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Abstract

Simple states, such as isobaric anadog states or giant resonances, embed-
ded inte continuum are typical for mesoscopic many-body quantum systems.
Due to the coupling to compound gates in the same energy range, a smple
mode acquires a damping width (“internd” dynamics). When dudied ex-
perimentdly with the aid of various reactions, such dates reved enhanced
cross sections in specific channds at corresponding resonance energies (“ex-
ternd” dynamic8 which include direct decay of a smple mode and decays
of intrindc compound sates through their own channels). We consder the
interplay between internd and externd dynamic8 using a generd formalism
of the effective nonhermitian hamiltonian and looking a the Stuation both
from “ingde’ (strength functions and spreading widths) and from “outsde’
(Smatrix, cross sections and ddlay times). The restoration of isospin purity
and disappearance of the collective strength of giant resonance8 e high ex-
citation energy are discussed as important particular manifeations of this
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complex interplay.



1. INTRODUCTION

Dynamical features of open mesoscopic quantum systems are characterized by the pres-
ence of “simple” (single-particle and collective) excitations, “complicated” (chaotic) intrinsic
motion involving many degrees of freedom, and irreversible decay into continuum. The co-
existence and interplay of these phenomena is the important aspect of all processes including
excitation and deexcitation of the system. One of the questions of primary interest in nuclear
physics, especially for future experiments with radioactive nuclear beams, is that of exis-
tence and purity of simple modes of nuclear excitation erﬁbedded into continuum. Similar
problems arise in atomic and molecular physics, physics of atomic clusters and mesoscopic
solid state devicgs.

During the last decade, a number of relatedAph‘elnomena. were discovered in this area of
nuclear physics, see for example [1,2]. Saturation of the spreading width of the giant dipole

‘resonance (GDR) in hot nuclei [3-5], ”disappearance” of the collective stfength of the GDR
at high excitation energy [6], and existence and relatively narrow width of the double GDR
[7-9] are just few bright examples. In the physics of isobaric analog states (IAS), one can
mention the evidence for existence of the so-called ”broad poles” [10], very weak fluctuations
of the spreading widths of the IAS throughout the periodic table [11-13], and restoration of
isospin purity at high excitation energy [2]. |

In such problems, one always deals with a simple excitation mixed with the dense back-
ground of complicated states. The simple excitation is associated with a specific signal. It
can be a quantum number which singles out the state in the ocean of surrounding states as
it happens in the IAS case. As a rule, such a state is relatively pure with respect to this
label when l;)oked at in the entrance channel. The isospin purity is violated by the internal
mixing {11] when, due to the high background level density, the statistical enhancement of
perturbations becomes extremely imporfé.nt, similar to the well known enhancement of weak
interactions observed in parity nonconservation {14]. The individuality of a "simple” mode

can also be referred to its specific structure, for example in the case of a giant collective



vibration, whose coherence makes the state \;ery different frorn. the background. Such a
special state is characterized by a large mult.ipole moment which provides a strong collective
gamma decay [1]. In all cases, the manifestations of the simple mode in specific reaction
channels are intertangled with the ch#otic mixing inside the system.

As a result of the mixing, the sirnple mode is fragmented over exact stationary states
which form the fine structure of the spectrum. Being averaged over the unresolved fine struc-
ture, the excitation function is related to the strength distribution of the original "label”
smoothly depending on excitation energy. More detailed statistical analysis of observed fluc-
tuations, assuming generic correlations of energies and strengths for the invisible underlying
states, is capable {15] of extracting their characteristics. In general, the strength functions
and reaction cross sections represent two sides of the process, internal and external and the
relation between them is fa.r from trivial. Thus, the strength distribution may or may not
coincide with the width distribution seen in the reactions and decays [16).

The well known formalism [17] of the strength function proceeds as if the states under
consideration were stable. However, all excited states, strictly speaking, have a finite lifetime
and therefore belong to the continuum spectrum. The level widths of the resonances in the
continuum [18,19] are governed by the interaction which is in general different from that
forming the discrete specfrum inside the system. The effects of intrinsic mixing and coupling
to and via continuum have to be considered simultaneously.

Below we formulate a consistent quantum-mechanical approach which fully accounts for
the interplay of internal damping and decay and contains, as particular cases, the “disap-
pearance” of the collective strength of the giant resonance [1] explained by kinetic arguments
in [20], and the restoration of isospin purity at high excitation energy [2] in accordance with
the old idea by Morinaga {21] and Wilkinson [22].  We discuss the general properties of
the strength function of a simple mode embedded into continuum in its relation to what
is observed in reactions. Our consider@tion, being intentionally schematic and less specific
than in the well known review paper [11], is in many aspects complementary because of its

generality and the simultaneous treatment of internal and external aspects of the problem.
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II. EFFECTIVE HAMILTONIAN

We use the effective non-hermitian hamiltonian [19,24] in order to take into account
internal and external interactions on equal footing. The intrinsic structure at high level
density produces the set (“background”) of the basis intrinsic states ‘|n),' n =1,...N,
where N is supposed to be large. The simple state |0} is located in the the same range of
energy. All N + 1 states have the same values of exact integrals of motion such as total
angular momentum. We assume that the basis rstates are characterized also by quantities
like isospin or parity which are approximate integrals of motion. The isospin mixing which is
one of the subjects of our application is introduced explicitly by the off-diagonal elements of
the hamiltonian. Parity nonconservation due to weak interactions can be another example
of an approximate conservation law which can be included in a similar manner.

The effective hamiltonian in (N +‘1)~dimensiona.l space is the operator

3 (1)

H=H-

containing two (real and symmetric for a time reversal invariant system) matrices H and W
which describe internal and external coupling, respectively.
The antihermitian part W has a special structure [19,11,24] being originated by the

on-shell decays into open channels ¢ = 1,2,..., &,

n<in/*

W = AAT = Wy = 3 AZAS (2)

Here we introduced the (N + 1) x k matrices A = {AS} of real t.ra.nsition amplitudes which
are proportional to the matrix elements of the full original hermitian hamiltonian which
connect intfinsic and channel subspaces of total Hilbert space.

The hermitian part H consists of the unperturbéd energy € of the simple state |0),
the internal N x N hamiltonian h describing the background states |n), and the coupling
between the simple and complicated states. The real coupling matrix elements Hop, = H,p =

V.,n > 1, form an N-dimensional column vector V. The spectrum A, of the eigenvalues



of h is supposed to be very dense. Along with the similarity of generic complicated wave
functions [25], this justifies the statistical approach.
The effective hamiltonian H can be studied with standard matrix methods [24,26]. Its

diagonalization gives complex eigenvalues
i .
gszj_EPJ'? J=03°"5N1 (3)
and the quasistationary eigenstates |j) with a pure exponential decay law ~ exp(~i&;t). The
construction of the effective hamiltonian guarantees the unitarity of the scattering matrix,

see below Sect. 5.2. .

III. STANDARD MODEL OF THE STRENGTH FUNCTION

The description of the mixing of stable internal states, which forms complicated sta-
tionary superpositions and spreads the srength of original simple states, is well known [17].
With the antihermitian part W omitted, the intrinsic propagation within the closed system

is described by the Green function G(E) of the hermitian part of the hamiltonian,
G(E) = =—. (4)

The eigenvalues of the intrinsic hamiltonian H are given [17] by the (N +1) poles E = ¢,

of the Green function (4). They are the roots of the secular equation

_ V2
GOOI(E)EF(E)zE—Go—-ZE_h =0. (5)
n>l n
Each eigenfunction |a) of H carries a fraction
o o dF'\-1 -
=105 = () s = [14 S Ve by Q

of the collective strength determined by the weight of the corresponding component C§ in

the expansion over the basis states,

N
la) = C§10) + 3 Caln). (7)

n=1
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The smooth strength function of the simple excitation is defined in terms of the average

local level spacing D of background states,

Po(e) = [£*/D(€)]ea=e- (8)

It is normalized according to ¥, f* = [ dePy(e) = 1.

The formal solution (6) requires the knowledge of statistical properties of the background
spectrum h, and coupling matrix elements V,,. The simplest ansatz used in the standard
model [17] assumes a roughly equidistant dense spectrum of A, and interaction intensities
V;? uncorrelated with energies k, and slightly fluctuating around their mean value (V).
For convenience of the reader, we collect the results of the uniform model in the Appendix,
along with a brief discussion.

At (V?) > D?, the strength function of this uniform model has the Breit-Wigner shape

1 T
P = e ey + 9

with the spreading width given by the golden rule,

I E [, = QW(—‘{DQ. (10)

The standard model just described is valid [27-29] if T, does not exceed the energy range AE
of coupling strength V;? (AE is defined by the spread of the doorway states which providé the
gates for the further mixing of the state |0}). This is expected to be a good approximation
for the IAS with the typical spreading width < 100 keV. In the case of giant resonances
'y 2 AE and the uniform model should be corrected [30]. However the difference influences
mainly the shape of the wings of the strength function which is of minor importance for our

purpose; here we use the uniform model for definiteness.



IV. SIMPLE STATE EMBEDDED INTO CONTINUUM
A. Formulation of the problem

Now we take into account the openness of the system. The simple state |0} is 6pen to the
direct decay (channels ¢ which display specific signaturés of the simple mode, for example
collective y-radiation from the giant reasonance or pure isospin of the IAS). Due to the
intrinsic coupling to compound states, the simplé state also acquires access to many “evap-
oration channels” labeled by the superscript e; partial widths depend on the distribution of
strength of the simple mode carried by specific compound states.

When applied to the IAS with isosbin T, we have to consider the surrounding back-
ground states [n) which belong mainly to the isospin T' = T5 —1. The isospin mixing occurs
mostly through intrinsic interaction [11] so that the decay channels for the decoupled simple
mode and evaporation channels for compound states carry different isospins. In many cases,
the effects we are interested in can be studied using one direct channel which will be labeled
as ¢ = 0. Then we have in the hamiltonian (1) the amplitudes A = /o, where 7 is the
“natural” width of the simple state, and A;,ﬁ 2 1. All AZ are assumed to be of the same
order of magnitude.

At low energies (for exa,mple., for neutron resonances), only few decay channels are open
and the narrow compound states do not overlap. Their widths v, = ¥,(A%)? are small
compared to their mean energy spacing D. As energy and level density increase, we pass
the region of strong coupling via continuum where the width collectivization occurs and
broad ”Dicke resonances” [23,24,26] form the contribution of direct processes. The situa-
tion changes again when many uncorrelated decay channels are open, and the off-diagonal
elements (2) of the antihermitian part W of the effective hamiltonian are averaged out.
Then the states |0) and |n) simply acquire finite widths. These 1'1nstable states are coupled
through the hermitian interaction V and this is what bridges the gap between the intrinsic

strength function and its manifestation in the resonance reactions.



'To describe the open compound states, wejintroduce the N x N Green function

T i—ht (/2w oAy
N complex poles z = &, of g(z) determine energies and evaporation widths of compound
resonances still decoupled from the simple mode. In eq.(11), w stands for the (NxN)
submatrix of W, eq.(2), which acts in the compound subspace and describes the evaporation
together with the interaction between the compound states through common decay channels.
The latter is characterized by the off-diagonal matrix elements of w. Being the sums of
uncorrellated contributions of many evaporation channels, k > 1, these elements, due to
mutual cancellations, are small in comparison with the diagonal elements, |wpp /wpn| ~
1/vV% (see [24]). The corresponding corrections are of order of v%,/kD? where 7., is the
typical evaporation width. We will rleglect them below assuming 7., < vkD. Under this
condition, partial decay widths of the compound states to specific evaporation channels are
small, 7., /k € D. | |
The complex energies of compound resonances in this approximation are equal to €, =
| he = (i/2)Yew,v = 1,2, ..., N, supposing on the statistical grounds that the fluctuations of
widths of compound states are weak since the number k of evaporation channels is large.
The simple state has its own complex energy & = €o — (i/2)yo where 7 is the direct decay
width.
Let us now switch on an interaction between the simple and compound states through
the hermitian coupling operator V. The mixing proceeds in competition with the decays of
intrinsic states, both via direct and eva.porﬁtion channels. Whence, we need to generalize
the standard procedure of determination of the strength function, Sect. 3, for the decaying

system. In our schematic although quite generic m.odel, it could be done exactly.

B. Decay widths in the presence of intrinsic damping

The diagonalization of the total non-hermitian hamiltonian (1) leads to N + 1 complex

eigenvalues (3) which are the roots z = £; of the secular equation (compare to (5))
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Flz)=z~& - VTg(z)V =0, (12)

or, in the.explicit form,

V3 '
ej—ao—zngj_ﬁgyﬂ. (13)
The interaction amplitudes V,,, which couple the unstable simple state |0) with complicated
(and decaying as well) intrinsic states |v}, are still real in the approximation taken above

(we neglected the off-diagonal part of the continuum coupling w).

Similar to (7), the quasistationary eigenstates | J) can be represented as superpositions

of decoupled unstable states |0),...,|v)
i} = €310} + X Cilw). (14)
The fraction f7 = |CJ]? of the strength of the simple state {0) carried by the quasistationary

state |7) is equal, as in eq.(6), to

e 1

=1 L =VTgH(&)g(&)V. (15)

With &; = E; — (i/2)[';, the loops L can be written as

Vi 2

L' = — = Im) V2 —. 16
§a;lt‘—'.f—ﬁul2 L = Yeu ; £i—& (16)
Using the secular equation (13) we arrive at a very simple expression
_ w0 —=T;
D=7 17
r 3™ Yev ( )
leading to the individual strengths (15)
| o
= e R =, (18)
Yo = Yeu

In other words, the resulting width of the quasistationary state |5} can be found from

simple probabilistic arguments,

Tj =7ij+7ev(l_fj)' (]_9)
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The direct decay width is distributed over all ciua.sista.tiona,ry states according to their frac-
tions of the strength of the original simple state. It is easy to check the normalization of the

Weights (18):

;f" =1 (T -V +1)7.) =1 (20)

Yo~ Yev
where the last step follows from the invariance of the imaginary part of the trace of the
hamiltonian (1), T;T; = 7o + N7.,. We have to notice that the probabilistic interpreta-
tion emerges here as a result of a strict quantum-mechanical calculation, with no ensemble

averaging or transition to a kinetic description.

C. “Broad pole”

Explicit expressions for the properties of the strength function, including the spreading
width along with the decay widths into continuum can be obtained if the a.vera.ée charac-
teristics of the intrinsic spectrum and of the coupling matrix elements are spéciﬁed.

In the uniform model [17] used earlier for the stable states, eq.(13) gives a pair of coupled

equations for the real and imaginary parts of the complex energy (3), see Appendix,

15— (1 +2hy;
.= _I‘a_.'j_._..__L , = — _........4._'1_
EJ €o + 2 1 T a:?yf 3 PJ Yo rs 1 n :L'fyf (21)

Here I'; stands for the standard spreading width (10), and notations

| E; T = Yoo
z; = cot (7!'3") , Y;=tanh (-2-’—1)—) (22)

are introduced.

At moderate values of the interaction V, the simple state keeps an appreciable fraction
of the collective strength and preserves its individuality, see eq. (24) below. Such a state
was called the broad pole in [10]. The problem of IAS can serve as a typical example. The
unperturbed analog state |0) arises at the energy € carrying almost pure isospin 7. Its

direct decay width ~ is much larger than the evaporation width 7,,,,. of background states

with isospin T¢ [19]. The isospin-violating interaction V mixes these states.
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Assuming that the resulting width Ty = I'j=o satisfies the condition (T — Yev) > D we
have from (22) yo = 1, so that eqs. (21) give for the complex root corresponding to the

broad pole

Eomeg, To=r—T,. (23)

The second expression reads I' = I'l — '} in the notations chosen in [10]. The state T5 can
be observed only if it decays before mixing, o > I',. The collective strength (18) carried by
the broad pole is then | '

ey L
Yo — Yev Yo — o

P = Yev — F |
foeRte— (24)
which remains of order of unity as long as ['g noticeably exceeds 4.,. This formula extends

to the case of unstable compound states the measure introduced in [10,31] of the *purity of

analog spin” of the broad pole. On the other ha.nd, the typical values f7 for j # 0 are small.

D. General strength function

The energy dependence of the strengths (18) is hidden in the secular equations (21).
Exclusion of z; leads after simple algebra to the general equation for the strength function

which depends only on the absolute value |}y — Yev!s

. . ~. 72
5o D (Bima)l + 1T+ o - (- ) o5)
- ~. 12?
271%0 — Yeu| (B — e0) + 1 [I‘, ~ o = Yeu](1 - f:)]
or, for small fj, |
£i D 1 (EJ - 60)2 + :11,(1"’ + h’O - 7eu|)2 (26)

= Il .
_ 270 — Yol (Ej ~ €0)? + 2(Ts = [0 ~ 7eu|)?
Substituting summation over j by integration over energy, one can easily check that this

distribution is normalized as

T,
= 1 Fa < = Yeu |
N e 0=
2 (k) = | (2
1, L, > "70 = Yeu!-
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In the upper case, the contribution f® =1 — f‘, /1% = Yeu| (compare with eq. (24)) of the
simple state (23) is lost in the integral. Indeed, the small factor in front of the logarithm
in eq. (25) is in this case compensated due to the small value of the denominator of the
expression under the logarithm so that eq. (26) is not valid for this special state. On the
other hand, when the increasing mixing rate characterized by the spreading width prevails
upon the influence of direct decays, the simple mode fully dissolves in the sea of compound
states.

Except for an exponentially narrow domain of parameters around the pomnt I'y = |y —

Yeu|, the width (FWHM) T of the distribution (26) is determined by
I =% — (% - Yeu)?|. (28)

The tails of the strength function, £ > (T, + |yo — 7ev|), are universal and given by the
standard model, f7 & (D/2w)[',/E*. In the limits Ty > |70~ Yeo| or Ty < |70 — Yoo, €9.(26)

reduces to the Breit~Wigner distribution

’ L, < E _‘?..
(Ej ~€)?+T%/4 — = Ty’
p=§4 (29)
I, o = Yes! 2 DI,
[ 1o = Yeol (B —€0)? + 1o — 1eul?/2 = 7 (%0 = Yeu)?’

respectively. Near the point T, = |y — Ye|, (26) is invalid and eq.(25) gives

fo D (hl 27FP,

2rT,
=T —Inln + ) . (30)

D D

The strength f0 is still larger than all f7 for j # 0 but this cannot influence the normalization
(27). Fig. 1 illustrates the relation between the exact expression for the strength function,
eq.(25), the approximation (26), which is invalid in the center of the spectrum, and more
crude approximations (29).

The strength function gives an average description of the fragmentation of individual
simple configurations in the intrinsic space. In the next section we study the problem as it |

is seen in continuum properties.
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V. SCATTERING CHARACTERISTICS
A. Scattering matrix

Up to now we concentrated on the “inside” view of a simple unstable mode mixed
with complicated fine structure states. The “outside” world was present as a reservoir for
irreversible decay through numerous open channels. Now we take a glimpse of the same
system from the viewpoint of reaction amplitudes and cross sections where only asymptotic
states are observed.

The scattering matrix § = { S“'} at energy E can be written as [19]

S(E) = §/%{1 - if(E)}5'2, (31)

T(E) = ATG(E)A. (32)

Here 3 includes the potential scattering as well as channel coupling and direct reactions
in the continuum. Those effects being unrelated to intrinsic dynamics are irrelevant for
our purpose, and §(E) can be considered as a dia.gonal matrix with phase shift elements

exp(2:6°) smoothly depending on E. The Green function in eq.(32),

1
z2—H’

G(z) = (33)

describes the propagation governed by the total hamiltonian (1). It differs from the intrinsic
Green function by the antihermitian part of the effective hamiltonian. Both G(z) and the
scattering matrix (31) have i)oles at the complex energies (3). _

It is a straightforward exercise to establish, with the aid of the factorized structure (2)

of the antihermitian part W, the relation

X |
Q(E) =G(E) - ~2-G(E)A1 " Wz)R(E)ATG(E) (34)

between the two Green functions (33) and (4). The R-matrix in €q.(34) is familiar from

nuclear reaction theory [32],
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R(E) = ATG(B)A. (35)
It describes the propagation inside the closed system between two acts of coupling to the
continuum; the poles of B(E) correspond to the energies ¢, of intrinsic states with the
mixing V fully accounted for. The reaction matrix T(E) of eq.(32) is similar to (35) but
includes all intermediate couplings to the continuum. Finally, for the scattering matrix (31,
32) the substitution (34) gives

(£)
(E)

— . )‘R 31/2
1+ (i/2)R(E)’ 1+ (G/2)R ' (36_)

B. Scattering wave function, delay time and unitarity

The scattering wave function [¥%) with the incident wave in the channel c at energy

E can be presented by the superposition of intrinsic, |n), and continuum channel, le; E},

components,

V%) = S 6B + X [ dBX (B, B¢ B (37)

where E° is the threshold energy in the channel ¢. Recall that the decay amplitudes A are
the matrix elements of the total original hamiltonian between the states |n) and |c; E). By
a direct substitution of (37) into the Schrgdinger equation, we find [19] the N x k matrix

b(E) of the intrinsic components & as
b(E) = G(E)A3Y2. (38)

The diagonal elements of the k x k matrix bt(E)b(E) determine the norm of the internal
part of the wave function initiated in the channel ¢ at energy E. Therefore this matrix should
characterize the fraction of delay time in this reaction due to intrinsic resonances. Indeed;
the Smith’s time delay matrix is defined [33] as

dS(E)

| #(E) = —iSY(E) 5
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Taking into account only the resonance energy: dependence via the R-matrix in eq.(36), we
find

§_1/2 1 dR(E) 1 51/2

Tres(E) = — - (i/2)R(E) dE 1+ (i/2)R(E)

(40)

In the same resonance approximation one can neglect the energy dependence of amplitudes

A to get from. (35)
(dR/dE),., = ~ATG*(E)A. | (41)
Using the relation (34) between the Green functions G and G, we obtain
Tres = §"V2ATGHE)G(E) A2, (42)
Thus, the time delay matrix (40) coincides with the intrinsic norm matrix found from (38),
btb = %,,. . (43)

The total Green function (33) describes the propagation in the open system and, therefore,
the delay time as well, |

We can now define the normalized probability P5(E) to find the system in the intrinsic
state |n) in the “elastic” reaction ¢ — c, |

A(E) = s b (B)F, Trm) =1 (19)

res
The probability pj(E) characterizes the weight of the simple state |0) in the channel ¢. In
the problem of the IAS this quantity measures the isospin purity in a given channel.

The full scattering matrix (31,32) is unitary provided the potential scattering matrix 3
is unitary. It follows from the fact that the decay amplitudes A in the entrance and exit
channels of eq.(32) are the same which appear in all intermediate processes described by the
total propagator G(E) with the aid of the effective hamiltonian (1,2).

The unitarity condition 55t = 515 =1 gives for the reaction matrix (32)
T = (T — T (45)

16



which can be transformed, with the help of (2) and (38), into

1PN EYWb(E)s~V? = i{T(E) - TH(E)}. (46)

VI. A SIMPLE CASE: STABLE BACKGROUND STATES

The simplest situation corresponds to the stable background states with no direct access
to open channels, 4., — 0, when the intrinsic evolution for the reaction in the channel ¢
starts and ends at the simple state. The background states are involved by the internal
coupling only at the intermediate stages of the reaction. Calculating the diagonal element

of the resonance time delay matrix (42) we obtain for the probability (44),

E) = S(E) = [14 % 2] = laFfam) (&)

This is nothing but the continuous generalization of the strengths f* = |CZ|? defined above
by €q.(6) in discrete points ¢, of the intrinsic energy spectrum, f* = f(E = ¢,). Since the
intrinsic states are coupled to continuum through the state |0) and the probabilities p¢ are
normalized, eq.(44), the decay (or population) partial widths v§ do not appear in (47). If
several direct decay channels ¢ are opén, the energy behavior (47) is identical for all of them
being determined by intrinsic dynamics only.

The probability (47) vanishes at energies £ = k, of the unperturbed background states
which are located intermittently with the actual energies ¢,. In the vicinity of A, the
complicated states dominate the intrinsic part of the scattering wave function.

Another, though equivalent to (47), representation of the time delay in terms of the

complex energies (3) of quasistationary states can be derived from (42),

T';
T

%5 _ X
rcs(E) _2 Im[Trg(E z (E E. (48)

The delay times for different channels ¢ are proportional to the corresponding partial widths
of the state |0) and have the identical energy dependence determined by the complex energy

spectrum of intrinsic unstable states.
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. The representation (48) is useful when the -vicinity of the broad pole (23) is considered.
It follows from (48) that the contribution of this pole is a smooth function of energy super-
imposed onto the picket fence of the é-like peaks with the average value proportional to the
Weisskopf recurrence time 7/D for a long-lived wave packet. At the energy E = E,, the
time delay in a channel ¢ due to excitation of the broad pole is equal to 4v5/4oTy. On the

other hand, one gets

186(Eo)l* = 151Goo( Eo)* ~ 47§/ (0)? (49)
since the energy FEo is very close to the unperturbed energy of the state |0). Therefore the
probability maximum is determined by the fraction of thé total width 4o of the original

mode which still resides at the broad pole,

Ty Yo ~ Iy
Ey) = — = -2 50
Po(Eo) o - (50)

in agreement with (24) taken at 4, = 0.

One should have in mind that the distribution (47) wildly fluctuates on the fine structure
energy scale. With the energy resolution worse than the level spacing D, one sees only a
smooth behavior coinciding with that of the strength function Py(E), eq.(8). It is quite
natural because here the intrinsic mixing is the only source for the spreading of the strength,
or for isospin impurity in the case of IAS. An average magnitude of the probability to find the
original isospin can be easily estimated in the standard model with the uniform background.

Eq.(47) gives here (I'* =T,)

_ sin?(Ex/D)
po(E) = sin?(Ex/D) + («T4/2D)’ (51)

or, after averaging over fine structure, and taking I'' >» D,

—— 1D

Po(E) =~ (52)

This natural estimate (inverse number of fine structure states within the spreading width)

coincides with that used by von Brentano [10].
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VII. MIXING WITH OPEi\T COMPOUND STATES
A. Purity of a simple state

The situation changes in the realistic case with many open evaporation channels. Strong
fluctuations of the probability py( E) are smeared out since the compound poles are displaced
to the complex energy plane even with no coupling to the simple mode. This probability
remains considerable in a finite vicinity of the point € ensuring a noticeable isospin purity
of the internal part of the scattering wave function in this region.

If the simple mode and the compund states have no common decay channels, the nonzero
decay amplitudes are A = /7o (consider for simplicity a single direct decay channel) and

Aj. The reaction amplitudes are equal to

T(E) = 106aa(E), T*(E) = /35 X" Gou(E)Ac (59)

where now Gog (E) = F(E) (see (12)) whereas

Goo(E) = Evygygoo(E)- (54)

The delay time in the elastic process, according to (42) and (38), is given by

75E) = Wil EJP (14 2 75 (5)
= Y0lGoo( E)I* [1 + L(E)]

where the loop L(E) is the analog of L/, eq.(16), taken at the running real energy E rather

than at the complex energy £;. Therefore we find instead of (47)

. 7 2 -1
PlB) = F(B) = s = 14 el (56)

The function f(E) extends the strength function (15) of the quasistationary states to a
running real energy E (compare with the similar correspondence between the functions

(6) and (47) in the case of stable compound étates). Note that, by definition (44), the
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resonance envelope |Goo|® is divided out of normalized probabilities po(E) which behave

uniformly within the spreading width.

The loop function (56) can be calculated similar to (17). Under the same assumptions,

it is equal to

() = 22y L22), (51)
where, instead of (22), we now have
z = cot (w%), y = tanh(%%”). , (58)
For a small evé.poration width, 7., < D, the expression (57) reduces to
L(E) = 4 o2, (59)
2D

The results in this limit do not depend on the evaporation width at all and therefore coincide
with those following from (47). In particular, the weight of the simple state in the intrinsic
part of the scattering wave function is in average of order of D/T, < 1.

As level density and number of open channels increa.sé, the ratio v.,/D rapidly grows
together with the argument of y, eq.(58). One has a fast transition to the limit of the
overlapping background states when y ~ 1 and L(E) — T, /... The probability (56) in this

case is noticeably greater than in (52),

o5 D (60)

f= 730+F8 P8

The fluctuations disappear, and the simple state preserves its individuality in the intrinsic
wave function across the whole region of the giant or analog resonance. This behavior is
demonstrated in Fig: 2. |

The purity of the intrinsic part becomes perfect when Yev > I's; the depletion of admixed
states of the opposite isospin occurs faster than their population. This gives a micr.oscopic
justification of the isospin puri.ty at high excitation energy predicted in [21,22] and recently
observed ekperimentally [2] At the same conditions, the fraction of the simple mode carried

by a generic compound state,
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. T,
1-f= ,
f Yeuv + I‘s

(61)

is small. This means that the compound processes have no time to explore the presence of
the exceptional simple state.

Tﬁe equivalent result was formulated in terms of the kinetic balance between the pro-
cesses of decay and mixing in {20] where the mechanism for the disappearance of the col-
lective strength of the GDR at high energies was suggested. The authors showed that the
probability of excitation of a collective mode in an initially heated nucleus is equal, using
our notations, to I';/(7ey + I';) and therefore diminishes as T'y/v.,, when the tempetature
exceeds a critical value determined_by the condition 7., ~ I',. Complementary to the some-
what qualitative kinetic arguments of [20], here the analogous conclusion follows from a full
quantum-mechanical consideration.

We need to mention parenthetically that such statements assume the saturation of the
spreading width T! & I, as a function of temperature. The absence of a comsiderable de-
pendence on excitation energy is well known for the IAS [11-13,34]. The saturation of the
intrinsic spreading width presumably takes place for the GDR as well [1,3-5]. General theo-
retical arguments in favor of such a saturation {11,28,29,34,30] are based on the cha,otization

of the intrinsic dynamics and they will not be repeated here.

B. Excitation and decay of a simple mode

Here we compare the cross sections of various processes initiated in the channel ¢. They
start with the excitation of the simple mode. The “elastic” scattering, ¢ — ¢, competes
with the evaporation ¢ — e through numerous compound channels e. These branches are
described by the amplitudes T* and T, respectively, see eq.(53).

On the real energy axis, z = E, the uniform model leads to the inverse Green function

Goo (E) = F(E), compare eq.(5),

PR z(l-y*) i - (1+2Y
F(B)=E e~ Tgg o+ 5o+ T o). (62)
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At y = 0 (no evaporation), the elastic cross section

cc|2 2 2 2 L, TE\* 2 B
T = BNF B =28 | (E == Lot 22) 4234 %)

reveals fine structure fluctuations. In the case of small y # 0, these fluctuations are enhanced
in a vicinity of the point £ = ¢ due to the energy dependence of the imaginary part
of F(E), eq.(62). However, the fluctuations are washed away when evaporation becomes

strong, e, 3> D, so that y — 1 and (62) simplifies to

F(E)=E-e+1(10+T,). (64)

Note that here the decay width 4, and the spreading width F, are combined into the total
width of the resonance on the real energy axis. In Fig. 3 we illustrate the energy dependence
of the elastic cross section 0% = |T°|? for different values of relevant parameters.

Using the optical theorem, one obtains from eqs. (53,62) and (57)
—2Im T*(E) = |[T*(E)[? [1 + %L(E)} (65)
0 . .
for the total cross section initiated in the channel ¢. The fraction of |7¢|2 in the total cross

section determines the branching ratio of the simple decay mode,

Bcc(E) “Yo - 70f(E)

" 0 IE) T 0f(B) + 70 [L - FE)]

(66)

in agreement with the probabilistic interpretation of the function f (E). This function rather
than its discrete counterpart (15) is relevant when an actual reaction process is considered.

The amplitude T*( E), eq.(53), for evaporation in a given channel e after the simple state
is excited in the entrance channel ¢, strongly fluctuates together with the exit amplitudes A
This amplitude vanishes in average. Assuming.many uncorrelated statistically equivalent

decay channels, we can use a natural statistical suggestion [11,24]
(445 = 6% b0 . (67)

Taking into account eqs. (53),(54), we obtain
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VV A’Ae) cc27cv
S rep i), (68

so that the corresponding branching ratio is equal to

L %l(B) 1 %[1-/5)
k% + 2 L(E) ~ K50/ (B) + o [L = F(B)]

(IT(E)*) = 0|Goo( E)|? Z

£ec

(69)

Eqs. (66) and (69) give B” + kB* = 1 in accordance with the unitarity condition. The
statistical ansatz (67) is self-consistent because an equivalent approximation was in fact
introduced earlier when the off-diagonal elements of the antihermiti@ operator w in tile
compound space were substituted by the average evaporation width, see the discussion after
eq.(11). |
In the case of considerable evaporation and overlapping compound resonances, Yeuo /D >

1, the branching ratios saturate at, see (60),

ce _ Yo ec _ Po

1
. Be=- .
70'1'[‘3 k'YO‘l"ra

(70)

For the saturated spreading width T',, these limiting values cease to be sensitive to the level |
density of compound states and depend on excitation energy or temperature only through
- the direct width vo. Under such conditions, only the simple state with the total width
Yo+T's, corresponding to the two possible ways of its decay, escape and internal dissipation,
is seen in the scattering in the entrance channel c. Here again the background of compound
states serves as a reservoir for irreversible decay, equivalent by its properties to decay into

continuum.

C. Reactions initiated in compound channels

The processes started in the compound channels e, for example, driven by a nuclear
interaction of heavy ions, can populate the simple mode through internal niixing. The
corresponding amplitude T is the same as the amplitude 7 considered above, egs. (53)
and (68). The competing compound-compound processes. are described by the set of the

amplitudes
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VoAs
E—¢,

, e ge -Ae' "
Tee(E)=ZAuAy +2 uV Fad

71
~F—¢, '~ E-g°® (71)

i

The second term in (71) accounts for the virtual excitation of the simple mode with the
subsequent deexcitation again via compound channels.
To evaluate the total cross section of co.mpound'-compound reactions,
ot = ST, )
o
we perform here the statistical averaging as in (67). Neglecting the numerical corrections of
the order 1/k, and using the notations of Appendix for the sums over the spectruin of the

. compound states, we obtain

2
0* = T2 {IS[7 + kSun + 2Re [G3o(V2)(SSen + S)]

+1Goo*(V2)?(1S0]* + kSZ)). (73)

The terms proportional to the number k of open channels a.ppea,r as a result of pairwise
coherent averaging of random decay amplitudes. Only these terms survive in the limit
k > 1. Taking the sums of Appendix in the overlapping limit ¥ — 1 and recalling that in

the same limit, according to (68),

1
ot = [Tce]2 - E|gm|2701",, (74)

we come, after many cancellations, to a simple expression for the total cross section of all

reactions initiated in a generic compound channel e,

0% +0° = T + (T [") - (75)
(g

1 ey
= T |- 0 + 100+ T 100?22

This gives the branching ratio for the deexcitation into the channel ¢ carrying the signature

of the simple mode,

1 701-‘, D
Bt = — —_— 76
27 (B — ol + (o T T9/2 70 (76)
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The resonance at the simple state is suppresséd by the inverse number ., /D of the back-
ground states on the typical evaporation width. As it was discussed above, the observation
of the signal of the simple mode in the reaction started in a compound channel becomes less
probable with increasing +e,, in agfeement with the kinetic arguments of [20].

The same result can be expressed with the aid of the function f, eq.(56),

~

_fo* _ 1 2D
(1= floe 2‘rr’y°P”|g°c'l T, (77)

Here fo® determines the fraction of the cross section of the process € — ¢ due to the
intrinsic simple state; the denominator is the similar fraction of the compound-compound
cross section due to the complicated intrinsic states, with no excitation of the simple mode.
The right hand side of (77) is the resonance curve of the simple mode excited through the
background (entrance factor I',) and deexcited through its own exit channel (factor Yo). The
integral of the left hand side ratio over the energy region covered by the spreading width

gives the inverse number of fine structure states in this region, D/T,.

D. Common decay channels

One of the objections raised against the kinetic explanation [20] of the disappearance of
the collective strength of the giant resonance is related to the possibility of preequilibrium
excitation of the giant mode [35]. In this case the intrinsic evolution would start with the
state which already carries some amount of collective strength. In our language such a
possibility can be taken into account via the presence of the reaction channels a connected
both to the simple mode and to the background states. For such channels, all amplitudes,
Aj and A} do not vanish; until now we assumed that, before the internal mixing, the simple
state and the fine structure states have no common decay channels. For the case of the IAS,
this situation is associated with the extrnal isospin mixing which is apparently of minor
importance {11]. However, for the giant resonance this effect can change the situation.

The common decay channels can be incorporated into theory without problems. Here

we consider the simplest case of a single common channel which can be easily analyzed by

25



the standard means. The corresponding real émplitudes will be denoted as ao and a, for
the simple state and bacground states, respectively. A many-channel case brings in many
amplitudes of such type. Being uncorrelated, they should not lead to any effects of coherent
enhancement. |

In the single channel case, the exact algebraic solution gives the matrix elements of the

total Green function (33)

E)=|E-¢ LA S

Gool )‘[ '““"E;E—eﬁiu(i/z)ﬁa] ’ (78)
Go(E) = Guo( E) = Gon e (19)
6. 1 | 1 Qudy

9u(B)=FZg 5= , (5 1+ (/2R "“g"""") ' (80)

Here the renormalized amplitudes are introduced for the decay of the simple state through

the channel a,

‘/v' v
ao(E) =ap + Z E _aé ) (81)

and for the mixing between the simple state and the background including the intermediate

continuum states,

=V -lg % |
u(B) =V, - ga,7— (/)R (82)
The analog of the R-matrix, eq.(35), for the a channel is
a a}
R(E)zZP:E_gy. (83)

Using these exact expressions we evaluate the reaction amplitudes. We are interested
in reactions starting in the channel a and ending either in the channel ¢ specific for our
signature of the simple mode or in any of the other channels, a or e. The elastic a — a

amplitude is given by (compare (36)

aa _ Ra Qo 2 |
S WY (1+(i/2)R«) Goo. (84)
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The deexcitation through the special channel ¢ is governed by the amplitude

= \/%(GUUGD + Z gOuav \/’% 00 (85)

( / 2)R
To make a conclusion of the importance of the excitation through the common channel,
we assume that, similar to the amplitudes A¢, eq.(67), the new amplitudes a, are uncorre-
lated quantities with a large magnitude which contributes significantly to the total width
Yev of the compound states, {a®) =, ~ 7., > D. Using the estimates of the Appendix for
the sums over the fine structure states in the overlapping limit, we obtain R ~ —i7(ya/ D).
Thus, R? is a large imaginary quantity determined by the numbér of compound states in
the interval v,. According to the sarﬁe estimates, the first term in (84) dominates, and the

contribution of terms containing the sum with the cross products V,a, is relatively small.

Finally,

(7= ( D

(ITau.|2} W%) Y05 1Gool*. | (86)

The average partial width for the decay of the simple state into the channel a is equal to

1 = (Jaof?) = a? + ,;’“ . (87)

ev
This, quite general, result shows that, in the case of the common channel capable of populat-
ing both, simple and compound states, the statistical branching for the deexcitation via the
simple mode drops with the increasing level density p ~ 1/D of compound states. Whence,
strong common channels with 4, ~ -., cannot recover the disappearing simple mode. Weak

channels, 4, = 4., /k, are useless because of their small total cross sections.

VIII. CONCLUSION

In the paper we considered the most general properties of an open quantum system
where a simple mode of excitation interacts with the background of very complicated states.
Both, simple and compound, states are coupled to the continuum and have finite lifetimes.

Internal dynamics (mixing) and external dynamics (decays) are intertangled in a nontrivial
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way. The intrinsic dynamics in the presencé of the continuum are governed by the effective
nonhermitian hamiltonian. The widths of intrinsic states fnodify the strength function of the
simple mode. This view from “inside” has to be supplemented by that from “outside” for
determining the observables measured in a real scattering experiment, such as cross sections
and delay times. In a formal language, here we project the dynamics of quasistationary
intrinsic states back to the real energy axis. The effective hamiltonian by its construction
guarantees the correct properties of the scattering matrix including unitarity. Therefore
it becomes possible to use the knowledge of internal dynamics in order to compare cross
sections of competing processes.

The general although schematic character of the analysis allows one to draw the con-
clusions concerning the manifestations of the simple mode in various situations. A typical
example is given by the IAS which can be seen as a broad pole [10] or to be dissolved in the
sea of the fine structure levels of another isospin. The analysis, analogous to that in [11],
confirms the old idea [21,22] of increasing isospin purity of the IAS at high excitation energy.
The experimental data [2] agree with this conclusion. The isospin purity is restored because
of the very fast depopulation of the admixed background states when their decay width Yew
increases compared to the spreading width T, of the simple state (IAS in this case). Here I,
is assumed to bé a slow changing or saturating function of excitation energy (5] as predicted
by the analysis based on the chaotic character of the intrinsic dynamics [29].

Such a consideration is not specific for the IAS and can be applied to other simple modes
embedded into continuum. The giant dipole resonance is known to preserve its individuality
up to high excitation energy or temperature {1]. In particular, this is clearly seen in the
observation of the nearly harmonic double-phonon excitations [9]. The new phenomenon of
disappearance of the collective strength of the GDR [1] is still a debatable subject. Such a
behavior was qualitatively explained in [20] as a result of a shift of the kinetic equilibrium in
favor of compound decays when the ratio Yev/T's increases. Our general quantum-mechanical
analysis confirms this result. Moreover, we made the arguments which demonstrate that the

conclusion is still valid when the simple mode can be excited from the reaction channels
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which are common for the simple mode and the background states.

'To complete the analysis, it would be interesting to consider the situation when several
simple states can share the collective strength and the decay width into thé channel which
signals the deexcitation of the simple mode. This is the case in the realistic calculation of
the GDR. The collective peak accumulating a large part of the isovector dipole strength is
shifted to high energies compared to the unperturbed shell model position. However, some
strength is still concentrated at the unshifted energy. This “configuration splitting” leads
to specific interference phenomena [16] which again can be described with the use of the
effective nonhermitian hamiltonian. The distribution of the dipole strength and the width
evolves with the increasing excitation energy which should be taken into account when the
interplay of the internal interaction and external decays is considered. Typically, this results
in the quenching of the collective strength and its redistribution in favor of the low energy

component. These effects are seen experimentally {36] and discussed in [37).

The authors are indebted to P. von Brentano who initiated this work and made an im-
portant impact by numerous discussions at the initial stage. We thank D.V.Savin for con-
structive discussions and assistance. One of us (V.S.) is grateful to Y.Fyodorov, F.Izrailev,
L.Rotter and H.-J.Sommers for interesting discuagsions. He also thanks the Kéln University
and the National Superconducting Cyclotron Labfora.tory for generous hospitality. This work
was supported by the National Science Foﬁnda.tibn, through grants 94-03666 and 95-12831,
and by the INTAS grant 94-2058.

Appendix
A uniform model of compound spectra
Assuming the equidistant spectrum of unstable background states with the level spacing

D and the decay width +, which corresponds to v,, of the main text, and substituting actual

coupling matrix elements V? by their average (Vz), we have to deal with the sums as the
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trace of the Green function (11)

S= Y. (B). (58)

V=—00

For the calculations of the scattering processes, the energy K is real and

1 1
v E = . .
B = 52 = F=wb T (89)
The summation in (88) leads to
T i Tz wy
§ = 3y oot [D (E + 7)] D1+izy (%0)
whére the parameters are introduced
nE
T = cot (-—b—), y = tanh (2D) (91)

As the decay width + increases, the quantity y changes very rapidly from a small value
y # my/2D for isolated long-lived states, when v/D < 1, to a value exponentially close to 1
for overlapping levels, when v/D > 1. In practice it is sufficient to consider just these two
limiting cases. At small v, the imaginary part of § is small, x y = (x~/2D), and the real
part of S is equal to 72/ D as for stable levels [17]. In the opposite case of large v/ D, the real
part vanishes ~ (1 — y*) whereas InS =~ —x/D. Both cases have a general meaning being
not limited by restrictions of the uniform model. Thus, the result for the overlapping case
follows immediately after substituting the $(E -.e,,)"l by the integral over the levels with a
level density 1/D and using a small shift of energies into the complex plane. This expression
is routinely used in statistical theory of nuclear reactions [11]. A similar consideration is
valid for the sums as in (13) and (22) taken at a fixed complex energy & = E — (i/2)T;
instead of running real energy E.

More complex sums can be easily analyzed in the same way. Here we give some examples

used in the text (the notation S, corresponds to m factors ¢, and n factors ¢} so that the

basic sum § = Sy):

2 (1 -y)(1+2%)
Sm = ZC (D) (1 +szy)? (92)
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Sn=) |G =—=— yi+a) (93)

So=lopg =4 1t (W _ T gy gl (94)

In the overlapping limit y — 1, these sums go to 0, 27/Dv and 2ix /D42, respectively. The
first sum (92) vanishes in accordance with the fact that both poles in the équivalent integral
are located on the same side of the real axis. The nonvanishing sums are proportional to
the level density p = 1/D, i.e. they have a coherent cornponelit growing at high excitation
energy.
The sum 83, can be calculated as
Sn=3 6l = |5 EB 5555 L HEE)| (95)

After simple algebra, we obtain

2 _ dS
Sy = ——-ImS + Re7r (96)

In the overlapping limit, the first term in (96) gives 47/D+® whereas the second one is
proportional to (1 - y?)/D*+* and therefore it is small compared to the first term since the

exponential smallness of (1 — y?) overcompensates an extra factor v/D.
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Figure captions

Figure 1. The strength function f7 as a function of energy for the values of parameters
[s/D = 100 and |y — Yeu|/D = 90. The solid curve gives the exact numerical solution of
eq.(25), the dotted line corresponds to the approximation (26), the dash-dotted curves show

the Breit-Wigner approximations (29).

Figure 2. The relative probability f (E), seé €gs. (56-58)', of excitation of a simple state
through the channel ¢ as a function of energy, £/D, and the evaporation width, ~.,/D.
The value of the spreading width, I',/D = 10 is chosen for illustrative purposes to make
the oscillations along the energy axis clearly seen; the oscillations rapidly disappear as 4.,

grows,

Figure 3. Elastic cross section ¢ in the channel ¢ as a function of energy. The
parameters in part (a) are ¥o/D = 10 and T,/ D = 5; the cross section is shown for different
evaporation widths, v.,/D, which correspond to the values y = 0.3 (dots), 0.7 (solid curve)
and 1 (dash-dotted curve). The situation with T, > 7o is shown, for the same values of y, in
part (b) where v%0/D = 5 and T',/D = 10; note the different scale for the cross section. Part
(c)shows the cross section for 70/D = 100 and T's/D = 15 with y = 0.5 (oscillatory curve)
and y = 1 (thick curve).
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Figure 3b






