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| review the status of parity nonconservation in nuclei with emphasis on the observed
effects in light nuclei and in ®Tec. The results are compared to those from nucleon-nucleon
scattering nucleon-alpha scattering. The special problems associated with parity nonconser-
vation in the compound nucleus are discussed.

1 Introduction

Following the suggestion in 1956 of Lee and Yang, parity nonconservation (PNC) in the
weak interaction was discovered in 1957 by Wu et al. in the # decay of polarized €°Co.?
This led quickly to the V — A model for weak interactions® and eventually in 1967 to
the Wienberg-Salam “standard” model' in which the electroweak interaction is mediated
by the exchange of charged bosons, W= and W, the photon, 4, as well as the neutral
boson, Z° The electroweak currents induce purely leptonic interactions (such as muon
beta decay), semi-leptonic interactions (such as nuclear beta decay), and purely nonleptonic
interactions (such as A® decay). Nonleptonic strangeness changing (AS=1) processes (such
as A° — pr~) are well known. PNC in nuclear states, which is the topic of this talk, is due to
the nonleptonic strangeness nonchanging (AS=0) sector of the electroweak interaction. This
is the most difficult part of the weak interaction to study since its effect must be observed
as a small interference with the strong interaction. Thus its size is usually experimentally
very small, and the strong interaction must be taken into account in the interpretation. The
first suggestions and experiments®® for the investigation of PNC in nuclei came immediately
after the discovery of PNC in beta decay.

Just after its introduction, there were of course many unanswered questions about
the standard model -~ one of these was where to look for evidence of neutral currents. Since
the nuclear PNC does not change the charge, neutral currents are allowed and will influence
the results, and hence this was one of the early motivations for its investigation. 7 However,
neutral currents in the leptonic and semileptonic sectors are by now well established, first
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~ in 1973-74 by its indication in muonless neutrino-induced interactions,® and then its PNC
nature was confirmed from the scattering of polarized electrons from deuterium® and from
PNC in atomic levels.'®!! (The suggestion to use atomic PNC experiments to look for
neutral currents was made by Zel'dovich? in already 1959.) Since then the W and Z
bosons have been directly observed. 12 All of these studies are beautifully consistent with the
Weinberg-Salam standard model predictions. Thus, although the nonleptonic AS=0 part
of the weak interaction is relatively poorly measured up to now, there is little doubt that
the standard electroweak model (charged and neutral currents) is applicable to the weak
interaction between quarks. The continuing motivation for studying PNC in nuclei is the
more complex one of understanding the influence of the strong interaction (ultimately at the
QCD level) on the electroweak observables.

The first indication of nuclear PNC came in 1967 from the Lobashov experiment on
radiative neutron capture on '®*'Ta.!* Since then many of the experiments in nuclei have
used the interference between ML and EL gamma decay multipolarities as a signature of
nuclear PNC.1® In addition, the experiments have focussed on the results for those cases in
which two nuclear levels with opposite parities lie very close to each other — parity mixed
doublets (PMD) - because the small energy denominator enhances the mixing due to the
weak interaction, and because the two members of the doublet are the only ones important
for the PNC mixing. The closeness of the levels is an accidental result of the nuclear strong
interaction. One the most spectacular examples® of a PMD is the 17/2* doublet in #Tc
where the levels are separated by only 300 eV. I will discuss the results and calculations for
this case in detail below. The close spacing of the PMD in conjunction with the situation
where the allowed v decay multipolarity is hindered with respect the PNC 4 decay multipo-
larity, often leads to relatively large effects which can be accurately measured. One of the
most accurately measured is the 8% doublet in '®Hf in which the levels are separated by 57
keV. 7 However, the resulting PNC matrix element connecting the two levels is only 1.020.1
peV. It is hindered by a factor of 10° over the usual global estimate (1 eV) for the nuclear
PNC matrix element. The El transition between the two levels is also very hindered. The
nuclear structure models which describe this hindrance are not accurate enough to use for a
quantitative interpretation of this experiment. There are many other cases where the inter-
pretation of PNC observables are complicated by the lack of accurate nuclear wave functions.
Recently, large PNC effects in low-energy neutron scattering have been observed, and this
is the main topic of this workshop. The interpretation of the results for these compound
nucleus states remains rather qualitative, !® but hopefully more quantitative interpretations
will be forthcoming.

In this talk I will focus on the interpretation of PNC matrix elements in light nuclei
where the nuclear wave functions are rather well understood, and on the case in **T¢ which
has recently been measured by Hass et al.!? and whose levels are described in zeroth order
by relatively simple wave functions.



The interpretation of nuclear PNC can be factorized into two strong interaction prob-
lems. One of these is the nucleon-nucleon (NN) PNC interaction which is usually interpreted
in terms of meson exchange models, where one meson-nucleon vertex is from the weak inter-
action and the other meson-nucleon vertex is from the strong interaction. One must relate
the elementary weak interaction between quarks to the weak meson-nucleon coupling con-
stants. Theoretical values for the nominal “best value” strengths of NN PNC interactions
were established by Desplanques, Donoghue and Holstein (DDH) ?° and their hadronic model
dependence has been investigated. 2*?! The DDH “best value” (DDHB) results may turn out
to be wrong, however, they serve as a good reference for comparison much like the Wiesskopf
unit for electromagnetic transitions. The second strong interaction problem is that for the
nuclear wave functions themselves, and this is the main focus of my talk.

In order to experimentally establish the strengths of the isoscalar (AT=0), isovector
(AT=1) and isotensor (AT=2) components of the NN PNC interaction, it is important to
compare results from NN scattering with those from nuclear bound states. In the DDHB
prediction, AT=0 is dominated by p meson exchange, and AT=1 is dominated by one-pion
exchange (OPE). In light nuclei there are cases in which the isospin of the initial and final
states restricts the allowed isospin components. For example, the mixing between the 0%
T=1 and 0~ T=0 states in '®F filters out the AT=1 PNC interaction.

2 Results for Light Nuclei

The first microscopic calculations for PNC in light nuclei were reported in 1980. 2222 The
most important cases of interest at that time were the 0%,T=1 - 0~,T=0 PMD in !°F and the
1/2+,T=1/2 - 1/2-,T=1/2 PMD in 'F. It was soon realized 2 that the AT=1 PNC matrix
element needed for these cases could be calibrated by using the analogue first-forbidden (FF)
B decays: ®Ne 0*,T=1 — F 0-,T=0 and *Ne 1/2*,T=1/2 — F 1/2-,T=1/2. FF 8
decay has an impulse term (A) plus a two-body exchange correction term (B). In the one-pion
exchange (OPE) approximation, the operator for the exchange correction is proportional to
the OPE contribution to the AT=1 DDH operator. One often expresses the sum of these two
terms in the form (A + B) = Ae, where ¢ = (A+ B)/A is the mesonic exchange enhancement
factor. The value of ¢ calculated with the OPE model for B does not strongly depend on
the nuclear wave functions. 5?42 Thus if ¢ can be accurately calculated from OPE, the
OPE DDH matrix element can be directly related to the 8 decay matrix element, and the
uncertainties in the nuclear structure matrix element can be greatly reduced. This 8 decay
calibration showed that the results obtained in the first microscopic calculations #2?* were
too large by a factor of about three. It also showed that the experimental upper limit 267
of <0.09 eV for the PNC matrix element in !*F was about a factor of four smaller than the
DDHB prediction. The DDHB result for the purely AT=1 transition in '3F is dominated
by the OPE term.



For ®F the experimental value 2 for the PNC matrix element is (0.40+0.10 eV).
With DDHB this PNC matrix element is a coherent addition of the AT=0 and AT=1
contributions. Assuming that the AT=1 part is suppressed relative to DDHB as in 8F,
then '°F should be dominated by the AT=0 part and is, in fact, in reasonable agreement
with the AT=0 part of DDHB.3® A. Hayes presented a nice comparison at this workshop
which showed how the PNC mixing was dominated by mixing between the two levels of
the PMD, in spite of the fact that the strongest E1 matrix elements go to levels at high
excitation energy.

More recently, several developments have taken place for light nuclei. Due to im-
proved computational methods and facilities, more complete wave functions are now avail-
able. 331,323 The effective interactions have been improved.3? And the FF § decays have
been studied more completely. ?® First I discuss the # decay. There are four relatively simple
FF 3 decays in this region of light nuclei which can serve as a test of the OPE correction
models as well as for tests of the interactions and model spaces assumed. The simplest of
these is the N 0~,T=1 — %0 0+,T=0 (ground state) transition. 2> The simplest model for
this is a pure one-particle (1s1;;) one-hole (0py/;) transition which would give a FF matrix
element of 81 (I am not concerned about the units here since I only want to show how the
results changes when the wave functions are changed.) The 0dz/, — Ops/; matrix element is
however much larger than 1s,/; — Op;/2 and thus a very small admixture of this component in
the 0~ state (about 0.3%) causes the FF matrix element to be reduced to 61. Furthermore,
the many sw admixtures are very large, typically one finds? | 0% > = 0.66 | 0hw > +0.66 |
2hw > +0.37 | 4hw > and | 0~ > = 0.84 | 1Aw > +0.54 | 3kw >. The FF matrix element has
the form 34 (1hw —0kw) —7 (1hw —2hw) +18 (3hw —2hw) —3 (3hw —dAw) = 42. Thus
the total matrix element is reduced by about a factor of two over the simplest estimate. The
reduction factors for other FF 3 decays, which do not have such simple zeroth-order wave
functions, are even larger. What one finds from this study ?° is that the enhancement factor
is €=1.61140.03. This value is in excellent agreement with the “soft-pion” approximation 34
to the mesonic exchange current, and is close to that assumed in the *3F PNC analysis dis-
cussed above. These calculations for the FF 8 demonstrate the importance of the many-fiw
correlations in the nuclear wave functions to the reduction of the PNC and FF § matrix
elements.

Another interesting case in light nuclei is that for the 1/2+,T=1/2 -1/2-,T=1/2 PMD
in 2'Ne. The upper limit ** on the PNC matrix element of <0.029 eV is small compared to the
18F and '°F values discussed above. This result has been compared ? with a calculation 2 in
a (0+2)hw model space for 1/2% and 1w model space for 1/2~ which gives a DDHB result
with both the AT=0 and AT=1 parts being relatively large, but they are out of phase, so
that the total DDHB value becomes small. However, when the AT=1 part is suppressed
as observed in '®F, this cancellation no longer can occur and the remaining AT=0 DDHB
contribution is larger than the experimental limit. Thus, with these wave functions, the
experimental results for !*F, °F and 2!Ne are not consistent with each other.



However, it was pointed out in the first calculations ?? that the multi-Aiw admixtures,
as estimated within the ZBM % model-space truncation (Op, /2> Odss2, 181/2), gave a result
which was unstable and potentially very small. Even though we are still not able to carry
out the full many-Aw calculation for Ne, recent analyses 37 confirms the likelyhood that
the *'Ne matrix element is small, not due to a cancellation between AT=1 and AT=0, but
because the AT=0 part is small due to nuclear structure. Thus, the 2!Ne matrix element is
dominated by AT=1 and, like the purely AT=1 transition in '°F, the small experimental
limit indicates that the DDHB AT=1 strength is too large. A figure which shows the com-
patibility of the ®F, °F and ?'Ne results is shown in Ref 30. The experimental boundaries
are consistent with the AT=0 DDHB prediction but are a factor of four smaller than the
AT=1 DDHB prediction. A nice test of the various calculations for ?*Ne would be to mea-
sure the PNC matrix element in the mirror levels of ?'Na, where the PNC matrix element
comes will enter in the form [AT=0 4+ AT=1] as compared to [AT=0 — AT=1] in ?'Ne.

Another case of recent interest is the 0¥,T=1 - 0~,T=1 doublet in *N. It has recently
been measured in a p +!2 C experiment 3 with a result of +0.380.28 eV for the PNC
matrix element. The first relative simple shell-model calculation for this matrix element
gave —1.4 eV. The PNC matrix element is dominated by the AT=0 term with the isotensor
term (AT=2) entering at the level of about 7%.3 (The AT=1 term does not enter because
of the vanishing Clebsch-Gordan coefficient <1,0,1,0/1,0>=0.) More recent calculations
have taken into account shell-model excitations of up to 4%w as well as the effect of the finite
potential well on the radial wave functions. The range of calculated values of 0.22 to 0.54
eV for the PNC matrix element is in agreement with the experimental magnitude but differs
in sign from experiment. The difference in sign is common to all calculations. 3°*® We note
that the 'F PNC matrix element, which is also presumably dominated by the AT=0 PNC
interaction, has a experimental sign which is in agreement with calculations. However, in this
case the sign depend upon a theoretical sign for the E1 matrix element (relative to the sign
for the M1 matrix element). The El matrix element is hindered, but the experimental sign
appears to be stable with respect to reasonable variations in the shell-model wave functions.
Also the sign of the asymmetry in §+p and p=o scattering is in agreement with DDHB (see
below). The sign for the N experiment relies on the reaction theory calculations, and it
may be possible that there is an inconsistency somewhere in the formalism.

The shell-model wave functions for light nuclei will continue to be improved. Re-
cent advances in the area of effective interactions *° as well as computational techniques are
important, # together with the continued improvement of the empirical shell-mode! inter-
actions. The removal of spurious states demands that the wave functions be expanded in
terms of increasing fiw, so that a large number of orbitals are required. In contrast, many of
the important low-lying states appear to be partly described by excitation of many particles
across a few orbitals near the fermi surface — as modeled in the ZBM wave functions. The
continued improvement of the wave functions which are important for PNC in light nuclei
will be a challenge.



3 Comparison to Nucleon-Nucleon Scattering

The results obtained for light nuclei can be compared to those from low-energy nucleon-
nucleon and nucleon-alpha scattering. One of the most important and accurate of these
is the J + p scattering at 45 MeV which gives a longitudinal analyzing power,*? A, =
~(1.57 £ 0.23) x 107, in excellent agreement in both magnitude and sign with the DDHB
value*® of —1.45 x 10~7. The DDHB value is dominated by AT=0 with about 20% AT=2
(and no AT=1).

P + o scattering at 46 MeV gives A, = —(3.34 £ 0.93) x 10~7. The calculated
value** based upon DDHB is —3.3 x 10~7. Its dependence upon the isospin channels is
nearly the same as for the F PMD, with about equal and in phase contributions from
AT=0 and AT=1 in DDHB. The calculated result depends upon the choice of short-range
correlation and was obtained from the Miller-Spencer correlation factor.®® Other types of
short-range correlations explored in Ref 44 gave an A, value about twice as large as exper-
iment. As noted in Ref 44 the Miller-Spencer correlation factor was also used in the light
nucleus calculations. **233%% For p + o and for nuclear structure, the choice of short-range
correlations functions is important for all components of the NN PNC interaction except the
OPE contribution to AT=1. If the OPE AT=1 term were eliminated, the remaining DDHB
terms would give about A, = —1.7 x 107, which is small but not inconsistent compared to
experiment given the uncertainties in the short-range correlations.

These and other scattering experiments are summarized in Ref 46. The experimental
errors and limits for other experiments are significantly larger than the two discussed above.
In particular, there is no good determination of the AT=1 component. The most sensitive
experiment appears to be the forward-backward asymmetry A, = (—0.15 £ 0.47) x 10~7

obtained 47 for the 4’s observed in @ + p — d + 4. Comparison to the DDHB value ¢ of
—0.5 x 10~7, shows that this experiment is consistent with but has a much larger error than
the limits inferred from the '®F results discussed above.

4 Interpretation of the Results for AT=1

The upper limit for the empirical strength of the AT=1 component found from light nuclei 2
is a factor of four smaller than the DDHB (DDH “best value”). There is not much doubt
that nonleptonic neutral currents exist, and the deviation from DDHB is interpreted as a
lack of understanding of the hadronic wave functions. Indeed, DDH showed that this was
sensitive to the assumptions of the quark models and that the allowed “range of values”
actually goes down to zero.



More recently, Henley et al.4® have used QCD sum-rules to calculate the AT=1
PNC OPE interaction. The results is an order of magnitude smaller than DDHB. The
neutral current contribution is smaller than the DDHB value due to a cancellation between
perturbative and nonperturbative QCD processes not found in quark models, but explicit in
the QCD sum rule method. *® This result agrees with the small value obtained in the chiral
soliton model of Kaiser and Miessner.. *® Comparison to other models is discussed in Ref 48.

5 Results for $Tc

The case of %Tc presents a unique situation. The structure of the nuclei with 50 neutrons
near *Tc are well described by shell-model wave functions, 5! and thus reasonable nuclear-
structure calculations can be carried. It is different from the cases studied in light nuclei
because it is a high-spin doublet and because there is (in the simplest model) no “one-body”
component — it is entirely two-body. In addition, as I will show below, the #3Tc PNC is
particularly sensitive to the isotensor AT=2 component of the NN PNC potential.

The X~ isomeric level of **Tc has a %'* partner at a separation of only 300 eV.16

The isomer decays to a 1§+sta.te through a mixed M2/E3 transition. Any contribution of the

opposite parity -1-,}+ state would lead to an E2 admixture to the transition whose intrinsic

transition matrix element is larger by a factor of ~ 1000 than M2 and E3. The asymmetry
on the 7 decay from a polarized initial state has recently been measured by Hass et al.!®
and has been used to deduce a parity nonconserving matrix element of 0.59:19425 meV,
where the first error indicates the statistical error and the second error is associated with
the nuclear physics parameters and polarization of the intial state. The experimental results
were discussed by M. Hass at this workshop.

The calculations discussed here are based upon DDHB (the DDH “best value” PNC
interaction). The method of calculation including the description of the Miller-Spencer short-
range correlations is the same as used in Ref 30 and Ref 22. Harmonic-oscillator radial wave
functions with Aw==8.7 MeV are used.

When there is a closed shell of nucleons, the exact two-body PNC matrix element
can be written as a sum of a one-body contribution and a residual two-body contribution, 22
The one-body contribution represents the two-body interaction between the valence and core
nucleons summed over all of the core nucleons. This division is analogous to the division of
the strong interaction into one-body (single-particle energy) and two-body (the residual two-
body interaction) parts. The one-body PNC term is usually large compared the two-body
term — expecially for heavy nuclei. The one-body PNC term has the form < £,; | Venc |
£ —1,j > so that it only connects valence orbits which has the same j but different .



We start with Model A which is the simple 1p,;; — Ogg/, model space used by Morrison
and McKellar. * The one-body term is zero because the there are only two orbitals and they
do not differ in spin by zero. The PNC effects in this model space come entirely from
the residual two-body PNC interaction. For the nuclear interaction we use the “seniority-
conserving” interaction of Glockner and Serduke.*® Morrison and McKellar used the PNC
interaction of Desplanques and Missimer (DM) which predates DDHB. But the DM and
DDHB PNC interactions are similar and the results given in Table 1 (with a total 5.5 meV)
are close to those obtained by Morrison and McKellar - both are nearly an order of magnitude
larger than the present experiment. We note that the AT=1 terms are small in Model A
since the dominant pion-exchange contribution has an isospin structure which vanishes for
T=1 two-body configurations. In this regard, the structure of the matrix element in *3Tc is
very similar to that for ' + p scattering, except in this case the two protons are bound in
the nucleus.

The isotensor contribution (AT=2) is usually small compared to the AT=0 and
AT=1 terms since it does not contribute the the one-body PNC matrix element. In addition,
the AT=2 contribution does not contribute to '*F and °F because of isospin selection rules
and in the case if 1N it turns out to be small 33° The case of % Tc¢ is thus the first which we
are aware of where the experimental PNC matrix element is comparable to the size of the
expected AT=2 contribution.

Next we consider Model B where the model space is enlarged to include 0f53, 1ps/2,
1py/; and 0Oggs,. We have calculated the PNC matrix elements in the full Model B space
with the nuclear interaction of Ji and Wildenthal.®! The results for the *T¢ PNC matrix
element given in Table 1 are not very different from the Model A results and are still much
larger than experiment.

Finally, we examine the effects beyond the space of Model B. The most important
excitations to consider are: (a) 1sy;3 — 1pijz, (b) 1psja — 2813 and (c) Ogeys — Ohg.
These are important because even though the amplitude may be small, in each case the PNC
matrix element picks up a coherent contribution from all of the core nucleons. Consider, for
example, process (b) in terms of the zeroth-order two-body matrix element < 0g3,,4% |
Hyye | Ogop2,1p172,4~ > (which has a DDHB value of 22 eV). The first-order correction is
< 093/2: 4% | H, | Ogosz,231/2,4% > X < Ogos2,281/2,4% | Hpme | 0goy2, 1pys2,4~ > /AE. The
strong interaction (H,) matrix element calculated with the interaction used in ® is 0.12 MeV
and the energy denominator is about 9 MeV. The coherent sum over the core nucleons for
< Ogo/2,28172,4% | Hpne | Ogoy2, 1p1/2,4™ > gives a PNC matrix element of the order of one
eV and thus leads to a correction with magnitude (0.12MeV) x (1eV)/(9MeV) = 13 meV
which is similar in magnitude to the zeroth order two-body term.

We have made an explicit calculation of contribution (b) by enlarging the Model A
to include the 2s;;; orbital and then allowing one nucleon to be excited into this orbital
(Model C). Following again the formalism of Ref 22 and Ref 30, all of the terms discussed
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above including the summation over the core nucleons are explicitly taken into account. The
model space and interaction are described in Ref 53. In Table 1 we give the results obtained
from this calculation. We indeed find a large change in the two PNC matrix elements
which contribute to the coherent core summation. The additional contribution to AT=0
cancels with the zeroth order two-body term. The change in AT=1 brings in a new AT=1
OPE contribution. The other PNC operators, in particular the isotensor operator, do not
contribute to the core summation and thus are not much effected by the 2s, /2 admixtures.
We are not able to calculate the effects of contributions (a) and (c), however, they should be
less important. Contribution (a) should be smaller than (b) because the 1p;/; is most filled
and the 18y, — 1p;/, excitations are thus blocked. Contribution (c) should be smaller than
(b) because the 0gg/z proton orbital is not completely filled and because the Ogoyz — Ohgo
energy denominator is larger due to the spin-orbit splitting.

Model B and Model C are two independent enlargements of the simplest Model A.
Since the enlargements are both relatively small in amplitude, in the spirit of perturbation
theory, we should add the changes obtained from both together. Thus we arrive at the final
results labeled Model D in Table 1 which are obtained by Mp = M4 +[Mp— M| +{Mc—M,],
where M are the PNC matrix elements.

The total Model D value of (AT=0)+(AT=1)+(AT=2) = (0.0-4.3+1.0) = —3.3 meV
changes sign from Model A but is still larger in magnitude than experiment. However, as
discussed above, the experimental result in !8F indicates that the AT=1 term is strongly
suppressed from the DDHB. Also as discussed above, recent quark sum-rule calculations
give a result for OPE part of AT=1 which is an order of magnitude smaller than DDHB.
In the limit when the AT=1 part is zero, the Model D result becomes (AT=0)+(AT=2) =
(0.041.0) = 1.0 meV, which is in reasonable agreement with experiment. Thus, it appears
that the PNC matrix element may be dominated by the isotensor (AT=2) term. The main
theoretical uncertainty is in the size of the AT=0 term, and it should be calculated more

accurately. In particular, second-order effects, such as the excitation of two neutrons across
the N=50 closed shell, should be examined.

In summary, we find that the PNC calculation for *Tc leads to rather complicated but
potentially interesting conclusions when compared with the small experimental value, The
PNC matrix element obtained in the simplest 1p;/; — 0go/; model space is in itself very stable
and much larger than the experimental value. Small admixtures of other orbitals strongly
change the result for the AT=0 and AT=1 contributions. The nuclear structure part of
the isotensor AT=2 contribution can be reliably calculated and, compared to other PNC
observables, gives a large contribution compared with the experimental value. Agreement
with experiment is improved if the AT=1 DDHB strength is reduced as observed for light
nuclei.

The DDH “range of values” is smallest for AT=2. It is dominated by p exchange and
the neutral currents lead to about a factor of two reduction over the value obtained with



only charged currents. > AT=2 thus provides important complementary information to the
AT=0 and AT=1 components.

6 PNC in the Compound Nucleus

Finally I will briefly discuss the problem of PNC in the compound states. Other speakers
have gone into more detail on this. One needs to make a quantitative connection with the
microscopic nuclear structure calculations which have been used in the discussion of light
nuclei and ®Tc above. A start in this direction was made in the model calculations of highly
excited states in the A=9 system ** and discussed by N. Auerbach at this workshop. In this
calculation we used the effective one-body operator and emphasized the role of the “giant”
PNC resonance. The mixing was shown to be dominated by nearby states, and the role of
“dynamical” enhancement is important. It is however not easy to extrapolate these results to
the cases in heavy nuclei which are studied in thermal neutron capture.!® It is interesting to
note that the valence shell-model space for these heavy nuclei contains orbitals which cannot
be mixed via the one-body PNC interaction. For example, for 233Th the active space for
neutrons is Ojus/z, 0i11/2, 1802, 18772, 2ds/2, 2dg/2 and 3s;/; and the active space for protons
is Oiya/q, lhesa, 1773, 1f5/2, 2p3s2 and 2py/,. So the situation is rather similar to the ®Tc case
in this regard.

The PNC effects could arise from mixing with the PNC “door-way” states (e.g.
J"=0") which lie at a higher energy and which are formed by particle-hole excitations not
contained it the valence shell-model space. This is the model which has been used thus far, 18
Wkhen interpreted in this way the fluctuating part of the observed effects are qualitatively
consistent with expectations, but the surprisingly large average value found for the special
case of ?¥Th requires a unusually large value of about 100 eV for the one-body matrix ele-
ment. The calculated values obtained *® for one-body matrix elements in heavy nuclear with
the DDHB interaction are on the order of 1 eV. Also A. Hayes presented a talk at this work-
shop which discussed the details behind the calculation of the exact one-body operator and
its relationship to the &- 7 approximation. % The discrepancy between 100 eV and 1 eV has
motivated experiments in heavy nuclei to look for cases of PNC among relatively simple shell-
model configurations such as the one in *"Pb discussed by J. Szymanski at this workshop. 5
Previous experiments on the nuclear anapole moment of 2’Pb already place constraints®”
of <14 eV for a PNC matrix element in 27Pb. Thus the average value observed for ?*3Th
cannot be understood, except perhaps by the octupole deformation mechanism discussed by
V. Flambaum % and V. Spevak % at this workshop.

However, PNC in the compound states could also arise from the residual two-body
PNC interaction within the valence model space. If the situation turns out to be similar
to that of ®Tc it could turn out that the matrix elements are dominated by the isotensor
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AT=2 component. This remains to be explored. With the computational techniques recently
available, it might be possible to carry out this calculation in an analogous medium-mass
model space such as 0f;/,, 0dy/a, 0ds/2 and 1s,/, for protons and 0o/, Ofs/z, 1pasz and 1pyye
for neutrons. It is important to note that there are no problems with spurious center-of-
mass motion in this model space as well as the one discussed above for 233Th. Thus all
configurations can be included, in contrast to the situation for the light nucleus calculations
in which only those configurations up to a given fiw can be included.
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Table 1: PNC matrix elements for ®*Tc (in units of meV)

AT term Model A Model B Model C Model D
0 1 —g,h{Y(1 + x0) 3.05 2.39 0.17

2 —g,h{?) 0.40 0.35 0.42

3 —9.,20(1 + x,) 0.28 0.22 0.20

4 —g,h® 0.20 0.18 0.01

py 3.93 3.14 0.80 0.01
11 JrganN 0 0 —4.36

2 —g,h{t — g, A 0.13 0.11 0.07

3 —g,h(1 + x0) — 9w BI(L + x,) 0.22 0.17 0.15

4 g,hM — gAY 0 0 —0.06

5 —g,h} 0 0 —0.07

b 0.35 028 —426 —433
2 1 —g,h{¥ 0.13 0.12 0.14

2 — g1 + x.) 1.05 0.82 1.10

z 1.18 0.94 1.26 1.02
b3 5.46 436  —220 -3.30
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