
ar
X

iv
:n

uc
l-

th
/9

80
90

24
   

9 
Se

p 
19

98

MSUCL-1111

Effects of Isospin Asymmetry and In-Medium Corrections on
Balance Energy

Frank Daffin and Wolfgang Bauer∗

National Superconducting Cyclotron Laboratory, Michigan State University
East Lansing, Michigan 48824–1321

Abstract

The effects of an isospin asymmetry and in-medium corrections to the nucleon
collision cross section on the balance energy are explored. The BUU model
for intermediate energy heavy-ion collisions is used with isospin-dependent
mean fields to calculate the balance energies of 58Fe + 58Fe and 58Ni + 58Ni
for a range of impact parameters. We find that we are able to reproduce the
impact parameter dependence of the balance energy, and the sign (but not
the magnitude) of the shift in balance balance energy as a function of isospin
asymmetry.

PACS numbers: 25.75.Ld, 24.10.-i

Typeset using REVTEX

1



I. INTRODUCTION

The bulk properties of nuclear matter under extreme conditions are of interest to both
nuclear physics and astrophysics. To generate these conditions, we collide nuclei in search for
hints on the nature of the nucleus-nucleus interaction. Theoretical studies of these events
allow us to make a connection between models and experiment though observables such
as the balance energy [1–3]. Balance energy, or the beam energy at which transverse, in-
plane directed flow [4] changes sign as a function of beam energy, is sensitive to the forces
underlying the dynamics of these collisions. Thus its study can yield valuable information
about the complex interplay of the repulsive nature of the hard scattering nucleon cross
section, the repulsion and attraction of the nuclear mean field, and the repulsive contribution
of the Coulomb force.

The BUU (Boltzmann-Uehling-Uhlenbeck) [13–18] transport model is successful in re-
producing and predicting experimental magnitudes and trends in collective single-particle
observables [19–21], such as the balance energy, and we use it here. BUU is a theory for
the single-particle phase space distribution of baryons (plus resonances and mesons). In
its most popular numerical realization, the model propagates test particles with Hamilton’s
equations through the influence of experimentally observed nucleon collision cross sections
[22], the Coulomb field, and a nuclear mean field based on a Skyrme-type interaction [23]
which typically depends upon local density and momentum.

However, the inter-nucleon potential is not symmetric with respect to the isospin of the
nucleon. Protons and neutrons experience different forces due to their constituents. This
means that an asymmetry term exists in the nuclear mean-field. In addition, the nucleon
cross section is modified from its vacuum values in nuclear matter [24–26].

Work by Müller and Serot [5] has shown that the liquid-gas phase transition may in fact
be of second rather than first order. Their work, based upon a thermodynamic approach,
demonstrated that local chemical instabilities are responsible for the transition when an
asymmetric potential is used. This contrasts with the common view that mechanical insta-
bilities are responsible for the onset of fragmentation in excited, diffuse systems. Studies
using the percolation model [6] also have been used to explore the isospin degree of freedom
in the nuclear fragmentation transition [7,8]. The new experimental facilities coming on-line
which will probe heavy-ion dynamics near the drip lines affords an opportunity to explore
these results.

In stellar evolution the softening of the compressibility of nuclear matter as neutron
ratios deviate from 1/2 is critical for generating a supernova explosion for massive stars
(12 M� to 15 M�) [9]. Core collapse cannot sustain a shock if the nuclear Equation of State
(EoS) retains its equilibrium stiffness; the result is at least a delay of such important process
as nucleosynthesis.

Neutron stars cool by emitting neutrinos. After an initial fast-cooling phase, they enter
a more sedate cooling epoch producing neutrinos via the modified URCA process: (n, p) +
p+ e− → (n, p) + n+ νe, (n, p) + n→ (n, p) + p+ e− + ν̄e. However, if the proton density
exceeds a critical value between 11% and 15%, which is dependent upon the symmetry
energy, the direct URCA process can occur and become the dominant cooling mechanism
[10]: n→ p+ e− + ν̄e, p + e− → n+ νe.

The exploration of the isospin degree of freedom in heavy ion collision thus carries the
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promise that it will help determine the answers to these questions of astrophysical relevance
[11].

Recently, it was experimentally shown [12] that the balance energy for symmetric systems
of equal mass has different values for different isospin asymmetry of the colliding nuclei. In
this paper we therefore study the isospin-dependence of the balance energy, attempt to
isolate its origin, and hope to find sensitivity to the isospin-dependence of the nuclear mean
field.

II. MODEL INPUT

The BUU transport equation evolves in time a single nucleon phase-space distribution
under the influences of nucleon-nucleon collisions, the Coulomb field, and a nuclear mean
field. In this study, we choose two mean fields: One recently used by Bao-An Li, et al.
[29,30] (also see Ref. [31–33]):

U = A

(
ρ

ρ0

)
+B

(
ρ

ρ0

)σ
+ Cτz

(
ρn − ρp
ρ0

)
, (2.1)

where ρ0 is the normal nuclear density, ρn is the neutron density, ρp is the proton density,
and τz is the isospin factor which is 1 for neutrons and −1 for protons. Coefficients A,
B and σ are typically chosen to match the ground state properties of symmetric nuclear
matter such as the saturation density and saturation binding energy. The compressibility is
a free parameter, and in this study we chose it to be 200 MeV. This gives A = −109 MeV,
B = 82 MeV, and σ = 7

6
. In keeping with Bao-An Li’s work, C = 32 MeV.

The other mean field is derived from a Hamiltonian due to Sobotka [34]:

H = KE +
4a

ρ0
(ρn

2 + bρnρp + ρp
2) +

4c

ρ0
(ρ0

2ρp + ρnρp
2). (2.2)

Here the coefficients a = −3.66 MeV, b = 15.0 and c = 23.4 MeV and KE is the kinetic
energy term. Neutrons are acted upon by:

Un =
∂H
∂ρn

= 8a
ρn
ρ0

+ 4ab
ρp
ρ0

+ 8c
ρnρp
ρ0

2
+ 4c

ρp2

ρ0
2
, (2.3)

whereas protons are affected by:

Up =
∂H
∂ρp

= 8a
ρp
ρ0

+ 4ab
ρn
ρ0

+ 8c
ρnρp
ρo2

+ 4c
ρn

2

ρ0
2
. (2.4)

In symmetric matter, this mean field reduces to the often-called “Stiff” equation of state
(compressibility 380 MeV). It should be noted that there is no transformation of the mean
field of Sobotka that will yield an equivalent “Soft” equation of state. Thus direct compar-
isons between the two formulations are impossible. One may simply alter A, B and σ in
Equation 2.1 to give the appropriate compressibility in symmetric matter.

With the isospin asymmetry

δ =
ρn − ρp
ρ0

(2.5)
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and the reduced density

ρ =
ρ

ρ0
(2.6)

Equations 2.1 and 2.3 can be written as:

U = Aρ+Bρσ + Cτzδ (2.7)

and

Un = ρ(4a+ 2ab) + δ(4a− 2ab)− cδ2 + 3cρ2 − 2cδρ, (2.8)

for the neutron potential, and

Up = ρ(4a+ 2ab) + δ(2ab− 4a)− cδ2 + 3cρ2 + 2cδρ, (2.9)

where a, b and c are as defined above. Figure 1 (left side) shows Equation 2.7 as neutron
excess and normalized nuclear density are varied. The right side of the same figure shows
Equation 2.8 as neutron excess and normalized nuclear density are varied. One can see that
Equation 2.8 is more attractive to neutrons in the midst of proton-rich matter for all densities
than Equation 2.7.

Other parameterization of nuclear mean field potential also exist, [35] but were not
considered here.

The nucleon-nucleon cross sections are parameterization from the Particle Data Group
[22] with medium modification implemented according to the density dependent prescription:

σNN = σfree
NN (1 + α ρ) (2.10)

where α is the logarithmic derivative of the in-medium cross section with respect to the
density, taken at ρ = 0,

α = ρ0
∂

∂ρ
(lnσNN)|ρ=0 (2.11)

It is the lowest coefficient of a Taylor-expansion of the cross-section in powers of the density
[25]. This is a parameterization of the Pauli-blocking of intermediate states is motivated
by Brückner G-matrix theory [24]. One can show [26–28] that values of α in the range
between −0.4 and −0.2 yield the best agreement of the simple parameterization used here
and the more involved G-matrix calculation using a realistic nucleon-nucleon interaction.
In addition, it has been shown that an in-medium reduction of α ≈ −0.2 provides the best
reproduction of the flow signals of symmetric collisions for a broad range of energies and
projectile-target combinations [36,25,3].

III. ELEMENTARY CONSIDERATIONS

Before we proceed to show our numerical results, it is appropriate to attempt to under-
stand the reasons why we would expect a difference in the balance energy for symmetric
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systems of equal mass, but different isospin. There are three isospin effects that we may
consider: the average effective nucleon-nucleon cross section, the difference in the Coulomb
potential, and the isospin dependence of the mean field.

In order to understand the sign of the different effects, we first remind ourselves that the
balance energy marks the beam energy at which the repulsive and attractive interactions are
roughly equal. At beam energies lower than the balance energy, the attractive interaction
dominates, and at energies higher than the balance energy, repulsive interactions determine
the flow.

The difference in the Coulomb interaction is very simple. Fe has 26 protons and Ni 28.
This means that the ratio of the Coulomb forces is (26/28)2 = 0.862. Since the Coulomb
force adds repulsion, we thus expect that the balance energy for nickel should be lower than
for iron.

The difference in the isospin dependent mean field has the opposite effect. The isospin
asymmetry, δ, is three times bigger for iron than it is for nickel:

δ(58Fe) = 0.103, δ(58Ni) = 0.034 (3.1)

A larger isospin asymmetry results in more repulsion, compare Fig. 1. Thus we expect
that the isospin dependent mean field alone would favor a lower balance energy for the 58Fe
system than for the 58Ni system.

The numbers of protons and neutrons in the colliding system also have an influence
on the average nucleon-nucleon cross section, because the neutron-proton cross section is
approximately a factor of 3 bigger than the proton-proton cross section in the energy regime
of interest here. We can then calculate the average nucleon-nucleon cross section from the
number of collisions between nucleons of equal and opposite isospin,

σ =
Nnp σnp + (Nnn +Npp)σpp

Nnp +Nnn +Npp

=
3Nnp +Nnn +Npp

Nnp +Nnn +Npp
σpp (3.2)

where Nnp is the number of neutron-proton collisions.
We make the Ansatz that the number of collisions of two types of nucleons is proportional

to the number of nucleons of each species, taken to some power, ζ,

Nnp ∝ (Nn,T Np,P )ζ + (Nn,P Np,T )ζ

Nnn ∝ (Nn,T Nn,P )ζ (3.3)

Npp ∝ (Np,T Np.P )ζ

where Nn,T , Nn,P are the numbers of neutrons in target and projectile, and Np,T , Np,P are
the numbers of protons in target and projectile. In intermediate energy heavy ion collisions,
we find numerically that ζ has values roughly in the range between 2/3 and 1.

Inserting this Ansatz into our equation for the average cross section yields the result
displayed in Figure 2. The difference in the systems with different isospin is small (only
approximately 0.5% for ζ=1), but is clearly visible. Since the isospin-averaged cross section
is slightly bigger for the 58Ni system, this results in a higher kinetic pressure, therefore more
repulsion, and thus a lower balance energy.
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The isospin composition of the projectile and target also has an effect on the Pauli
exclusion principle for the final scattering states of the nucleons. If there are more neutrons
than protons, then these neutrons necessarily occupy are larger fraction of the available
phase space for the scattered nucleons, resulting in a smaller number of Pauli-allowed nn
collisions than pp ones. However, for the considerations of the isospin dependence of the
average in-medium nucleon-nucleon cross section, the interplay between Pauli-principle and
isospin content of the nuclei has only a small effect. To convince ourselves of this, we note
that the Boltzmann collision integral contains the factor

Πab = [1− fa(~r, ~p)] · [1− fb(~r, ~p)] (3.4)

where a and b are the isospin indices of the two nucleons that take part in the scattering
event. The factor Πab represents the correction of the free nucleon-nucleon cross section due
to the Pauli exclusion principle for the final scattering states. If we average over all possible
two-body scattering events, we find for beam energies larger than the Fermi energy:

〈Πpn〉 ≈ 1
2
(〈Πpp〉 + 〈Πnn〉) (3.5)

The leading correction term to this approximation enters as δ2. Thus the differential effect
of the Pauli-exclusion principle on the isospin dependence of the average in-medium cross
section is only a small correction to the determination of σ.

IV. NUMERICAL RESULTS

We preface this section by briefly outlining our procedure to determine the balance ener-
gies: We begin by calculating the proton freeze-out phase-space distribution at reduced im-
pact parameters b̂ = b/bmax = 0.275, 0.375, 0.475 and 0.575, beam energies 50, 60, 70, 80, 90
and 100 MeV/A, using Equations 2.1 and 2.3, and various in-medium corrections α, Eq. 2.10
This is followed by calculating the flow for each permutation, and then the balance energy
for each b̂, using a χ2 minimization procedure.

In Fig. 3, we show the experimental results of Pak et al. [12] as the shaded rectangles.
The width of these rectangles represent the width of the impact parameter bins used for
the integrations of the experimental data. The height of the rectangles represent the error
bars in the balance energy (standard deviation of the mean). The darker shaded rectangles
represent the experimental results for the 58Fe + 58Fe system, and the lighter gray areas
those for the 58Ni + 58Ni. The thick horizontal lines through the middle of each rectangle
represent the quoted experimental values. This experimental information is the same in all
three panels of Fig. 3, each time compared to a different calculation.

Before we discuss the ingredients of each calculation, we should point out that the ex-
perimentally found balance energies in 58Fe + 58Fe system are always higher than those for
the 58Ni + 58Ni system. This is what we would expect from our elementary considerations
of the effects of the Coulomb interaction and the two-body collisions, but contrary to what
we expect from the mean field alone. We will return to this point later.

The theoretical results for the 58Fe + 58Fe system are indicated by the open plot symbols,
and those for 58Ni + 58Ni by the filled ones.
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In the left panel of Fig. 3, we show the result of a calculation with the mean field
interaction of B.A. Li [12], and with α = 0. Pak et al. [12] found that BUU under-predicted
the balance energies of 58Fe + 58Fe and 58Ni + 58Ni collisions. This is consistent with
previous work [36,25,3] that has shown the BUU model utilizing free-space scattering cross
sections consistently under-predicting the balance energies of various systems. However, the
positive results of Pak et al. was the correct reproduction of the differential effect in the
balance energies – the difference between the balance energies for the two systems has the
right sign and approximately the right magnitude. This can be verified by examining the
left panel of Fig. 3.

In the central and right panels, we use the isospin dependent mean fields of Li (center,
[29,30], Eq. 2.1) and of Sobotka (right, [34], Eq. 2.3), combined with the in-medium correc-
tions to the elementary two-nucleon scattering cross sections. For the central panel, we use
α = −0.3, and for the right panel, we use α = −0.2, respectively.

Let us first compare the results of the central and the left panel. For both calculations,
we use identical isospin-dependent mean fields. The only difference is the change in the
scattering in-medium correction. We can make two rather obvious observations:

1. The theoretical calculations are much closer to the data when using the in-medium
reduction of the scattering cross section – for all impact parameter intervals. This
observation is consistent with previous results that did not look at isospin-dependent
effects [36,25,3].

2. Even though the balance energies for the iron system are still slightly higher than for
the nickel system, the magnitude of the splitting has been reduced and is now at least
a factor of 4 smaller than what is observed in experiment.

The same effects can be observed when using a different iso-spin dependent mean field,
compare the right panel of Fig. 3. Here, the differences between the theoretical balance
energies are somewhat larger, but still a factor of at least 2 smaller than those found in the
data.

We mentioned above that the observed sign of the difference in balance energies as a
function of isospin is opposite to what one would expect from the behavior of the isospin-
dependence of the mean field. This assertion can be verified in our numerical calculations by
switching the isospin-dependent term in the mean field on and off. This comparison has been
performed in Fig. 4. Here we use the same results as in the right panel of Fig. 3 (Sobotka
mean field, α = −0.3, represented by the diamonds in Fig. 4) and compare them to a mean
field without isospin dependence, but with the same value of the nuclear compressibility
(circles). In particular for the larger impact parameters, we can clearly see the expected
effect: The isospin-dependent part of the mean field actually reduces the difference in the
balance energies for the two systems. This is consistent with the results of our elementary
considerations. The three-times larger isospin asymmetry in the iron system results in a
stronger repulsion due to the isospin dependent mean field and is thus pushing the balance
energy in the iron system more down than in the nickel system.
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V. CONCLUDING REMARKS

We see an improvement in the performance of the BUU model’s prediction of balance
energies as a function of impact parameter for collisions of 58Fe + 58Fe and 58Ni + 58Ni by
including both an asymmetry energy term in the mean field and in-medium reduction of
the nucleon cross section. We observe similar performance among the different formulations
used for the mean field: One formulation recently used by Bao-An Li [29,30] and one due
to Sobotka [34]. However, the mean field of Bao-An Li, Equation 2.1, requires α = −0.3
in Equation 2.10, whereas the Sobotka formulation, Equation 2.3, requires α = −0.2 for
substantial improvement. Efforts to distinguish between these two mean fields will likely
come from heavy ion calculations in conjunction with experiments near the drip lines. In
the systems studied in the experiments by Pak et al, the range in isospin asymmetry was
not sufficiently large to constrain our parameter space any further.

We have shown the different contributions of the Coulomb force, the NN-scattering, and
the isospin-dependent mean field on the isospin dependence of the balance energy. Both our
elementary considerations and our numerical results support the conclusion that the sign
and the bulk of the isospin-difference in the balance energies is caused by the difference in the
Coulomb interaction and the isospin dependence in the effective nucleon-nucleon two-body
scattering.

While we can understand the absolute magnitude of the balance energies and the sign
of the isospin-dependent difference between the two systems, our theoretical calculations do
not yield the correct absolute magnitude of the difference. One can speculate on the origin
of this important disagreement. A lack in our understanding of the isospin dependence
of the nuclear mean field or the isospin-dependent in-medium modification of the two-body
scattering cross section are the leading candidates. However, there is strong reason to suggest
that the higher beam intensities of the radioactive beam facilities currently in planning or
under construction will allow us to make progress in our understanding of this problem by
enabling us to explore a larger isospin asymmetry in heavy ion reactions.
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FIG. 1. Mean field potential as a function of reduced density, ρ̂ = ρ/ρ0, and isospin asymmetry,
δ, as used by Li et al. (left) [29,30] and Sobotka (right) [34].
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FIG. 2. Dependence of the average nucleon-nucleon cross section as a function of the parameter
ζ for the two different isospin systems.
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FIG. 3. Impact parameter dependence of the balance energy for the systems 58Ni + 58Ni (light
shaded rectangles: data; open circles: calculations) and 58Fe + 58Fe (dark shaded rectangles: data;
filled circles: calculations). Left panel: results of B.A. Li with free nucleon-nucleon cross sections;
middle panel: mean field of B.A. Li and α = −0.3; right panel: mean field of Sobotka and α = −0.2.
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FIG. 4. Comparison of the effects of the isospin-dependent mean field (diamonds) relative to
the corresponding mean field without isospin dependence (circles).
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