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Abstract

Nonlocal optical potentials for the scattering of 200 MeV protons from 22
nuclei, ranging in mass from 6Li to 22Pb, have been defined by folding a
complex, medium dependent effective interaction with density matrix ele-
ments of each target. The effective interaction is based upon solutions of the
Lippmann~Schwinger and Brueckner-Bethe-Goldstone equations having the
Paris potential as input. The bound state single particle wave functions that
specify the nuclear density matrices are Woo&-Saxon functions for A < 12
and harmonic oscillator functions thereafter. The resulting differential cross
sections, analysing powers and spin rotations all compare well with the known

data.
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. INTRODUCTION

In recent publications [1,2], the specification and results of a fully microscopic, coordinate
space, model analysis of 200 MeV proton scattering from 2C were reported. This energy
liesina‘transition’ region between low and intermediate energies in which one expects ef-
fects of nonlocdlities in the effective nucleon-nucleus (NA) interaction, as well as of medium
dependent effects in the nucleon-nucleon (NN) effective interaction upon which that NA
interaction is built, will be important [3,4], When these are taken into account, excellent
fits can be found to the elastic scattering cross sections and analysing powers [1,4]. With
appropriate structure input, this was aso the case with a number of inelastic scattering
cross-section and analysing power data sets and over arange of proton energies|1,5). The
optical potentials for the elastic scattering, and for both the incident and emergent chan-
nels in distorted wave approximation (DW A4) analyses of the inelastic scattering events,
were formed by folding a complex effective interaction with nuclear density matrices. The
resulting optical potentials are nonlocal and usually approximated by an equivalent local

form. We have chosen to retain the full nonlocal result which then has been used in finding
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solutions of (nonlocal) Schrodinger equations to give (elastic) scattering phase shifts and
the distorted wave functions needed in DW A calculations. The same effective interaction
was taken as the transition operator in the DW A calculations of the inelastic scatterings to
many states in '2C. The effective interaction is a mixture of central, two-body spin—orbit
and tensor force attributes, with each having a set of four Yukawa functions with complex
coefficients. With the interaction in this form, we can use the programme DWBA91 [6] not
only to solve the nonlocal Schrodinger equations but also to make fully antisymmetrized,
DW A calculations of inelastic scattering events. The ranges and coefficients of the Yukawa
functions were defined by accurately mapping the double Bessel transforms of that effective
interaction to an appropriate set of infinite nuclear matter g matrices [7]. Those g matri-
ces were obtained from solutions of the Bethe-Brueckner—Goldstone equations [8] in which
thé[ starting potential was the Paris NN interaction [9]. We note in passing that there is
litﬁe sensitivity to the choice of starting interaction. For each nucleus, the nuclear matter
density profile required [10-12] was folded with the g matrices. Details of the techniques
involved are given elsewhere [1,7]. Given that the NN g matrices are most easily specified
in momentum space and the effective interaction form is an approximation, it is sensible to
seek to analyse VA elastic scattering with a momentum space solution of the Schrédinger
equation. Attempts have been made {12,13], but only recently have such studies used cred-
ible g matrices as input [14]. These resuits [14] reflect reasonable agreement with the data
and confirm the need for inclusion of medium effects for low and intermediate energy NA
scattering [1,5]. As yet there has not been any sophisticated attempt to analyse inelastic
scattering data with a theory defined fully in momentum space and so we maintain interest
in using effective interactions and coordinate space models of scattering.

A feature in our process of analysis was that all details required to make the calculations
were preset. The effective interaction was defined from a nucleon—nucleon interaction. In
the case of 2C [1], the nuclear structure information was taken from complete (0 + 2)hw
shell model calculations with the single nucleon wave functions set by fits to elastic electron

scattering form factors. Thus the results for both the elastic and inelastic scatterings of

3



200 MeV protons from 2C were obtained from single calculations. No adjustments (core
polarisations) were needed and most proton excitation data were well fit. Similarly, data
from the scattering of 200 MeV protons from 0 and of 160 MeV protons from “N were
also well fit [15] when allowance is made for inadequacies in the structure used. Thus the
fully microscopic (coordinate space) model for 200 MeV proton scattering is established for
a set of Op—shell nuclei and it is the purpose of this article to show that to be the case over
the entire mass range. For masses A > 20, we have not insisted that the single particle (SP)
wave functions be set by fits to electron scattering data as we do not have sophisticated shell
model wave functions for these.

We consider herein only the elastic scattering channel but take the spin rotation, (),
iPto account along with the cross sections, do/dQ and analysing powers, A,. Specifically
ﬁe have considered 22 targets, namely the Op-shell set of ®7Li, ?Be, 1B, 1213C, and 160,
tile (1s0d)-shell set of 2°Ne, ?’Al, and 2Si, the 0f;/,—shell set of “0424448Cs, the pair of
%Fe and ®Ni in mass 50 region, the pair of %Sr and ®Zr in mass 90 region, the pair of
"%In and 2Sn in mass 120 region, and the heavy nuclei, 1 Au and 28Pb. Since 200 MeV
data was not available for all the nuclei listed above, some 185 MeV data were considered
and in the analyses of those, we have used the 200 MeV effective interaction in the folding
process along with the appropriate 185 MeV kinematics to give the nonlocal optical model

potentials.

II. RESULTS AND DISCUSSION

The results of our calculations of the elastic scattering of 200 MeV protons (185 MeV in
select cases) are shown in Figs. 1-11 wherein for each target, the do/dQ2, A, and Q from
the scatterings are shown in the top, middle and bottom segments respectively. The target
is identified in each diagram.

Proton elastic scattering data from the Op-shell nuclei [1,15] usually is not sensitive to

the choice of either the 07w or the (0 + 2)fiw shell model space, when using the Cohen and



Kurath [16] and MK3W interactions [17], respectively. However, the elastic electron form
factors, especially if transverse form factors exist, can be sensitive to such choices [1,15].
Hence, for completeness, we have set the bound state SP wave functions from fits to the
elastic electron scattering data within the {0+ 2)fiw shell model space. Where the SP wave
functions were determined from fits to proton scattering data, a Ofiw shell model space was
employed. We have used the MK3W interaction [17) for the Op-shell nuclei, the Brown and
Wildenthal interaction [18] for the 1s0d-shell nuclei, and the FPMI3 [19] for the 0f1p-shell
nuclei. A simple packing model specification whereby the nucleons were placed in the nuclear
shells of maximal single particle binding, was used to obtain the shell occupancies for all of
the heavier nuclei.

Traditionally one chooses either Woods—Saxon (WS} or harmonic oscillator (HO) func-
tl(hls for the bound state SP wave functions. As was seen previously [1,15], the choice of
S& wave functions has some effect on both do/dQ and A, for elastic proton scattering off
of light nuclei. As the atomic mass increases, the distinctions between the results ‘found
using the two forms decrease. Therefore we have chosen WS wave functions for nuclei up
to (and including) 2C, and HO functions thereafter. The WS bound state potential pa-
rameters (listed in Table I) and the oscillator lengths (Table II) for nuclei up to ®Ne were
set by matching to the elastic (longitudinal) electron scattering form factors [20]. With the
* heavy nuclei, we allowed the oscillator lengths to vary slightly from the conventional A(/6)
variation [21] to find the best fit to the proton cross-section data. However the values of
the oscillator lengths found for all nuclei do not vary greatly from those defined for the
root mean square (r.m.s.) charge radii [11]. The values of those charge radii are listed in
Table II [22]. The calculated r.m.s. charge radius are all smaller than those determined from
electron scattering analyses [1,15,20]. But it should be noted that for A < 20 our structures
have given very good fits to the elastic electron scattering form factors.

In Fig. 1, the data [23] from the scattering of 200 MeV protons from 7Li are compared
with the results of our calculations. For these and the other non zero spin Op—shell nu-

clei, contributions from all multipoles have been included, with the non zero components

5



evaluated in a DW A. Such contributions are necessary to achieve the quality of fit to the
data [23]. For both nuclei, the cross section and analysing power data are well fit, while no
such data are as yet available for comparison with the spin rotation.

In Fig. 2, the *Be and !°B calculations are shown in comparison with the available
data [24]. Again no spin rotation measurements have been reported. In these cases the
cross sections are very well reproduced. The analysing powers are also in reasonable agree-
ment with our results, especially as we note the marked effect higher multipole (J > 0)
contributions have at the larger scattering angles. Their destructive interference is particu-
larly important above 30°.

Even better results, as far as agreement with observation is concerned, are found in the
next two figures with the ***C measurements [25,26] and our results displayed in Fig. 3
ag'ld those from 'O and ?°Ne are given in Fig. 4. The data of the latter were taken from
éefs. [26,27]. Note that, with the exception of 2C, the SP wave functions were taken to
be HO, fitted to the elastic electron form factors. Spin rotations have been measured from
both ?C and %0 and the results of our calculations compare very well with those data.
The analysing powers are even better fit (to about 40°) while the cross sections to 60° are
extremely well reproduced. There is no data available from *Ne at or near 200 MeV, but
the results of calculations are shown as a prediction. As a large basis projected Hartree-Fock
model has been reported for Ne [28], data from that as a target (elastic and the inelastic
channels) would be of particular interest for analysis.

The scattering data [29,30] from the 1s0d-shell nuclei, 2’Al and 28Si, are shown next in
Fig. 5 wherein, as no 200 MeV data was available for #7Al, Uppsala data taken at 183 MeV
is shown. For these and all subsequent nuclei, the $P wave functions were determined by
fits to the proton cross—section data. The measured cross sections and analysing powers are
very well fit and through the third peak of the analysing power from Si. With increasing
mass, the spin dependent variables have more structure. That is also the case with the
200 MeV data [26,27,31] taken from the Ca isotopes. The results are displayed in Figs. 6

and 7. In Fig. 6 the “**2Ca data and our analyses are presented, while Fig. 7 contains the
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4448Ca data and results. The fits to the cross—section data remain excellent to 60° for all
four isotopes as are those to the spin dependent data (to at least 40°). The spin rotation is
well fit for both ***Ca. For “°Ca, the results compare very favourably with those obtained
through a purely momentum space scheme {14].

There are no spin rotation data for scattering from the mass 50 nuclei considered next
in Fig. 8, nor are there for the ensuing cases of mass 90 and 120 that are shown in
Figs. 9 and 10 respectively. Cross-section and analysing power data have been reported
in Refs. [29,32], [33], and [29,34] respectively and the quality of the fits to those given by our
calculated results remains very good. Here, the experimental data for %6Fe, Zr and 115In
were taken at 183 MeV. The %Fe analysing power result is not as good but the trend with
respect to the data is still correct.

%Finally the heavy mass targets, 1’ Au and 2®Pb, are considered and the results of our
caﬁulations are compared with the data [29,35] in Fig. 11. The results for the 183 MeV
197Au data are not as good as most of the other cases studied, but some slight variation
caused either by shell effects or by the data being measured at an energy other than 200
MeV might be anticipated in this case. On the other hand the 2%®Pb results are very good
and of the same level of accuracy as achieved in recent momentum space calculations [14].
The cross—section data are reproduced through the third peak (~ 30°) as are the analysing
power and, especially, the spin rotation. We do note, however, that our cross-section results
for the scattering from 2%8Pb are not as good as those found with an earlier microscopic
model study [4] wherein, for a number of energies, cross-section shapes over some 11 orders
of magnitude were very well reproduced. Yet, we do as well, and perhaps a little better,
in reproducing the observed analysing power data. However, our result is that from a
single calculation and we have neither optimised the density profile of 2*Pb nor adjusted
component elements of the VN effective interaction to seek better fits to the data. It is
important to note that the interaction used by the previous study [4], was formed similarly
to ours, and is energy and medium dependent. Such attributes must be treated in any

realistic analysis of medium energy proton scattering from nuclei.
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Details of the SP wave functions are given in the Tables with the W§ parameters and
the orbit binding energies for the five lightest masses considered shown in Table I. As
required there is a steady increase with mé.ss in the binding of the 0s and Op orbits. We
have arbitrarily set the binding energy of the weakly bound orbits at 0.5 MeV. The harmonic
oscillator lengths are given in Table II from which it is obvious that the progressive increase
of ‘b’ with mass is not monotonic. This is more evident in the last figure, Fig. 12, wherein the
product bA~1/6 is shown as a function of A/3. The (heavy mass) expectation that oscillator
energies should vary as 41.47A~'/3 transcribes to the straight line of value 1 in this figure.
Most values for masses A > 27 lie within a few percent of that expectation, but they do
tend to be smaller. The exceptions to this are *Fe and 1%7Au, the (185 MeV) data sets
vghich were not as well represented as the other nuclei shown. Finally the breakdown of the
‘éfhle’ for oscillator energies and lengths when one considers low masses is very evident. In

fict for masses to 2°Ne, these oscillator lengths vary rather as (1.35 £ 0.05)4/12,

ITI. CONCLUSIONS

With no adjustment for light nuclei (A < 20) or small variations otherwise of any factor
in a fully microscopic model calculation of the elastic sca.tterings of 200 MeV protons from
22 targets ranging from ®Li through ?®Ph, we have found excellent reproduction of the
measured differential cross sections usually (over 5 orders of magnitude) and very good to
excellent fits to the spin dependent measurables, the analysing powers and spin rotations.
The calculations were made using the fully antisymmetrised formalism contained in the
programme DWBA9]1 with effective interactions that involve central, tensor and two-body
spin—orbit forces. Those effective interactions were specified by mapping their double Bessel
transforms to the NN g matrices of infinite nuclear matter (fermi momenta to 1.5 fm~!)
built from the Paris two nucleon potential.

In each case, optical potentials were formed by folding the effective interactions with

a specification of each target’s single nucleon shell occupancies and appropriate SP wave



functions. Those optical potentials are nonlocal and the scattering phase shifts from which
predictions of the measured quantities were specified were _obta.ined by solution of the rel-
evant nonlocal Schrodinger equations. In general, cross—section, analysing power and spin
rotation data (where defined) were well fit. Therefore, one can expect to obtain good fits
to elastic proton scattering data at intermediate energies with nonlocal optical potentials
which are determined from folding realistic effective interactions with the appropriate density
profiles.

Use of these optical potentials and of the effective two nucleon interaction as the transi-
tion operator in the DW A are being made to investigate inelastic scattering data sets that

have been taken with a number of these targets.
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TABLES
TABLE 1. Binding energies (in MeV) for SP wave functions determined for WS parameters

[22] of r, = 1.35 fm., a, = 0.65 fm., r = 1.05 fm., and A = 7.0.

Orbital 8Li TLi 9Be 108 12¢

0s } —23.93 —25.97 —33.03 -37.17 —38.75
Op% -6.45 -8.77. -17.28 -19.78 —22.37
Op ! —4.44 —6.84 -15.21 —-17.81 -20.65
0d 8 —0.50 —0.50 -1.95 -3.32 -6.28
0d 3 —0.50 —0.50 -0.50 -0.50 -3.68
1s 3 —0.50 —0.50 -2.78 —3.66 --5.87

4
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TABLE 1I. HO parameter values for 5P wave functions and the associated r.m.s. charge radius
for each nucleus. All experimental data were taken from Ref. [11].

b (fm) <>}, (tm) <e?>1,, (tm)
T4 1.650 2.40 2.55 + 0.10
Li 1.650 2.36 2.41 + 0.10
9Be 1.630 2.40 2.50 % 0.09
log 1.600 2.45 2.45 £ 0.12
12¢ 1.600 2.44 2.4550 + 0.0024
13¢ 1.639 2.46 2.440 + 0.025
180 : 1.701 2.58 2.730 £ 0.025
2Ne 1.751 2.85 2.992 £ 0.008
77Al 1.653 2.82 3.05 £ 0.05
éaSi 1.698 2.92 3.086 + 0.018
0Ca 1.905 3.38 3.482 + 0.025
#2Ca 1.866 3.31
4, 1.880 3.33
48 Ca 1.869 3.31 3.470
56Fe 1.802 3.38 3.801 + 0.015
88Ni 1.923 3.64 3.764 £ 0.010
885r 2.062 4.04 4.17 £ 0.02
0Zr 2.041 4.02 4.258 + 0.008
sy 2.128 4.36
1208n 2.174 4.46 4.640
197 Au 2.198 4.84 5.33 £ 0.05
208pp 2.326 5.15 5.521 + 0.029
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FIGURES
FIG. 1. The differential cross sections (top), the analysing powers (middle), and spin rotations

(bottom) from the elastic scattering of 200 MeV protons from %7Li. The data (dots) are compared
with the results of our microscopic model calculation (solid curves). Data were taken from Ref, (23].
FIG. 2. As for Fig. 1 but for ?Be and 1°B. Data were taken from Ref. [24].

FIG. 3. As for Fig. 1 but for '»!3C. Data were taken from Ref. [25,26].

FIG. 4. As for Fig. 1 but for 0 and ?Ne. Data were taken from Ref, [26,27).

FIG. 5. As for Fig. 1 but for 2’ Al and 288i. Data were‘ta.ken from Ref. [29,30].

FIG. 6. As for Fig. 1 but for 042Ca. Data were taken from Ref. [26,27,31].

FIG. 7. As for Fig. 1 but for 4+48Ca. Data were taken from Ref. [26,31].

FIG. 8. As for Fig. 1 but for ®Fe and %Ni. Data were taken from Ref. [29,32].

FIG. 9. As for Fig. 1 but for %Sr and Zr. Data were taken from Ref. [33].

FIG. 10. As for Fig. 1 but for *In and 2Sn. Data were taken from Ref. [29,34}.

FIG. 11. As for Fig. 1 but for 1Au and 2%8Pb. Data were taken from Ref. [29,35).

FIG. 12. The variation of the oscillator lengths, b, scaled by A~1/¢ with mass.
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