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Abstract

The relationship between measured transverse energy, total charge recovered in the detector, and

size of the emitting system is investigated. Using only very simple assumptions, we are able to

reproduce the observed binomial emission probabilities and their dependences on the transverse

energy.
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During the last decade, evidence has been mounting that nuclear matter undergoes a

phase transition in the nuclear fragmentation process. From general consideration regarding

the elementary nucleon-nucleon interaction (repulsive at short and attractive at intermediate

distances), we expect the nuclear phase-diagram to show a Van-der-Waals “liquid-gas” phase

transition of first order, terminating in a second-order transition at the critical point.

Recent observations point to evidence of first and second order transitions. In experi-

ments studying Au-Au collisions conducted at the GSI, a measurement of the temperature as

a function of excitation energy found possible evidence for a two-phase coexistence regime [1],

not unlike the scenarios predicted by statistical multifragmentation models with excluded

volume [2,3]. Other experiments conducted at the Bevalac focussed on the extraction of

critical exponents from (almost) completely reconstructed Au-fragmentation events on C-

targets, studying the dependence of the second moment of the charge distribution and size

of the largest fragment as a function of the total charged particle multiplicity [4–6]. It was

shown [7,8] that these data are consistent with the second-order phase transition predicted

by the nuclear percolation model [9–12].

If one wants to gain a fundamental understanding of the fragmentation process that goes

beyond simple equilibrium model descriptions of the phenomena, then a proper description

of the origin and time evolution of fluctuations is essential [13–16], in particular if one wants

to understand why particular molecular dynamics codes produce fragments (or not!), and

what their connections to the fundamental processes of nuclear fragmentation are [17–27].

In this light, the recent findings of Moretto et al. are all the more surprising [28–32].

This group found that the probability Pn of emitting n intermediate mass fragments (IMFs)

follows a binomial distribution

Pn(m, p) =
m!

n! (m− n)!
pn(1− p)m−n (1)

The parameters m and p are related to the average and variance of the distribution.

〈n〉 =
∞∑
n=0

nPn(m, p) = m · p (2)
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σ2 =
∞∑
n=0

(n − 〈n〉)2 Pn(m, p) = mp (1− p) (3)

This result suggest that one may interpret the parameter p as the elementary probability

for the emission of one fragment and the parameter m as the total number of tries. This

would indicate that the problem of multi-fragment emission is reducible to that of multiple

one-fragment emission. The claim for reducibility and its interpretation as the consequence

of a simple barrier penetration phenomenon was further strengthened by the observation

that ln(p−1) has a linear dependence on 1/
√
Et, where Et is the total transverse energy,

Et =
∑
lEkl sin

2 θl. Finally, the same scaling was found for different beam energies and

different projectile-target combinations.

Other authors have criticized the above work, pointing our that there are different emis-

sion probabilities for different size IMFs, that there are problems in the transformation

between the total transverse energy and a true thermal energy [33], and focussing on au-

tocorrelations between the number of IMFs and the transverse energy [34]. (See also the

replies to these criticisms in refs. [32,35].)

In the present note we add to this discussion by showing how binomial distributions

arise naturally from finite size effects. In particular, we focus on the dependence of the

experimentally recovered charge as a function of the measured transverse energy. We then

demonstrate why the dependence of the binomial parameter p on the total transverse energy

arises.

We begin our study by generating power-law distributed random fragmentation events.

This is accomplished by determining the charge of individual fragments with a probability

distribution proportional to Z−τ , where Z is the fragment charge, and τ is the power-law

exponent. For definiteness, we wish to generate events with exactly Zsys charges. If an

event has less than Zsys charges, we add another fragment; if it has more than Zsys charges,

we throw it out. For an infinite system, we would expect the multiplicity distributions for

individual fragments of a given Z to follow a Poisson distribution,

Qn(λ) =
λn exp(−λ)

n!
with : λ = 〈n〉 = σ2 (4)
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And since the combined probability distribution of two Poisson-distributed variables is again

a Poissonian,

Qn(λ1)⊗Qn(λ2) ≡
n∑
i=0

Qi(λ1) ·Qn−i(λ2) = Qn(λ1 + λ2) , (5)

we would expect that the multiplicity distribution of the total number of intermediate mass

fragments (IMFs) is also Poissonian.

The individual probability distributions for IMFs, however, cannot be exactly Poissonian,

because the tails of the distributions are cut off due to the finite size of the emitting system.

Thus the probability distributions in our simulation are closer to a binomial distribution

with rather large values of m and small values of p. (When m → ∞, p → 0 such that

mp =const., we obtain a Poissonian as the limit of a binomial distribution.) Typical values

of p we find for the probability distributions of our individual fragments are ≤ 3 · 10−2 for a

system of 100 total charges. These small values of p imply that the probability distributions

are very close to a Poisson distribution.

We now ask what the combined probability distribution for fragments charges in the

interval 3 to k, k = 4, 5, ..., 30 is. (If we use k = 20, this corresponds to the usual definition

of IMFs.) We find numerically that to very good approximation this distribution is again

a binomial distribution, for all values of k. The binomial parameters pk and mk have

a monotonical behavior as a function of k: pk rises monotonically until it saturates at

k = Zsys, and mk falls monotonically. This results directly from the mathematical fact that

the mean of the combined probability distribution is the sum of the mean values of the

individual distributions, but the variance is always smaller than the sum of the variances

for the folding of binomial distributions.

In figure 1, we show the behavior of the parameters pk and mk of the combined probability

distributions as a function of k, the upper limit charge for the folding procedure, for different

values of Zsys. For each value of Zsys, we generated 104 events. This figure already contains

the essential key to understanding the patterns observed by Moretto and collaborators. We

can clearly see that as we include more and more fragments in the definition of IMFs the
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extracted values of the binomial parameter pk increase, and those for mk decrease. We can

also see that p3 (= pk(k=3)) decreases as we increase the total charge of the fragmenting

system. This is expected: the larger the total available charge, the closer the probability

distributions of individual fragments (in this case Z = 3) will be to the Poissonian limit.

It is essential to note that the values of pk for each system size saturate at k = Zsys. This

is obvious, because we cannot have IMFs larger than the total charge available. But this

obvious fact has an interesting consequence: The smaller the system size, the fewer the

terms that can contribute to the construction of the asymptotic value of pk, and the lower

the asymptotic value of pk.

This fact, combined with the dependence of Zsys on the transverse energy, already is the

explanation for the scaling observed by Moretto et al.

What is the dependence of Zsys on the transverse energy, Et, in the experiments of

Moretto et al.? This is shown in fig. 2 for the reaction Kr+Au at 55 AMeV [36,37]. The

filled plot symbols show the mean Zsys for each value of the Et, and the error bars give the

width (standard deviation) of the distribution. The dominant feature of this figure is the

linear rise of the mean value of Zsys with Et,

〈Zsys(Et)〉 ≈ 2 + 0.092 Et/MeV (6)

for values of Et less than 0.7 GeV, and the saturation of Zsys for larger values.

The width of the Zsys(ET )-distribution is significant, on the order of 10 units of charge.

If we wish to construct the probability distributions of intermediate mass fragments by using

our knowledge of the dependence of the binomial parameters p and m on the system size

(fig. 1), and the dependence of the system size on transverse energy, we have to integrate

over the experimentally measured width of the Zsys(ET )-distribution. The resulting values

of p for the integrated distributions are shown as a function of Et in fig. 3. We have run

three different calculations, using three different values of the exponent τ in our fragment

production probability distributions, p(Z) ∝ Z−τ . In this figure, we display the results in

the same way that Moretto et al. have done. One can already see that there is qualitative
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agreement with the tendencies observed by the Moretto-group: for all values of τ , we observe

an approximately linear rise of ln p−1 with 1/
√
Et. This, however, is not the consequence of

some kind of thermal scaling. Instead, it is purely a consequence of the variation of the size

of the emitting system as a function of the transverse energy, and with it a change in the

effective parameter p in the binomial probability distribution.

The projectile and target masses only enter into our consideration as upper cutoffs for the

possible maximum values for Zsys, and with it the upper values of Et. The experimentally

found functional dependence of Zsys on Et that we show in fig. 2 for the system Kr+Au is

basically the same for all target-projectile combinations and beam energies below approxi-

mately 100 AMeV (for higher beam energies, we have sizeable radial flow contributions to

the transverse energy). Transverse energy basically measures impact parameter, that is to

say size of the emitting system; and for any experiment measuring inclusive fragment dis-

tributions the results will be very much similar to the ones displayed in fig. 2. This explains

the universal scaling observed by Moretto et al. without the need for invoking some deeper

reason for this apparent universality; a plot of ln p−1 vs. 1/
√
Et is dominated by effects of

the variation of the size of the emitting system. We should point out that our findings are

not dependent on the fact that the intermediate mass fragments carry transverse energy

themselves. The only correlations entering our analysis are the experimental ones between

transverse energy and system size.

We can obtain more-or-less complete agreement with the experimental data, if we allow

the power-law parameter τ for the fragment mass distribution to vary with impact parameter

and with beam energy. This variation is a well-documented experimental fact [37–39]; the

experimentally observed value of τ increases with impact parameter and therefore falls with

transverse energy. If we assume

τ (Et) = 3.5− Et/(0.5 GeV) , (7)

then we get the result displayed in fig. 4. Our calculations are represented by the plot

symbols. The error bars are statistical and computed on the basis of 2 × 104 events for
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each point. The solid line is a fit to the experimental results of Moretto et al. As one

can see, there is very good agreement. Assuming other functional dependences of τ of Et

may even yield better results. This agreement, however, is not quite as relevant as the

main message we wish to impress on the reader: The universal scaling of ln p−1 vs. 1/
√
Et

is almost exclusively due to the finite size of the system emitting the fragments and the

dependence of the measured value of the transverse energy on that size.

Even though the main message of the present note is that the Et-dependence of the

extracted binomial parameters of the fragment multiplicity distributions can be explained

rather straightforwardly, we do not wish to convey the message that there is no interesting

information that one can extract from this type of analysis. For instance, the effects of

varying system size could be eliminated with utilization of completely reconstructed frag-

mentation events. For these types of events, percolation models predict a transition between

sub- and super-Poissonian fluctuations near the percolation threshold [16]. This type of be-

havior is not expected in a sequential model. Once the kind of correlations discussed by us

above are removed, then this type of fluctuations analysis should yield insightful information

about the character of the nuclear fragmentation phase transition.
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FIGURES

FIG. 1. Dependence of the binomial fit parameters pk and mk of the probability distributions

for intermediate mass fragments from charge Z = 3 to Z = k on the upper summation limit k, for

different total charges of the fragmenting system, Zsys.
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FIG. 2. Dependence of the total charges of detected in a fragmentation event, Zsys, on the total

transverse energy, Et, detected in the experiment 55 AMeV Kr+Au [36]. The error bars indicate

the width (standard deviation) of the distribution on an event-by-event basis.
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FIG. 3. Dependence of the binomial parameter p of the IMF distribution on the transverse

energy for three different values of τ .
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FIG. 4. Dependence of the binomial parameter p of the IMF distribution on the transverse

energy, assuming that the effective power τ of the fragment probability increases linearly with

transverse energy. Plot symbols with error bars represent our calculations, the solid line is a fit to

the experimental data of Moretto and collaborators.
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