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Abstract

We calculate the stationary wave functions for two identical particles mov-
ing in a common one-dimensional potential well and interacting through a re-
pulsive delta-potential. We show how a symmetric noninteracting state gb,{,j:%,
where the particles occupy the single-particle orbitals m and n, evolves as
a function of the interaction strength. In the limit of very strong repulsion,
the energy levels coincide with those for the adjacent antisymmetric states
qbfn_’,)l +1- The spatial probability distributions also coincide revealing the ap-
parent change of statistics. However, the relative momentum wave functions

are different keeeping memory of original statistics.



I[. INTRODUCTION

In many instructive quantum-mechanical problems, an actual short-range potential in-
teraction can be replaced by the zero-range forces. In the one-dimensional case, this is
equivalent to the use of the é-function potential [1]. In practice, the problem is reduced
to the matching condition for the derivative of the wave function on different sides of the
potential. In the three-dimensional problems with central symmetry, the presence of the
short-range potential at the origin also can be taken into account by a boundary condition
for the external wave function which was used in theory of the deuteron in the early age
of nuclear physics [2]. Recently, a similar approach was suggested [3] for the three-body
wave function in hyperspherical coordinates which describes “Borromean” nuclei like ¢He
and "Li. The delta-function three-dimensional “pseudopotential” was widely used for low-
energy neutron scattering by protons, nuclei and crystals [4]. A similar approach works as
well in meson physics [5] and atomic physics [6].

'The one-dimensional potential §(x) actually can mimic even long-range interactions. The
ground state wave function and binding energy for this potential are the same as for the
three-dimensional Coulomb problem, mainly due to the fact that the virial theorem takes
the same form for both cases {7]. In this way one can treat [7-9] two-electron problems of
He-like ion and H; molecule with infinitely heavy nuclei substituting both nucleus-electron
and electron-electron electrostatic potentials by the corresponding §-functions. The one-
dimensional many-body problems with é-potentials between identical bosons or fermions
can be solved exactly with the aid of the Bete ansatz [10] being a testing ground of many
approximate methods in statistical physics. In many realistic cases one has to deal with the
combination of the short-range and long-range potentials. One of typical examples is given
by the nuclear pairing problem. Two fermions moving in a common nuclear potential of
radius R, interact through the residual forces which have a range of the order of an average
internucleon distance ro = RA™Y/3 where A > 1 is the mass number of a nucleus.

As an illustration of phenomena emerging in such situations, we consider a simple one-



dimensional two-body model {or rather three-body problem with the infinitely heavy third
body)} where the external field is approximated by an infinite box while the residual interac-
tion is modeled by the é-potential. The symmetry requirements for identical particles select
the allowed two-body states even with no dynamic interaction. The repulsive §-interaction
suppresses the relative wave function at short distances. This is seen already in perturbation
theory [11]. We solve the problem exactly and show that the quenching of the wave function
becomes complete in the strong repulsion limit so that the symmetric wave function has the
same energy and spatial stucture as the corresponding antisymmetric wave function without

interaction. In some sense, the é-interaction mimics the change of the particle statistics.

II. THE MODEL

The hamiltonian for two interacting identical particles can be written as

H=K +K, + U+ U+ U, (1)
i, P
= ﬁ-i— ﬁ%— Voo(zy — 22) + Ulzq) + Ulza) (2)

where the potential U(x) represents a well with the bottom value U/(z) = 0 for 0 < 2 < @ and
infinitely high walls at £ = 0 and z = «. The boundary conditions imply the disappearance
of the wave function for any of coordinates x; or z; on the walls and discontinuity of the
derivative of the wave function along the line z; = z;. Because of the presence of the single-
particle field U(x), the center-of-mass coordinate cannot be separated (a harmonic oscillator
field is known [12] to be an exception) and we have to solve a genuine two-dimensional

problem.

The unperturbed (no interaction, ¥, — 0} single-particle wave functions are (n = 1,2, ...)

9
() = \/gsin(knrc_), k, = na—ﬂ- (3)

The normalized two-particle unperturbed wave functions with a certain spatial symmetry

are



W en,m2) = 5 [l o) & ()] )

if two different orbits are occupied, n # n’; for the two particles occupying the same orbit

n, only the symmetric function is possible,

\I"nn(xlvl@) = 1/)n(xl)"f)n($2)- (5)

Only symmetric functions ¥,, and 1115;2 are allowed for identical spinless particles or for

fermions of spin 1/2 with total spin S = 0 whereas the antisymmetric functions ') are the
only permitted for fermion pairs with § = 1. For antisymmetric functions, the probability of
the particle collision (27 = z3) vanishes because ‘115;2 (z,z) = 0. Therefore the é-interaction
is active in symmetric states only and we will limit our consideration by those states omitting
below the superscript (4) if it does not lead to a confusion. The symmetry arguments stay
valid for interacting identical particles as well, as long as they are indistinguishable in the
hamiltonian (2).

The eigenfunctions ¥(z,y) of the total hamiltonian satisfy the two-dimensional

Schrodinger equation
(Vz-l-e)l]?(:c,y):vﬁ(a;—y)\I’(w,y) (6)

where V2 = (82/02?) + (8?/8y?) is the two-dimensional Laplace operator, € = 2mE and
v = 2mV}, with the zero boundary conditions with respect to both coordinates on the square

boundary,
lP(O,y)z‘I!(a,y):‘Il(:r,O):\Il(:c,a)zo. (7)

The difficulties arise because the natural variables separating the equation (6) correspond to
the center of mass, (x + y)/2, and to relative motion, x — y, while the boundary conditions
are simple in the original coordinates # and y. Since there is no exact analytical solution of
the problem, we first reduce it to the form which is adapted in the best way to the numerical

solution. This aim can be reached with the help of the Green’s function method.



III. GREEN’S FUNCTION

We define the Green's function Gip(x,y; 2’,y’) of the unperturbed problem, v = 0, as the

solution of the equation
(V?+ &)Gola,y, ¢, y') = é(z — 2")o(y — ) (8)

with zero boundary conditions with respect to both coordinates. Here the dependence of
the Green’s function on running energy e is not indicated explicitly.
Any stationary eigenfunction of the full problem with a potential v(x,y) satisfies the

integral equation
U(z,y) = /d:v’dy’Go(w,y; 2y ol y")¥(a,y) (9)
along with the correct boundary conditions. For our case of the delta-potential, we obtain
Uz,y) =v [ d2'Go(z, 34/, ') U(a', ), (10)
or, introducing the wave function on the diagonal line = = y,
F(z)=¥(z,z), (11)
we come to the one-dimensional Fredholm integral equation
F(z) = v /0 " A2 K (2, ) F () (12)
with the symmetric integral kernel
K(z,2") = Go(z,z; ', 2). (13)

The nontrivial solutions of eq.(12} exist if the Fredholm determinant of the kernel K (x, z')
vanishes which determines the eigenvalues e.
The standard procedure of calculating the Green's function uses its expansion into a

double series of unperturbed solutions (3).

it



Golz,y;2",y") = 3 G2,y a2 e (). (14)

nn'
Such a series of oscillating functions is not convenient for numerical calculations because of
poor convergence. We prefer here another method which leads to a single series with much

better convergence properties. First we seemingly violate the z « y symmetry looking for

the Green’s function in the form

Go(z,y;2",4") = X galys 2,y V() (15)

where the coefficient functions g¢,(y; z’,y’) also depend on .

Due to the completeness of the set {t,(x)},

(z — ') =3 ha(z)pala’), (16)
we see that the z’-dependence of g,(y;2’,y') can be factorized,
gn(¥:7 ") = hal(y; y')¢a(2"), (17)
and the remaining function hn(y;y’) is Green’s function of the one-dimensional equation
2 2
((‘:)—y2 - qn) halyiy') = 6(y — o). (18)
Here the notation
¢~k = —q, (19)

is introduced for “energy” remaining for the y degree of freedom in eq.(18). For large n, the
wave vector ¢, is real, and instead of oscillating expressions we will deal with hyperbolic
functions.

The solution of (18) is straightforward. All functions h,, g, and Gy are continuous at
coinciding arguments but their first derivatives have discontinuities. The solution satisfying
the boundary conditions as well as the matching condition at y = ¥’ can be written with

the use of the step functions as



halysy') = — ! [sinh(g.y) sinh (¢a(a — ¥")) 0y — y) (20)

¢» sinh(q,a
+ sinh(¢,y") sinh (g.(a — y)) 8(y — y’)].

This determines the coefficient functions g,(y; 2’,3’), the full Green’s function Go(z, y; z’, ")

and the kernel (13) of the integral equation (12),

K(z,2') = Z ¢'n($)¢n($’)hn($: ‘T’)' (21)

The result can be transformed to the regular form (14) of the double series,

K(z,2') =Y ()P0 (2)tm (2)m ()

mn €— k'?n - kﬁm ’ (22)
with the aid of identities which can be found, for example, in [13].
For the numerical analysis, we will need the following integral,
I(e) = / " d2'K (z,2). (23)
0. :
The direct calculation using eqs. (21) and (21) gives
()
. 4
)= 2t =) 0

where p = y/¢/2. The sum can be easily calculated comparing two equivalent representations
of one-dimensional Green’s function with the same zero boundary conditions, one as an
expansion in terms of the wave functions t,, and another one from the direct solution of

the wave equation. The result, analogously to (21), is

Ya(x)gn(z’) 1
2 k2—p? psin(Pa)[

+ sin(pr')sin (ple — x)) #(z — :1:')]

sin(pz) sin (p(e — 2')) 8(z" — ) (25)

n

From here we find

_sin{pr)sin (pla — ) i
Iy = ST (26)




IV. RESULTS AND DISCUSSION

By direct discretization we convert the integral eigenvalue problem (12), with the kernel
defined by egs. (21) and (21}, into a finite (N 3> 1) set of homogeneus linear algebraic
equations. First, we rewrite the integral equation subtracting from the two sides the quantity

vil(z)F(z) where the integral of the kernel /(z) was calculated in (26). This gives
F(@)[1 - vl(z)]— v /0 " K(z,2)[F(a') - F(z)] = 0 (27)

where now there is no diagonal singularity at = = 2’ in the integral term.

The decomposition of the physical domain 0 < z# < ¢ into N small intervals A; =

z; — xj_1 gives the discretized set of equations for F; = F(z;),i=1,..., N,
N
(1 =vl)F—vd AKG(F; — F) =0, (28)
=1

where I; = I(z;) and K;; = K(x;, ;). Practically, the integration with Gaussian weights
[14] ensures better convergence. Here we do not go into details of the numerical procedure.

The eigenvalues €,,./(v) of the system are the roots of the determinant of the set (28).
They can be found as functions of the interaction strength v starting with the independent
particle case of v = 0. The eigenvalues are labeled by pairs of integers (r,n’) which are

identified by the continuous evolution of energy as a function of v, with
Enm(v =0) = k2 + k2, (29)

as an initial value. The solution of the set (28) for a given eigenvalue €., determines the
wave functions F; at coincided arguments, and then, via eq.(10), the total wave function.
The wave functions start from the unperturbed symmetric solutions ¥,,,/, eq.(4), for n # n’,
and from ¥, eq.(5), at n’ = n.

We consider here only the repulsive case, v > 0, and the symmetric solutions ¥(x,y) =
W(y,z) because the antisymmetric solutions do not feel the presence of the interaction. The

evolution of the lowest eigenvalues corresponding to the symmetric solutions is shown in



Fig. 1. All eigenvalues behave qualitatively the same changing between two values which
belong to the unperturbed spectrum. We consider the energy terms €nns(V), assuming,
with no restriction of generality, n’ > n. The terms start at the unperturbed values (29),
monotonically increase and saturate at the closest unperturbed values €, n1y1. The ending
point always corresponds to a level which is still unoccupied by the previous ascending
levels so that there is no level crossings. The higher n and »’ the larger is the value of the
interaction strength which corresponds to the saturation of the energy term.

The regularity of the pattern can be understood as follows. Consider for example the

ground state n = 1,n" = 1. Its wave function

2
Wy = ~sin T en (30)

a a

has no nodes inside the box 0 < z,5 < a. The repulsive short range force suppresses the
probability for the particles to be found at small r = x —y. The corresponding wave function
for the interacting system is still continuous and positive everywhere. But this function
acquires the discontinuity of the derivative being proportional to |r| near the diagonal line
r = 0. In the limit of very strong repulsion v, the suppression becomes absolute, and the
wave {unction goes to zero on the diagonal (from above). Fig. 2 shows the spatial image
and the contour map of the probabilities |¥|? for the ground state with no interaction, part
(a}, at the intermediate interaction strength, part (b), and in the limit of strong repulsion,
part {c).

It is easy to realize that the limiting function at very strong repulsion should coincide,

up to mirror reflection, with the lowest antisymmetric solution

(-) \/§( . wTx , 27y . 2mx . ‘ﬂ'y)
U, = — | sin — sin —sin —— s — | .
a a a a a

(31)
Indeed, this function vanishes, apart from the houndaries of the box, on the diagonal r =0
where it remains continuous and changes its sign from negative in the triangle —a < r < 0

to positive in the triangle 0 < » < a. Therefore this function, being nodeless inside each

triangle, represents the lowest energy solution of the equation with zero conditions on the

9



triangle boundaries. But the same is valid for the symmetric function of the preceding para-
graph. The only difference is related to the fact that the continuation of the symmetric
function from the first triangle to the second one proceeds here with mirror reflection which
makes the function positive in both disconnected parts. Since, in the strong repulsion limit,
the symmetric wave function vanishes on the diagonal, the energy eigenvalue and the prob-
ability distribution should be identical with those for the lowest unperturbed antisymmetric
solution.

Similar consideration holds for higher states. There is a one-to-one correspondence be-
+)

tween the starting symmetric solutions at v = 0, ¥)(0), n’ > n, and their decsendants at

v = 00, lllfﬂ,(oo), which have the same energy and the same probability distribution as the
antisymmetric solutions lDf:,,L), +1(0) for v = 0. Fig. 3 shows the generic behavior at the di-
agonal r = 0 of an initial symmetric function as compared to its antisymmetric counterpart
in the vicinity of r = 0. Fig. 4 shows several contour maps for such pairs.

We came to an interesting conclusion. A strong repulsion at short distances makes the
two-particle spatially symmetric wave function look as belonging to the opposite symmetry,
i.e. mimics the change of the particle statistics. This is seén both in the spectrum of allowed
energy levels and in the relative coordinate probability distribution. The idea to include
the Pauli antisymmetrization effects via short-range repulsion in a trial many-body wave
function is quite natural and it was used repeatedly in nuclear physics. Our simple delta-
function model partially justifies this procedure. However it is necessary to have in mind that
the wave function, in contrast to the spatial probability distribution, remembers its exact
symmetry. Therefore the relative motion momentum distribution for the exact symmetric
solution is different from that for the corresponding antisymmetric noninteracting solution.

The relative momentum wave function for the zero center-of-mass momentum (p, =

—py = p) s given by the Fourier transform of the coordinate wave function ¥(z,y),

#lp) = [ dedye™ =Lz y), (32)
This function is real for symmetric states and pure imaginary for antusymmetric states. The

10



relative momentum wave functions for the symmetric state (1,1) in the limit of v — oo and
for the corresponding antisymmetric state (1,2) at v = 0 are shown in Fig. 5, (a) and (bh),
respectively. Their analytical expressions are

2p* — 5)/3 — cos(wp)

(+) :COHS(
) = const P =)

(33)
and

sin{7p)
(P? —4)(p* — 1)

The kink at the coinciding values of the coordinates is responsible for the appearance of the

—i¢\7)(p) = const (34)

nonoscillating power law tail, o« p72, in the symmetric wave function (33) at large relative
momenta. The symmetric solution has also a nonzero limit at zero relative momentum while

the zero Fourier component of the antisymmetric function vanishes.
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Figure captions

Figure 1. Energy spectrum of symmetric states of the two-particle system in a box with the
delta-function repulsion as a function of the interaction strength v. The levels are labeled by
the quantum numbers (n,n’), n’ > n, of the occupied orbitals in the case of no interaction,

v = 0. In the limit of v — oo, the terms come to the energies of unperturbed antisymmetric

states (n,n’ 4 1).

Figure 2. The spatial probability distribution, left column, and the corresponding contour
maps, right column, for the lowest symmetric state (n = n’ = 1 at v = 0) and for different
values of the interaction strength, v = 0, part (a)}; v = 5, part (b}, and v — oo, part (c).

The development of a deep valley at r = x — y = 0 is clearly seen.

Figure 3. Comparison of the behavior of the symmetric wave function \I!f%? along the di-
agonal ¢ = y, solid line, and the antisymmetric function -‘Ili;z.,{_l in the vicinity of x = y,

dashed line.

Figure 4. Contour maps of the spatial probability distribution for the unperturbed states
(n,n")o = 111,(,:;? at v = 0, left column, and for their counterparts (n,n’)e = 'I'LTJ,_H at v — o0
in the strong repulsion limit, right column. The states shown are (2,2)y — (2,3), part (a),

(2,3)0 — (2,4)c0, part (b), and (2,6)g — (2, 7)0e, part {c).
Figure 5. The wave functions ¢(p) in the relative momentum representation, for the sym-

metric state \Ilg')(v — 00}, part {a), and for the antisymmetric state @g;)(v = 0) of the

same energy, part (b).
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