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Abstract

A technique for computing the longitudinal electric fields of a bunched beam propagating
inside a conducting pipe is presented. A beam bunch is represented as a series of discs or
dices, and the tota electricd field is found by superposition of the fields of individua
dices. The results of this technique are shown to agree well with analytica models and
other independent agorithms. The primary motivation for developing this technique was
to provide an efficient and accurate calculational approach for the simulation of the
longitudinal dynamicsin sub-3D codes in lieu of a straightforward Poisson Solver.
However the formalism may be employed in other applications to find electric fields for
various beam particle distributions in the presence of conducting boundaries.

1. Introduction

Simulations including the effects of space charge provide a crucid basis for the design of
high-current accelerator systems. In some cases, particularly for unbunched beams, two-
dimensiond (2-D) beam simulation particle-in-cell (PIC) codes are often sufficient.
However, for the case of bunched beams, the longitudina effects can become important,
and 3-D or nearly 3-D simulations are required.

The general 3-D PIC methods provide completely self-consistent models, but frequently
require very long computational times. As a result, the exploration of possible design
space can, as a practical matter, be limited. An aternative approach is the modification of
a 2-D PIC formulaion to include important aspects of the longitudina dynamics. The
genera intent is to create a Smulation package that, while not as complete as a general 3-
D PIC approach, will nevertheless have a nearly complete physics model and a
computational speed which dramatically exceeds the general 3-D approach.



A simple linear model of the longitudinal electrical field, corresponding to parabolic line
charge density, is valid for bunched elliptical beams in free space. However, in the
presence of a conducting beam chamber with dimensions comparable to the beam
transverse dimensions, the longitudinal electric field becomes non-linear due to image
charges and common approximations are inappropriate. The non-linearity becomes

especially apparent for the case of long or longitudinally-asymmetric bunches within a
conducting beam pipe.

This paper describes a fast and accurate computational approach for the calculation of the
longitudinal electrical field of beams with a relatively arbitrary charge density
distribution within a conducting boundary. We believe the proposed method provides a
unique strategy for the inclusion of longitudinal dynamics into the PIC codes.

2. Basic Formulae
2.1 Green’s Function

To calculate in the beam coordinate frame the space charge electric fields of a bunched
beam propagating inside a conducting cylinder, a common analytical approach is to find
the solution of the Poisson equation.

Au =—-47p(r) , reR
(1)

u(r)|,eam: 0

The domain R represents a grounded cylinder of infinite longitudinal (z) extent and
oR denotes the cylinder surface at radius r= Reyr . Using the Green’s function method’,

the potential can be expressed by the integral:

u(r)= [Gr,r)pa)dv(r)  with r=(xy,2) )
R

where G(r,r") represents the three-dimensional Green’s function in Cartesian coordinates.

For rectangular or free space regions, calculation of the potential from the convolution
integral (2) is relatively fast and convenient’. However, with the inclusion of a
conducting cylindrical surface, the function G(r,7) satisfying zero boundary conditions

has a complicated form, and another approach should be considered.

From the Laplacian operator in cylindrical variables,

A u—a_2+_1__a_+ii+_ai
eI 9t ror r*oe* 97’



a specific form of the Green’s function in cylindrical coordinates may be found that
satisfies the zero boundary conditions on the cylinder surface by expanding 1/(r-1")
using Bessel functions,

In the absence of the boundary surface, the expansion of the Green’s function' is:

G(r,1) =% > jdk " cosk(z - (kr)K, (kr)  (3)

m=—s0 ()

where I, (kr,) and K, (kr,} are the modified Bessel functions and

r’

r, if r<>r

r, if r<>r

To implement the conducting cylinder boundary with radius R

1 » the Green function will

be written as (reference 3):

6ar)=2 3 [dk-em coskiz- 2122 11 Gr VK ()1, 0 K, (R B
ek 1R,

and the potential as:

u(r) = [Gr,r)p()dV()  with t=(r,p,2) (2
v

Equation (3)" has been used as a starting point for a series of further simplifying
assumptions such as, for example, symmetrical charge density distributions, constant
envelope sizes, asymptotic cases for z — oo, etc. (See, for example, references 1 and 3.)
However, even for relatively common situations as e.g., a uniformly populated ellipsoid
in a cylindrical pipe, the parameters k¥ and z* are mixed in the arguments of the
functions Iy, Kn. Therefore, a simple analyticat evaluation of the integral (2)’ by Fourier
transformation is not possible and numerical methods are required.

A straightforward approach often used in PIC codes is a numerical Poisson Solver in
Cartesian or cylindrical coordinates*’. This method can accommodate very general beam
distributions and chamber boundaries while maintaining the self-consistency of the
particle modeling. However, at each step along the beam path, the time-consuming
procedure of calculating the grid density is required. Once the grid density is determined,
the grid potentials can be found quite rapidly, usually employing the FFT technique.

Our approach remains related to the Green’s function formalism, is based on the charge
density method, and is also appropriate for PIC simulation.

2.2 Charge Density Method

For the free space potential (2) in Cartesian coordinates, the specific form of the Green’s



function is 1/R and the potential can be rewritten as:

u(r)=f%rl)dwr’), with R=|r—r']=\/(x—x')2+(y—y')2+(z—z')2 )
v

The expression (4) in the free space may be written as:

+Zy 2 R(z,@)

U(Xy, Yy, Zo) = J pr.o,2)rdrdedz
03 JQ2 %S T
20 o rcos@—x) +(rsing~yo) +(z~2,)’
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where for the particular case of an ellipsoid-like bunch R(z,(ﬁ))=R,_.,\/1-—(z/ZI,)2
(with R, and Z, are bunch radius and length correspondingly).

If the charge density p is given, then equation (5} determines the corresponding potential
u. Conversely, if the potential # is known, then the corresponding charge density p

may be found from (5) as an integral equation. In our method, we use both options. The
formalism known as the moment method described below is from reference 6. A similar
technique called the charge density method is commonly used in electron and ion optics’.
Both approaches are based on dividing the volume of integration into discrete cells and
assuming that the charge density within each cell is constant. As a result, the original
integral equation (5) to find p for given u is reduced to the solution of a set of linear
equations.

The charge density technique is especially efficient when the conducting boundary and
the particle density distribution have symmetries. We use such simplifications in the
computational schemes below.

3. Discrete Representation Of Beam Bunch: Slice Formalism

This section discusses the technique for a single slice in the presence of a conducting
boundary.

3.1 Charge Density Method (Discretization)

The full beam bunch may be represented as a sequence of thin charged disks or slices,
each with a charge density o™ (r) (E.G. constant, Gaussian etc.) For a single slice of
radius R, ,, the potential equation (5) can be expressed as:

2z Ry slice
i o (Nrdrd
u(xo,yu,zu)zj ( ) V4

0 0 J(rcosqo—xu)z + (rsing— yo)2 +z02
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Where the integration over z is not required for the infinitesimally thin slice. If the point
(X0, ¥0:2,) is on the cylindrical surface, then x2+y =R?

ol and
u(Xy, Yo, G} =u(r =R ;,7,) .

For numerical evaluations, the area of integration in (6) may be sub-divided and the
integral may be represented as a discrete sum:

Ny N, slice

u(h Yo 20) = by 3 3 o, n

=0 k=0 \/(’}c cos@,; — x0)2 +(r sing; — yo)2 + z.,2

(7

where i, =27 /N,, hy=R,/N, and 6{" is a surface charge density of the slice.

Equation (7) defines the potential on the cylindrical surface due to a single slice at
longitudinal position z,. The same potential evaluated at the position of the conducting
boundary (r = Ry, but with opposite sign, is used to find the surface image charge
density 0™ on the cylinder:

— u(xo, yO’ ZO) = htphZNX o_jl'mage Ni Rc_)‘l (8)
T IRy 0050, = 50) + (R sin @, = o) +(z, = 2,)°

where h, =2Z,/N,, z,€[-Z,,Z,] with Z, =4Z,.

Both the charge density and moment methods (See references 6 and 7) are based on the
fact that if the potential u(r,) is given as a set of values, then the charge density may be

found as a solution of a set of linear equations (8) where the value within the { } brackets
are the matrix coefficients. We use this scheme below.

3.2 On-axis Potential

The on-axis (xj+y;=0) potential for a single slice of radius R, and
0" (r) = const can from equation (6) be expressed analytically:

W ()= j j #’“’-z (R4 <[] ©

where we assume that the slice is at the longitudinal position z=0. For z — teo,
equation (9) reduces to the potential for a point-charge ) . =0/, where

oR=—axis

Q =R, 0" is the total electrical charge of the slice.



3.3 Computational Scheme for a Single Slice

Given the image potential on the cylinder axis, the total field is the sum of #* . and

on-=axis
image

U, - 1he image potential is found by the following steps.

slice

1. The free space potential ug;(r,z)from each slice on a cylindrical surface for

r= ng + yg = Ry 1s found from the general expression (7).

2. Substituting the free space potential with opposite sign
— U (r=4/% +y; =R,,,z)into the set of linear equations (8), the image density

distribution &% (r = /x,} +,” = R;,z;) is found as a solution of the set of linear
equations. This procedure guarantees that the total potential will be zero on the
cylinder wall: w(r=R_,,2)=0.

total g}

3. Given the image charge density, the corresponding image potential u;",(x,, y,,2,) is

fmage

obtained by reapplication of formula (8) with o} (R_,,z,) and x?+ y? =0. (This

image \" ¢y
technique may also be used to calculate the off-axis (x?+yZ #0) potential as
discussed in Section 4.3.)

4. The total slice potential is simply the sum of the image charge and free space
potentials (&% (r,z) = ul® (r,2) +u™ (r,z)). (Note that for the on-axis case

Jree image

(r=0) uyc©,2)=ul™  (z))

This approach can be used to calculate both on- and off-axis potentials of each slice at the

slice

conducting boundary. The potentials u,,(r,z) can be found for slices with various radii

and non-uniform (e.g. Gaussian) charge densities. The total bunch potential «’"""(r,z) is

slice
total

a result of superposition, integrating all u, " (r,z) over ze[-Z,,Z,].

When this procedure is applied to a PIC code, it is proposed that the potentials and
electrical field values be calculated once and stored. During the simulation, these values
with interpolation would be used to provide an accurate model of the longitudinal
dynamics without the penalty of long computational time.

4. Numerical Examples

In the numerical examples below, we consider in Section 4.1 an elliptical beam bunch
propagating through a conducting cylindrical pipe with different values of the ratio of
bunch radius to bunch length. In Section 4.2, we compute the case of a beam bunch with



a longitudinally asymmetric charge density distribution. Finally, in Section 4.3, we
evaluate the off-axis longitudinal fields that, for the case considered, show a weak radial
dependence.
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Figure 1. A uniformly populated ellipsoidal beam bunch modeled as 100 discrete slices.
The bunch radius is R,=0.01 m and the half bunch length is Z, =0.1 m.

4.1 Ellipsoidal Bunch with Uniform Charge Density in a Cylindrical Pipe

We consider a specific case of an elliptical bunch inside a conducting cylindrical pipe of
radius 0.02 m as shown in Figure 1. The half bunch length, Z;, is 10 cm, the maximum

transverse radius R, is | cm, and the total charge is @, =10 C. The transverse
dimensions of the beam were assumed circular with a uniform radial charge distribution.
The longitudinal dimension was assumed parabolic thus resulting in a parabolic line
charge density A(z). In this example, the bunch was modeled as 100 individual slices.
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Figure 2. The longitudinal potentials in arbitrary units for the middle (z = 0) slice of

Figure 1. The solid, dotted, and dashed curves are the free space, image charge, and total
potential respectively.



The longitudinal potential, u(z) for the middle slice (z = 0) is plotted in Figure 2, where
the potentials for free space, image, and total are shown. Note that the slope of the total
potential is greater than that of the free space potential due to image charges. For the full
bunch in the absence of the conducting chamber, superposition of the free space
potentials for all slices results in the u(z) and E,(z) given in Figure 3. Note that the
resulting field E,(z) is linear within the bunch as would be predictedg'g. With the inclusion
of a conducting cylinder, superposition of the total potentials for all slices results in u(z)
and E,(z) given in Figure 4. Note that, for this case, the E,(z) within the bunch is non-
linear.
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Figure 3. The u(z) [V] and E,(z) [V/m] in free space for the beam bunch of Figure 1.
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Figure 4. The longitudinal potential u(z) [V] and electric field E,(z) [V/m] along the

beam axis from superposition of 100 slices for the case of the ellipse-like bunch (length
/ diameter = 10) within a metal cylinder beam pipe 4 ¢cm in diameter.
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Figure 5. The longitudinal potential u(z) [V] electric field E (z) [V/m] found by
superposition of 100 slices for the case of the bunch length / diameter = 5.
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Figure 6. The longitudinal potential u(z) [V] and electric field E,(z) [V/m] found by

superposition of 100 slices for the case of the length / diameter = 1 (spherical bunch). For
such a short bunch, the total electric field remains linear (See reference 9).

A number of cases for the bunch relative to the conducting chamber dimensions were
evaluated. Specifically, the bunch length to chamber radius values of 10, 5, and 1 were
calculated. (See Figure 4 through Figure 6.) Our results are in agreement with the same
cases presented in reference 9 page 407.



4.2 Asymmetrical Bunch in Cylindrical Pipe

More complicated situations, such as when the bunch has a non-symmetrical form in the
longitudinal direction, can not be adequately represented by the g-factor method.
However, the proposed approach may accommodate such cases. For example, shown in
Figure 7, is a possible asymmetrical bunch within a 4 cm diameter conducting pipe again
modeled as 100 individual slices with the calculated u(z) and E,(z) given in Figure 8.
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Figure 7. Asymmetrical bunch within a conducting beam pipe 4 cm in diameter.
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Figure 8. Longitudinal potential on-axis u(z) [V] and field E,(z) [V/m] found by slice
superposition for the asymmetrical bunch of Figure 7,

Though the geometrical shape of the bunch of Figure 7 is not dramatically different from
that of Figure 1, the electric potential and field have significantly different profiles. The
E(z) of the elliptical bunch from Figure 1 is only modestly non-linear within the bunch
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(See Figure 4) whereas the E,(z) of Figure 8 changes sign four times. The g-factor
averaging method in this case would lead to the wrong result.

4.3 Off-axis Electrical Field
So far we have assumed that E,(z) is independent of radial position and that the beam is

concentric with the conducting boundary. Shown in Figure 9 are the potentials and fields
for different radial positions.
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Figure 9 The dependence of the potential u(r,z) [V] and the field E,(r,z) [V/m] as a
function of z for r = (0, 0.4 and 0.8)xR, [m]. The symbols in the E, plot denote the

maximum z value of the bunch at the specific radius. The bunch dimensions are the same
as those of Figure 1.

From Figure 9, the approximation of simply using the on-axis value for E,(z) will cause
significant errors only near the bunch ends. However, the maximum Z_ .. (1) values for

the example shown are Zma{r = (0, 0.4, 0.8)xR, } = 0.1, 0.09, 0.06 m. (The symbols are

plotted at these Zmax values in Figure 9.) LE., there are few or no particles in the area of
significant deviation from the on-axis value for E,(z). Since E,(r,z) can be found by
interpolation from tabulated data generated by computations performed at the beginning
of each simulation, the computational time penalty will be relatively modest should the
inclusion of the E, radial dependence be desirable.

5. Discussion and Conclusions

We plan to employ the presented technique to include the longitudinal dynamics as part
of an upgrade to an existing 2-D PIC code. The transverse dynamics will be modeled by
“representative” slices that have a population consisting of particles within the range of
longitudinal z coordinates suitable for each slice with the appropriately scaled transverse
charge density. Initially, the longitudinal dynamics will be calculated assuming a
cylindrical vacuum pipe and will be based on the slice technique. Though not specifically
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discussed, it should be noted that the procedure presented can be used to accommodate
more general chamber boundaries and beam shapes and this generalization is planned.

Since for each slice the total potential is simply the sum of the free space and image
potentials, the superposition of these potentials representing the whole will automatically
satisfy the conducting chamber boundary conditions. To reduce simulation time, a range
of slice geometries (in the simplest case — a range of discs of different radii) will be
calculated and tabulated. The required number of these “template” slices is normally an
order of magnitude less than the number of slices representing the bunch. In the examples
presented, approximately 15 different slice configurations were used requiring a
computational time of about 5 minutes (on a multi-user 433 MHz DEC Alpha).

The example bunch configurations were modeled as 100 distinct slices with the potential
for each slice derived from appropriate interpolation of the tabulated data and scaling for
charge density. The number of slices N, as well as N,,N, s Ny in (7)-(8) are variables

that may be set appropriate to the problem under consideration. Usually it is chosen to
approximate the integral (6) by the discrete sums with accuracy sufficient and to suppress
ripple in the total potential after the superposition procedure. The construction of the
total bunch potential from the 100 individual slice values required only about 0.2 s.

Since the pre-simulation calculations (about 5 minutes) need only be done once while the
accelerator simulations require many computations of the total bunch potential (about 0.2
s) as the particles are tracked through the system, the decrease in overall computational
time will be enormous.

We are aware that the proposed sub-3-D PIC code will not be completely self-consistent
since the planned pre-simulation calculational procedure will be unable to reflect all
possible evolutions of the particle density. However, preliminary studies of the radial
dependence of Ez field for different distributions suggests that the effect of variations in
the transverse charge distribution is minor, and therefore, the analysis will be nearly self-
consistent. Comparisons with the results of more general 3-D codes such as WARP-3D
are planned'®.
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