be a
nonstatistical excess of specific 1p — 1A basis components concentrated at a
certain energy in the interval of the spreading width and manifested by a peak
of the strength function of the operator Q.

The problems associated with an inappropriate choice of the basis can be
more dangerous. Considering a tight binding model of a particle in a periodic
N-well potential and using the localized states as the basis states, we find for
the Bloch wave solutions (NPC) = (2/3)(N + 1) for all wave vectors. This
complexity, being higher than in the GOE ensemble, is a manifestation of
the uncertainty relation between the coordinate and the wave vector. (In our
studies we never saw complexity which would considerably exceed the GOE
limit). In many cases there exists a smooth evolution or phase transition of
the mean field along with increasing energy. Even if the new shape supports
regular single-particle motion, this can be misinterpreted as onset of chaos due
to the complexity of new eigenstates expressed in the old representation. But
in such cases the invariant measures of chaos connected to the level statistics
unequivocally indicate absence of chaos. As an example, we studied !? the
pairing correlations as a function of excitation energy. This specific probe
allows one to trace the behavior similar to the second order phase transition
through the properties of individual eigenfunctions.

5 Chaoticity vs thermalization

We saw that the stationary states display the conventional signatures of quan-
tum chaoticity. Local level correlations reveal Wigner repulsion. The spectra
are rigid with no pronounced contribution from periodic orbits. The partition
structure is smeared, the eigenstates are delocalized and their information en-
tropy (12) in the shell-model basis is close to the GOE limit. These signatures
give clear evidence that our system, at least in the middle of the energy range,
is near the stochastic limit. Along with this, there exists a noticeable change of
complexity as a function of excitation energy. The thermodynamic picture is
frequently used in the description of excited states at high level density. What
is the relation between the complicated structure of eigenstates and statistical
mechanics? To address this question we first discuss the notion of statistical
equilibrium as applied to an isolated mesoscopic system like a nucleus.
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Statistical properties of a closed equilibrated system with a sufficiently high
number of degrees of freedom are determined by the statistical weight UE) =
P(EYSE of states with given values of exact integrals of motion. Since the
density of states p(E) grows fast with energy E, the interval S E can still contain
many levels which makes the concept of the smooth level density meaningful.
The exact value of §E is not important as long as it is small compared to
the energy interval where the macroscopic properties of the system change
considerably. Now one can define thermodynamic entropy S**(E) = InQ(E)
and temperature T according to

st 1

Such a description corresponds to the minimum information available. Our
knowledge of the microscopic state of the system at equilibrium is limited to
what is given by exact integrals of motion.

The accuracy of the statistical approach implies that the results are insensi-
tive to the actual microscopic state of the system. Average over the equilibrium
statistical ensemble should give the same outcome as an expectation value for
a typical stationary wave function at the same energy ">. The main underlying
assumption is that of similarity of generic wave functions in a given energy
region. At the same time, equilibrium statistical averaging discards possible
phase relationships between the components of wave functions. ‘This is justi-
fied if the phase coherence can appear with a very low statistical weight only.
The similarity of close eigenstates is ensured by the mixing resulting from the
chaotic many-body dynamics. The pioneering paper on the compound nucleus
by Niels Bohr '® already gives an equal footing to elements of both patterns,
chaos and thermalization. The definition by Percival ™ of chaoctic wave func-
tions goes along the same line. It was shown by van Hove ?® that a broad
class of systems displays quantum ergodicity: a random initial wave function
evolves with time into a state which gives the same values of observables as
the microcanonical thermodynamic ensemble, see also 7,

We can compare statistical properties of eigenfunctions of the Fermi sys-
tem with strong interaction (although in a truncated space) with those of the
equilibrium statistical ensemble. The degree of complexity measured by infor-
mation entropy of individual functions in the shell-model basis is the same for
many states close in energy. Within small fluctuations, it changes smoothly
with excitation energy and can be treated as a thermodynamic variable. To
compare the global thermodynamic behavior with the features of the indi-
vidual eigenfunctions, we calculate the evolution of single-particle occupation
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Figure 9: Single-particdle occupation numbers for states 00 (panel a), 210 {panel b), and
9+0 (panel c). For all panels the three sets of points refer to #/3,dy 3 and dyy orbitals,
from bottom to top on the left-hand side.

numbers nj along the spectrum of many-body states |a),
1
n& = E E(“Mjm“umrla)- (16)
mT

The results are shown in Fig. 9 where the panels a,b and ¢ correspond to
0%+0, 2%0 and 9*0 (N = 657) states, respectively. All three classes of atates
exhibit an identical smooth behavior.. It suggests that one can associate with
each eigenstate |a) a single-particle "temperature” T;" , defined by the Fermi
distribution

75 = {fexpl(cly - W/TE, 1+ 17, (1)

In the center (infinite temperature), all occupancies f = nf}/(2j + 1) indeed
become equal to each other the common value being 1/2 for our case of 12
particles in the sd-shell of the total capacity 24.

T;., changes smoothly with energy, being almost the same for all states
within the narrow energy interval as it should be for an intensive thermody-
namic quantity. It becomes infinite simultaneously with the thermodynamic
temperature when the memory of the initial single-particle energies is lost. The
effective energies ¢j; — 4 can be found 1112 from the fit or directly from the
slopes of the lines in Fig. 9; they are close to the bare values. Using these en-

ergies, one can extract the effective temperature 7,”., and check that, despite
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Figure 10: Temperature calculated from the global fit to the level density of the 00 states
(solid line) and found from the occupation numbers of Fig. 9 (dots).

the strong interaction, the "single-particle thermometer” on average measures
the same temperature as T obtained from the level density. For the Gaussian
level density p(E) with the centroid at E; and variance o3, the temperature
(15), see Fig. 10 (solid lines), is

T = 0% /(Eo - E). ' (18)

‘The right half of the spectrum, E > Ej, is associated with decreasing entropy
and negative temperature. :

Thess results imply that the system can be considered as an equilibrated
Fermi-liquid, and its properties can be expreased in terms of occupation num-
bers for a gas of interacting quasiparticles. We do not perform any ensemble
averaging. The eigenfunctions individually show the distribution of occupan-
cies expected from statistical mechanics of the equilibrium thermal ensemble.
Thermodynamics of the system are determined mainly by the stabilizing ac-
tion of the mean field. Using the mean field basis we segregate the incoherent
processes leading to stochastization and chaos from the regular evolution along
the spectrum. The stochastic part of the dynamics is responsible for the com-
plexity of the eigenfunctions and their similarity, which can be interpreted in
terms of thermal equilibrium. The regular (mean field) features allow us to
use a simple language of average occupation numbers for quasiparticles in a
heated Fermi liquid. ‘

We mentioned that a certain level of self-consistency between the mean
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field and the residual interaction is necessary for the optimal separation of
local and global features. In the shell-model calculations it is ensured by the
semiempirical hamiltonian. In this case we can expect a strong correlation
between the thermodynamical entropy (lack of knowledge about the precise
microscopic state of the system) and information entropy (disorder of a given
microscopic state computed in the mean field basis of simple quasiparticle
configurations). A direct comparison indeed reveals such a correlation.

Using the occupancies Jij of individual orbitals one can calculate the single-
particle entropy of the quasiparticle gas™ for each state |a),

S ==Y (2 + DS Infg + (1= £5) In(1 - fE)]. (19)

iir

The expression (19) comes from the Fermi-gas combinatorics. Now we have
three, apparently different, entropy-like quantities: thermodynamic entropy
S™*(E) ~ Inp(E), information entropy S* (12) and single-particle entropy
S, (19), the latter two for individual eigenstates.

For a weak off-diagonal interaction !1:12, the thermodynamic entropy dis-
plays Gaussian behavior of a combinatorial nature typical for an imperfect
Fermi-gas in a finite number of states. Within the fluctuations, it is quite
similar to the single-particle entropy. The information entropy in this case is
low; only at high level density does one see some effects of mixing. This is
an equilibrium picture of almost non-interacting particles where the degree of
complexity given by the information entropy is only weakly correlated with
thermalization. Using the language of kinetic theory, collisions (mixing) are
necessary for equilibration but the equilibrium properties do not depend on
the collision rate. )

In the opposite case of too strong off-diagonal interaction, all states are
strongly mixed and the information entropy is near the GOE maximum. The
memory of the mean field is lost and S7_; is also at the maximum corre-
sponding to the equiprobable population of orbitals so that the response to
thermal excitation cannot be expressed in terms of quasiparticles. Within the
fluctuations, S* and S, coincide. The interaction is too strong, almost all
wave functions ”look the same” regardiess of level density, and the quasiparticle
”thermometer” cannot resclve the spectral regions with different temperatures.
However, the system still has normal thermodynamic properties governed by
the level density. In this case only the microcanonical description is possible.

For the realistic mean field and self-consistent residual interaction, all three
entropies (correspondingly normalized) turn out !! to be identical within fluc-
tuations except for the edges of the spectrum. Near the ground state the
Fermi surface is already smeared due to two-body correlations so that the
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single-particle occupation numbers and information entropy show deviations
from the frozen Fermi-gas. The difference between low thermodynamic tem-
perature and single-particle temperature, as measured for instance in particle
knockout experiments near the ground state, was discussed in ®, For the ma-
jority of states and for the mean field consistent with residual interactions, the
thermodynamic entropy (defined either via the global level density or in terms
of occupation numbers) behaves similarly to information entropy.

6 Conclusions

The nuclear shell model provides a realistic, exactly solvable example of a
many-fermion system with strong interaction. The available dimensions are
sufficiently high to allow for statistically reliable studies. The construction of
the complete set of states with the given values of exact integrals of motion is an
important prelude to the analysis, The role of this premixing and ” geometrical
chaoticity” is to be further studied. The exponential distribution of the off-
diagonal matrix elements of the residual interaction appears a generic feature
of the realistic many-body systems.

As excitation energy and level density increase, the local level statistics
quickly reveal signatures of chaotic dynamics predicted by the GOE. This oc-
curs for an interaction strength much lower than its actual value. The problem
of the transitional nearest-level spacing distribution in the region of onset of
chaos and the fractional power law for level repulsion remains to be solved.

The degree of complexity of stationary wave functions can be measured
by the information entropy and the moments of the distribution function of
the components. These measures depend on the representation which can be
used to gain additional knowledge on the structure of the eigenvectors. The
mean fleld (shell-model) basis appears to be the preferred representation which
allows for the optimal separation of local spectral properties from global secular
dynamics. The structure of the wave functions presented in the mean field basis
evolves in a regular way along the spectrum. The measures of complexity can
be considered as functions of the excitation energy. The distribution of the
components of the eigenvectors in the shell model basis is close to Gaussian
although the correlational analysis reveals deviations. The GOE limit of the
complete delocalization can be reached by the majority of the eigenvectors only
with an artificially suppressed stabilizing action of the mean field.

The single-particle occupation numbers of the shell-model orbitals regu-
larly evolve along the spectrum, being nearly the same for different classes of
states. They can be described by the Fermi distribution with effective energies
close to the bare ones. The similarity of the wave functions and occupation
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numbers of the states close in energy can be interpreted in terms of statis-
tical equilibrium. In spite of the presence of strong interactions, the system
behaves at high excitation energy as a heated Fermi gas of fermionic quasi-
particles. This indicates the possibility of using the thermal ensemble for
calculating matrix elements between the compound states 7. The apparent
decoherence emerges here as a property of individual complicated wave func-
tions in a closed mesoscopic system, with no heat bath involved. Different
definitions of temperature, related to the thermal microcanonical ensemble,
single-particle occupancies, and information entropy, practically coincide for
the mean field representation used in the last two cases, where the tempera-
ture scale is extracted for each individual eigenstate. It gives new arguments
for understanding the foundations of quantum statistical mechanics and its
relationship to quantum chaos.
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