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Abstract

For certan modern particle accderators, including the planned
muon collider, the accurate analyss of non-linear time-of-flight effects
in the form of momentum compactions is criticd for the preservation
of bunch gructure. A Differentid Algebrabased (DA) method is pre-
sented that dlows the determination of off-energy closed orbits and
chromaticities to any order. Performing a coordinate transformation
to the off-energy closed orhit, it ig possble to compute momentum
compections andyticdly.

The method has been implemented in the code COSY INFINITY
and is tested for two cases Where andytica solutions can be obtained
by hand; agreement to machine precision is found. On the other hand,
comparisons are made with severa codes that use conventiona numer-
icd methods for the determination of momentum compaction, and it is
seen that these approaches sometimes yidd rather inaccurate results,
epecidly for higher orders.



1 Introduction

For some quasi-isochronous rings, such as the recently proposed high lu-
minosity 2 T'eV muon-muon collider, it is important to keep the bunch length
at minimum (3 mm) in the presence of momentum spread of 0.15%. Under
these conditions, the higher order momentum compaction factors can induce
a large spread in the time structure (spoiling isochronicity) of every bunch
of particles [4]. For realistic lattices it is impossible to calculate analytically
the higher order momentum compaction factors, so one must rely on beam
dynamics codes. In this paper we show that the Differential Algebraic meth-
ods, implemented in the code COSY INFINITY, give a reliable way to get
not just the momentum compaction, but the chromaticities and off-energy
closed orbits to any order. On the other hand, tracking codes as MAD or
SINCH fail to give precise answers at higher orders due to facts that will be
summarized in the last section of the paper. A comparison of results with a
simple model that can be calculated analytically up to order 3 is presented.

2 The Differential Algebraic Theory

The momentum-compaction is defined as the relative orbit length vari-
ation of an offmomentum closed trajectory relative to the trajectory of
the reference particle. It is obviously a function of the momentum offset
6= (p—mp) /po , and can be written as

C=Cy (1+ag6+a162+a263+...) (1)

Our goal is to calculate o; for i = 0,1,2, . .. This can be accomplished
to any order by DA methods, and to ¢ = 2 analytically for the simplified
FODO cell ring described in the next section. Also, the DA method allows
computation to arbitrary order of the quantities that describe how the tunes
depend on energy, the so-called chromaticities. Both algorithms use the
calculation of the off-energy closed orbit of a map.

The DA approach consist in the following steps. Determine the
parameter-dependent fixed point of the map, followed by the linear decou-
pling of the planes, in case it is necessary. After these steps we obtain a map
which has a block-diagonal Jacobian, each matrix element being an equiv-
alence class, containing the value of the element and its derivatives with



respect to parameters. This form allows the computation of the parameter-
dependent tune shifts and the chromaticities using a simple formula involving
the trace and determinant of the matrix. Finally, to calculate the momentum
compaction, a last coordinate change is necessary, in order to transform from
the canonical COSY variables that measure time-of-flight, to TRANSPORT
like variables that measure path length. A brief explanation of the involved
steps follows.

The parameter-dependent fixed point calculation relies on the map
inversion algorithm, so an outline of the algorithm is in order. All the maps
of interest have no constant parts, that is they are origin preserving. In this
case it is possible to compute the n-th order inverse A, of a map M,, as long
the linear part, M;, is invertible, which is always the case for symplectic
maps. To this end, one writes M,, = M; + M. Then we have

I, = Mi+Mp)oNp=MyoN,+ Mo N, =
No = M o(ZT-MioN,)

a fixed point problem for A, where o stands for composition of maps. Be-
ginning iteration with M, = Z, yields convergence to the exact result in n
steps because M}, is purely nonlinear.

The parameter-dependent fixed point 2‘(5) is a periodic orbit of the
map M, satisfying (Z(8),8) = M, (2(8),8). To make the map origin pre-
serving, which in turn implies that the partial derivatives of the transfer map
with respect to the parameters vanish, we perform a coordinate transforma-
tion, which in fact is a non-linear translation in parameter space. To do this,
we introduce Z7, containing a unity map in the upper block describing the
phase space variables and zeros elsewhere. Substracting ZZ on both parts we

have (0,8) = (M, — Z2)(2(5), §) and thus,

(2(8),8) = (Mn ~ T)7(0,8)
from where we read off Z(8) in the non-parameter lines. If energy is treated
as a parameter, then #(6) is the off-energy closed orbit. A closer inspection
reveals that the inverse exists if and only if the phase space party of M,
does not have 1 as an eigenvalue. However this corresponds to a fundamental
resonance and is always avoided by design in accelerators.

Next, the linear decoupling of the phase planes is performed by di-
agonalization of the linear part of the map already expanded around the
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parameter-dependent fixed point [2]. This is always possible if we require 2v
distinet eigenvalues (in v-degrees of freedom), and this restriction is not im-
portant since otherwise the system is again on a linear resonance. Also, since
we are interested in stable systems, the eigenvalues lie on the complex unit
circle. Denoting the eigenvectors corresponding to eigenvalues e*™; with s;?,
we obtain in the eigenvalue basis, the linear part of the map has the form

( et \

e~ 0

0 et

\ et )
We note that the eigenvectors associated with these eigenvalues are complex
because the underlying matrix was real. Now perform another change of
basis after which the matrix is real. For each conjugate pair of eigenvalues,

we choose the real and imaginary parts of the eigenvectors as two basis
vectors. The result is a matrix in block-diagonal form

[ lor),y [Ba), s \
[Cl]n—l [dl]n—l 0
0 . [a“b‘]n—l [Be] s

\ leo)ns [dolny /

In the view of the preceding paragraphs, the matrix elements contain the
derivatives with respect to parameters up to order n — 1, that actually are
the up to n-th order derivatives of the map M. We note that all the basis
changes are in fact similarity transformations, and combined with the fact
that the sufficient condition for a 2x2 matrix to be symplectic is to have
determinant 1, all the transformation matrices can be scaled such that the
final map is still symplectic if the underlying one was symplectic. Now we
can apply the simple formula involving just the trace and the determinant of
the matrix [2]

= sign (b;) - arccos Ty
MJ gn' 3 2‘\/1_)3
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where T; and D; are the trace and determinant of the 2x2 matrices, to
compute the class of u;

[M.]n_l = sign (b;) - arccos ( Cthoy * iy )1/2)

2 ([a'j]n-l 4], — [6:]—1 [€3)s

Again, if energy is a parameter, then the coefficients of the relative energy
deviation in the expansions of [,uj] e the chromaticities.

The momentum compaction now can be readily calculated. Once we
have the off-energy closed orbit, 7(6), one last coordinate change is necessary.
All DA methods being implemented in COSY INFINITY, 2’(5) is calculated
using symplectic coordinates, i.e. time-of flight and conjugate momentum,
the energy. The TRANSPORT-like coordinates instead are path length and
momentum. Therefore, this coordinate change, performed easily in COSY
[3], gives the off-momentum closed orbit, and a final step to computation
of the momentum compaction is to calculate the relative change of the off-

momentum with respect to the on-momentum closed orbit.

3 Simplified FODO Cell

The momentum-compaction is defined as the relative orbit length variation of
an off-momentum closed trajectory relative to the trajectory of the reference
orbit. It is obviously a function of the momentum dispersion factor § =
(P — po) /po , and can be written as

C = C, (1 +ag6+a162+a263+...) (2)

Our goal is to calculate analytically o; for ¢ = 0, 1,2 , and for that we
choose a simplified FODO cell which is soluble analytically. See Figure 1.
We take the half cell as consisting of a half focusing thin quadrupole (located
at FF') followed by a homogeneous magnetic dipole and a half defocusing
thin quadrupole (located at DD'). We repeat this cell until it forms a closed
ring. Also, we neglect any fringe field effects. The two quadrupoles have the
same integrated strength S = KL, where L is the quadrupole length and K
is the normalized strength K = | fluz at pole tip| / (aperture * rigidity of
the reference particle). In the thin lens approximation of the quadrupoles



the following set of limiting operations have to be taken simultaneously Q =
{L — 0; K — 00; § = KL non-zero finite}.

Parameters of the off- momentum closed orbit {D, D'} are the dispersion
function and it’s derivative with respect to s, the independent variable

z = Db

r = D§

The dispersion function is a function of momentum and can be expanded
in series

D = Do+ D6+ Dy6® +...

D' = Dy,+Di6+Dys+...

Due to the symmetry of this cell, D' (0) = D' (I;) = 0, at the entrance and
exit of the half FODO cell. Also, note by D (f)) the value of the dispersion
function at the position of the focusing (defocusing) thin quadrupoles. As
the thin quadrupoles are zero length insertions, the dipoles are filling all the
space and the orbit lengths of the reference particle in the half FODO cell
is given by ly = pofly and the off momentum particle’s by ! = pf. In homo-
geneous magnetic fields the following relation holds for radius’ of curvature
p=po(l+6).

If the ring consist of 2V half cells, the total orbit lengths are

Co = 2N
C = 2NIi
resulting the relation
C 7
—=(1+6)— 3
o, =4+ )‘90 (3)



Figure 1. The outline of the half FODO cell.

So, the next necessary step is to relate 6 to the dispersion functions, which
in turn can be calculated following a geometric approach. From the figure it
can be read off that, if we note the absolute value of the angle turned by the
off-momentum closed orbit in the focusing quadrupole by A¢p and in the
defocusing quadrupole by A¢p, the following relation holds

0 =6y + Adp — Adg (4)

such that the total angle turned by the reference particle and the off-
momentum particle in the half cell are equal.
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To calculate the angles turned in the quadrupoles, we start from the gen-
eral (z,a) equations of motion in a (focusing) quadrupole in particle optical
coordinates.

I 43
I = ————
(1+46)?%—a?
a = —Kz

On the one hand by differentiating again the first equation and plugging
in in the resulting relation the second one we get

S Kz(1+ 8)?
[(1 +6)* - az]

3/2
and on the other hand by squaring the first equation we get

=1+ Ly J(rw (l 7

Combining the last two equations and expanding up to order 3 in § the
result is

" Kz 3 n2
“ = (143 6)) ®
Integrating both sides of the equation from the start to the end of the

quadrupole and taking the proper limits for the thin lens approximation, we
get

L, . '
liglfo z ds llénx [§= ~tan A¢p
L Kz SDé6
i —f ds = -222
R T 1+6

Care mus‘g be taken with the integration of the third term. Although
lién Lz (m') ds = 0 in the thin lens approximation, the term cannot be

neglected because it is multiplied by K which in the same approximation
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goes to infinity giving rise to an indeterminacy. However, it can be seen that
the term is already third order in # if instead the full D’ we take Just the
zeroth order approximation D,. For this quantity it is easy to derive and
solve the differential equation, which is the first order approximation of (5)

Dy +KDy=0
with initial conditions

Dy(0) = D,

Dy(0) = 0

we get the solution
Dy = f)o cos (\/I—( s)
and what we need under the integral
(Da)2 = DK sin? (\/I_{ s)
Under this condition we can evaluate the last integral

im [ \? A2 .. DD} _, sin 2v/K L
lim fu KD(Dy) ds = lim [*DDIK*sin? (VEKs) ds =i Z0K7L (1 SO

Dpsr . 1 4KI? 16K2L*
= T3 hénf(l—H 6 24 o
_ DD§s* . (28 28°L L ). DDsse
T T2 9\s T3 T3

Gathering all the information the angle is computed from

tan Agp =3

SDés ( 32133’62)
1+
1+6 2

by taking the arctan of the right hand side and expanding to third order
in é



~ a N “ R . b332
A¢F =3 DyS6 — (Do - .D]_) S5 + (DO -~ Di+ Dy + % ) S5

Similarly, for the defocusing quadrupole

= = x . . . D332
A¢p =3 DyS6 — (Do — Dl) S6% + (Dﬂ ~ Dy + Dy + (éi ) g6°

Plugging in the above two equations in (4) and the resultant in (3) we
arrive at the following

D§s?  Dis?
6 6

C . . < . . .
o = 1+6+(Do — Do) S8+ (D1 ~ Dy) 55°+ (Dg ~ Dy + ) 562
Co
(6)
Comparing coefficients of § in (3) and (6), we arrive to the expression
for the momentum compaction factors in terms of the dispersion function’s

value at the quadrupoles

ap = 1_&?07;_19_0) (7)
o = _S(Dlg;—Dl)

s(bz-f)z) 58 (Dg—bg)
T T T T 66

4 The Geometric Solution

The off-momentum closed orbit is an arc of a circle with radius p and dis-
placed center. The equation of the circle is

(z—2a)" + (y —ya)* = p*

We express the same circle’s equation in two different ways in the same
coordinate system. First, take a rectangular coordinate system attached to
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one edge of the dipole (the y axis), and the z axis pointing to right. In this
coordinate system the center of the arc is at

Tia = —psinAgp
ha = p0+f76—pcosA¢F

Thus, the equation reads

. A 2
(@1 + psin Adg)’ + (1 — po — D6 + peos g’ = p?

Take a second coordinate system attached to the other edge of the dipole
and using the same procedure, we get

Toa = —psinAg¢p
Y24 = po+ D6 — pcosAgy,

y 2
(z2 + psin Agp)? + (y2 —po— Dé+ pcos A¢D) = p*

Rotate the first coordinate system clockwise with 8, /2 and the second one
counterclockwise with the same amount, such that the coordinate systems
overlap perfectly (now with the y axis being the middle of the dipole). Hence
we get the equation of the same arc in the same coordinate system

0 2 0 0 . 2
(mcos%q+ysin30+psinA¢F) +(—xsin50+ycos—29—pO—D§+pcosA¢vF) = p°
) 8 2 0 0 2
(xcosiouysin—zq+psinA¢D) +(msin30+ycosio~—pG—D6+pcosA¢D) = p?

Now, we can equate the coefficients in the above equation, and with the
notation ¢ = tan % the nontrivial relations are

p? sin’ A¢F+(p0 + D6 - pcosAng)2 = p? sin® A¢D+(p0 + D6~ pcosA¢D)2
(8)
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p(sin Agp —sin Adp) + ¢ [2p0 — p(cos Agp + cos Adp) + & (f) + 13)] =0
(9)

tp(sin Agp +sin Agp) + p(cos Agp — cos Agp) + 6 (—'.D + D) =0 (10)

Since we have only two unknowns and three equations, we use (9) and
(10) to solve for the dispersion functions. We note that from (9) and (10) one
can readily reproduce (8). Using the expansion relations for the dispersion
functions

ﬁ = D0+b16+b262+...

o

D = Do+ D6+ Dys%+ ...

and the expression for the angles A¢y and A¢gy, found in the previous sec-
tion, we expand (9) and (10) up to third order in 6 and comparing coefficients
we get; at first order

pOS (b@ - Do) +1 (D{) + Do) — 2p0t
—ﬁo + Dﬂ + ppSt (bo + Dg)

ool
o o

At second order

poS (D1 — Du) +t (D1 + Dy) + %pos% (D§+D3) = o
~Dy+ Dy + poSt (Ds+ Dy) ~ o (D - DF) = 0

At third order
£oS (.Dg - Dg) +t (ﬁz + Dz) + pOSZt (D@.ﬁl + D()Dl) —_ %puszt (Dg + Dg)
=Dy + Do + poSt (Do + Da) - pus* (Dobs — DoDy) + 25 (D — BR)
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At first order the solution is simple

A 7. — PollEpSt)
Do, Dy = Lo AL £ £051)

or by replacing S with S/, (S — %) such that we get a dimensionless
parameter for § (a value between 0 and 1)

Do, Dy = zo—-—gg i gz
and introducing them in (7), we get
12
60 (65 + 52)

The higher order solutions are more complicated, but a successive ap-
proximation approach implemented in Mathematica gives the solutions

5% (365 + 5%7)
- bo (93 + 52)3

in complete agreement with previous works. However, the correct expres-
sion for the second order momentum compaction factor is given by

23]

_ S4t
360 (63 + 57)°

ay = 1265 + 52 (39 + 4¢%) 6} + 26544262 + 5ot (4+3t)]

(11)
In the special case 8y <« S there is a valid approximation of (11) which
reads up to fourth order in 4,

63 (1 L 824+ 2452 + 784)

2T 1654

5 Comparison with tracking codes, COSY and
Conclusions

As pointed out in [4],[5] comparison of «; with tracking codes such as
MAD and SINCH gives agreement for i = 0,1 but not i = 2, and the reasons

13



of disagreement were examined. Table 1. gives an example for § = 0.5 and
N = 150.

a | SYNCH

MAD

Theory

ap | 0.00171503

0.00171503

0.0017150314

oy | 0.00267272

0.00267421

0.0026727345

[ [ 0.00105371

0.00064879

-0.0000931587

Table 1. Comparison of momentum compactions up to order 3 for
N =150 and S = 0.5 among SYNCH, MAD and Theory 4]

The reasons of disagreement come from various factors related to inac-
curate tracking of off momentum particles (in the kick approximation) and
numerical errors due to numerical differentiations.
In contrast, the comparison of a; calculated in this report and given
in (11), and COSY ([6],[7],[8],9]) results show excellent agreement, up to at
least 10 digits. Moreover, the agreement is over the full range of the involved
variables, that is the integrated quadrupole strengths S, and the number of
the cells N. The data is gathered in Table 2. for a small ring with N = 15
and a large ring with N = 150 with the range of S being [0,0.9].

N S COSY Theory Difference

15 | 0.01 | -.1039087182704954E-04 | -.1039087110467499E-04 | .7223745510592057E-13
15 | 0.1 |-.6512543497970690E-01 | -.65125434981231861-01 | .1524960713961692F-11
15 [ 0.3 | -.2492853707345641 -.2492853707353571 | .7930045500141337E-12
15 | 05 | -.1015105143950459 -.1015105143935272 | .1518618564233520E-11
15 | 0.9 |-.2268338355443578E-01 | -.2268338355385421E-01 | .5815605147681765E-12
150 | 0.01 | -.6481116063749162E-01 | -.6481116063981612E-01 | .2324501702233306 - 11
150 | 0.1 |-.1030331541577536E-01 [ -.1030331541548904E-01 | .2863178444334480F-12
150 | 0.3 | -.2245570800125087E-03 | -.2245570799716262E-03 | .4088247210383422F-13
150 [ 0.5 [ -.9315865569873918E-04 | -.9315365603642507E-04 | .3376858032454050 . 13 |
150 | 0.9 | -.7508271108848054E-04 | -.7508271042677211E-04 | 66170842676 76598E- 12

Table 2. Comparison of a; between COSY and Theory as a function of
numbser of cells, N, and integrated and normalized quadrupole strengths, S
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Finally, a short remark. There is a sign difference between the results
given by COSY and the analytical calculation. However, this is consistent
with COSY’s choice of canonically conjugate variables, which in this case
is equivalent to a replacement of o; with —a; in the momentum compaction
formula (2). We can conclude that COSY gives the right result, it is a reliable
code, especially when one comes to higher order effects.
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