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The "Migma Cell" designed by Maglich is aimed at producing 
useful fusion power by storing deuterons in precessing, self- 
colliding orbits in a suitable magnetic field1). We have undertaken 
a more thorough analysis of the basic orbit properties in such a 
device. Using equilibrium orbit and transfer matrix techniques, 
we have developed a computer code which calculates all the 
important properties of median plane orbits and of vertical 
lbcusing in the given magnetic field as a function of momentum. 

The results obtained for the same field as used by Maglich are 
presented, together with a discussion of their significance for 
beam injection and space-charge problems. In particular, our 
results show that inherent alternating-gradient effects increase the 
vertical focusing, but beyond a critical momentum value, the 
vertical oscillations become unstable because of overfocusing. 
Finally, some of the orbit data provided by Maglich are discussed 
and interpreted, along with his choice of magnetic field shape. 

1. Introduction 

In a recent article, Magl ich  has descr ibed the 
" M i g m a  Cel l" ,  a potent ia l ly  useful device for generat ing 
nuclear  fusion power1).  This device represents  an 
extensive deve lopment  of  the " M i g m a t r o n " ,  which is 
itself an ou tgrowth  of  the "Prece t ron"Z '3) .  (These 
!papers will hereaf ter  be referred to collectively as 
Maglich et al.) The basic orbi t  proper t ies  of  these 
,devices, par t icu lar ly  the vertical  focusing,  have been 
t rea ted  ra ther  casual ly  using analyt ica l  methods  based 
on the restrictive assumpt ion  of  near ly  circular  orbits.  
A more  r igorous  t rea tment  therefore  seems desirable.  

P rece t ron -Migma  orbi t  proper t ies  can be accurately 
analysed using equi l ibr ium erbi ts  and  t ransfer  matr ix  
techniques similar  to those used in cyclic accelerators.  
The median-p lane  orbi ts  execute a series of  identical  
loops,  going f rom rmi n to rma x and back  again to rmi n 
in each loop.  A l though  these orbi ts  are general ly no t  
closed, the var ia t ion  of  the radius  r is definitely 
periodic,  and  each orb i t  can therefore  be viewed as an 
"equ i l ib r ium o rb i t "  having a per iodic i ty  e lement  
equal to one loop.  (The nonper iod ic i ty  of  the az imuth  
0 is u n i m p o r t a n t  here since the field is axial ly sym- 
metric.) Wi th  the equi l ibr ium orbi t  thus defined, it  
becomes possible  to calculate  the t ransfer  mat r ix  for  
the vert ical  osci l la t ions th rough  one loop,  and  hence 
to de termine  the frequency v~ and other  proper t ies  o f  
these oscil lations.  

We have developed a compute r  code which, for a 
given median  plane field B(r),  calculates all of  the 
impor t an t  proper t ies  of  the equi l ibr ium orbi ts  and  o f  
the vertical oscil lat ions as a funct ion of  the m o m e n t u m  
p. The ou tpu t  from this code should make  it possible  
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to evaluate  ra ther  quickly the advantages  or  dis- 
advantages  of  a given field and opera t ing  condi t ion.  
The structure of  this code and some pre l iminary  
results are descr ibed in this paper .  

In o rder  to  make  the results as general  as possible,  
we use a field uni t  B o and a length unit  R0, bo th  of  
which are unspecified. All  m o m e n t a  are then expressed 
in terms of  the unit: 

Po = qBoRo/c,  (1) 

for  an ion of  charge q. All  of  the results are then 
independent  of  the choice of  a par t icu lar  ion and  o f  the 
" s c a l e "  of  the device. 

2. Equilibrium orbit (EO) 

We use the arc  length s = vt as the independent  
variable,  so that  t ime never occurs explicit ly in the 
results. In terms o f  car tes ian coordinates ,  the differen- 
t ia l  equat ions  for the EO are then given by: 

dx/ds = Px/P, dy/ds = p,/p, (2a) 

d p x / d s = - ( p , / p ) B ( r ) ,  d p / d s = ( p ~ / p ) B ( r ) ,  (2b) 

where B(r)  = - B ~ ( r ,  z = 0), so tha t  the ions ro ta te  in 
the posit ive (counter-clockwise)  sense. 

The above  equat ions  are in tegra ted  numerical ly  
with the fol lowing init ial  condi t ions:  

s = 0 ,  x = 0 ,  Y = Y o ,  P x = P ,  p y = 0 .  (3) 

In add i t ion  to a given p,  the orb i t  therefore  has a 
specified value o f  rmi n =[Yo[, and  the sign o f  Y0 
determines whether  or  not  the o rb i t  circles the origin. 
As the in tegrat ion proceeds,  the code calculates the 
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following polar variables: 

r = (x 2 + y2)}, (4a) 

Pr = (Xpx + ypy)/r, Po = ( x p y -  ypx)/r. (4b) 

The invariance of  p2 and of  the generalized angular 
momentum (defined later) are used only to check the 
accuracy of  the integration. 

Because of  the EO symmetry,  only one-half  of  a 
loop is needed to completely specify all of  the EO 
properties. The integration therefore runs f rom s = 0, 
where r = rmi n only to the points s = s~, where r =rma x 
and Pr = 0. Since the precise value of  s~ is unknown in 
advance, the code uses an iteration scheme to determine 
sl accurately. At the conclusion of  this integration, 
the final conditions for this one-half  loop are then 
given by: 

s = s , ,  X = X l ,  Y = Y l ,  p r = 0 ,  p o = p .  (5) 

The value of  rma x is then calculated from: 

rmax = (X2 + y2)+. (6) 

The above final conditions yield two additional 
important  properties ot the EO, namely, the "orb i t  
radius" a, and the "precession f rac t ion" fp .  The value 
of  a is defined by and calculated from: 

a = S/2n = sl/n, (7) 

where S is the total arc length of  one loop, and hence 
the period of  the EO. The precession fraction fp is 
obtained from: 

f p  = 0p/2Zr = ( l / n ) t a n - l ( - x l / y O ,  (8) 

where the "precession angle" 0p is the azimuthal 
displacement of  the EO after each loop. That  is, the 
momentum vector rotates through an angle 2 n + 0 p  
during each loop. 

For  a specified Yo value, the code performs the above 
EO calculations for a sequence of  p values: p = 6p, 
2@, 3@ . . . .  , for a given @ interval. The code stops 
when a valuep = Pm,x is reached such that the trajectory 
enters the region of  negative field values. For  a 
P rece t ron- -Migma device, the orbits of  pr imary 
interest are those which pass through or close to the 
origin, that  is, those having Yo = 0 or Y0 ~ 0. 

The results described in this paper were obtained 
for the same field as that  used by Maglich et al. In 
their notation, the median plane field is: B_.= 
B0( l -k rZ /R2) .  With Bo as the field unit, and Ro = R 
as the length unit, this field becomes in our notation: 

B(r) = 1 - k r  2, (9) 

with the momentum unit of  eq. (1) given by: 
Po =qBoR/c.  Although we explicitly maintain the 
field index k as a parameter, the results obtained for 
different k values are related quite simply. To show 
this, we need merely point  out that  if we had chosen 
the length unit R o = R/x/k,  and the momentum unit 
Po = qBoR/(c\ /k) ,  then our median-plane field would 
have been: B(r) = 1 - r  2, independent of  k. In order to 
emphasize the k dependence, the results displayed in 
our  figures contain the scale factor ~/k for  lengths and 
momenta.  Only the results obtained for Yo = 0 will be 
presented and discussed in detail. 

Before presenting our EO results, we should point 
out some important  conclusions which can be drawn 
from the invariance of  the generalized angular mo- 
mentum K given by: 

= r p o - j ; B ( r ) d r ,  (10) K 

which uniquely specifies Po as a function of  r. For  
example, in the case where Yo = 0, if the initial and final 
conditions of  eqs. (3) and (5) are inserted, we obtain: 

pr 1 = f rB(r)dr ,  (11) 

where the integration here runs f rom r = 0  to 
r = r l  =rmax. This result then provides a definite 
relationship between r 1 and p. 

For  the field under consideration with B(r) given by 
eq. (9), we find: 

= - ~ k r j ) .  (12) p l r 1 (1  1 2 

In particular, this equation shows that  there is some 
momentum value P such that for p > P, no solution for 
r~ exists. The value p = P therefore represents the 
maximum momentum which the field can "conf ine"  
for the given Yo = 0 value. Setting dp/dr = 0 at r = R~, 
we then obtain: 

R 1 = x/ ( ]k)  = 0.816/~/k, (13a) 

P = ½RI = 0.272/x/k. (13b) 

Thus, all orbits with Yo = 0 and having p < P  will lie 
inside the circle r = R~. A half  loop for three such 
orbits is shown in fig. 1 for p , / k  = 0.134, 0.201, and 
0.271. 

Since the value r = R1 and p = P given above satisfy 
the condit ion for a circular orbit: p = rB(r) = r(1 - k r 2 ) ,  

we must conclude that the orbit which starts f rom the 
center with p = P spirals outward and around the 
origin approaching the circle r = RI asymptotically. 
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Fig. 1. XY plots of  three median-plane (equilibrium) orbits 
having momenta: p -v /k=0 .134 ,  0.201, and 0.271. These half  
loops start at r = 0, 0 = 0, and end (as indicated by broken line) 
at r = rmax, 0 = ½(~+ 0p), where 0 o is the "precession angle". 
Lengths are in units of  R, momenta  in units of  qBo R/e, and the 
scale factor ~ / k  shows the dependence on the field index k. 
Circle at r=O.816/%/k indicates limiting value of  rmax for 

"confined" orbits. 

This implies that as p approaches P, the orbit radius a 
of  eq. (7) and the precession fraction fp of eq. (8) will 
both approach infinity. This behavior is indicated to a 
certain extent by the orbits in fig. 1. 

The approximation assuming nearly circular orbits 
used by Maglich et al. yields the equation a = p  for 
the orbit radius when expressed in our units. The 
computer results show that a increases faster than p, 
and approaches infinity for p ~  P, as expected. The 
approximation a = p  is valid only for p<O.15/x/k. 

Fig. 2 shows a plot of  the precession fract ionfp as a 
function ofpx /k  as derived from the computer output. 
When translated into our units, the analysis of  
Maglich et al. yields the relation: fp = kp 2, which is 
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Fig. 2. Plot of  precession fraction fp = 0p/2zt vs p~/k = (mvc/ 
/qBoR)~/k. Broken curve shows approximation: fp=kp  2. 
Vertical line at p = 0.272/~/k indicates maximum momentum for 

"conf ined"  orbits. 

shown as a broken curve in fig. 2. This approximation 
is evidently valid for small values of px/k, but the 
actual fp curve rises faster than kp 2, and approaches 
infinity for p ~ P, as noted above. 

Whenever fp = 0v/2n is a simple rational fraction, 
the median plane orbit will close on itself after a small 
number of loops. Such orbits must be avoided for the 
injection of primary Migma ions, or else they will 
return to strike the inflector before they can be "self- 
ensnared", as described by Maglicha). To avoid this 
difficulty, quite small values of fp would be most 
advantageous. That is, when fp is quite small, the 
number of loops required for the ion to return to the 
inflector is approximately 1/fp. However, if fp is too 
small, the ions will return to strike an inflector of 
finite size after only one loop. 

3. Vertical focusing 

For  orbits such as those shown in fig. 1, the field 
gradient is evidently stronger near r = ?'max than near 
r = 0, so that the vertical focusing has a significant 
alternating-gradient (AG) component. Since the EO 
is periodic with period S = 2 ha, we expect the vertical 
oscillations to have the same form as in AG acceler- 
ators, namely: 

z(s) = W(s) cos [Vz(S/a) + t~(s)]. (14) 

Here, v z is the frequency in oscillations per loop, and 
both W(s) and ~k (s) are periodic with the same period 
S. The " fo rm factor"  W(s), in combination with r(s) 
for the EO, can be used to obtain the vertical distribu- 
tion of Migma ions as a function of radius. In this 
section, we describe how the code computes v~ and 
W(s). 

The differential equations for the vertical oscillations 
are given by: 

dz/ds = Pz/P, (15a) 

dpJds = [(po/p)(dB/dr)] z, (15b) 

where the quantity in brackets is evaluated on the EO 
at each s value. In order to construct the transfer 
matrix, the code generates two solutions (zl ,  Pzl) and 
(z2, P~2), with initial conditions (1,0) and (0, 1), 
respectively. These integrations are carried out from 
s = 0 to s = s I simultaneously with the final integration 
of the EO described above. 

Because r(s) for the EO is symmetric about the two 
points s = 0 and s = s l ,  only the transfer matrix for 
one half of a loop ( 0 < s < s 0  is required to produce 
the complete transfer matrix. From an analysis of  a 
comparable situation presented in a previous paper, 
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we have the following equations for calculating v_~ 
and the parameter fi0 4): 

cos(2~%) = zl(sl) pzz(S1)-l-z2(s1) pzt(S1), (16a) 

sin (2 7rv=) = (2///0) z 2 (s,) P=2 (s 1) 

: - (2 / /0 )  z1(sl) Pzl (sl). (16b) 

The code uses these equations to obtain rio and v=. 
The form factor W(s)= \///(s) can be calculated 

from the equation: 

2 
W 2 ( S )  ~-~ fl(S) = //oZ2(S) Or(l/flO)Z2(S), ( 1 7 )  

with//o = fl(s = 0) given above. This W(s) is symmetric 
about  the points s = 0 and s = s~. Moreover,  W(s) has 
its minimum value W o = -j'flo a t s  = 0, and its maximum 
value W~ = ,./fi~ at s -- s~. In particular, the important  
ratio Wo/W~ is given by: 

(Wo/Wl)  2 = r iO/ i l l  = Pz2(S1)/ZI(SI) • ( 1 8 )  

In addition to v=, the code prints out values of  Wo 
and W1 as a function ofp.  

Fig. 3 shows a plot of  v~ versus px/k for EO's  
starting at r = 0, some of  whose other properties are 
shown in figs. 1 and 2. When translated into our units, 
the analysis of  Maglich et al. yields the result: 
v~ =px/ ' (2k),  which is shown by the broken line in 
fig. 3. This approximation is (once again) valid only 
for small values ofp\/k. 

The v. curve in fig. 3 rises faster than p\/ '(2k),  and 
reaches the critical value v=--½- at p-~O215/\/k. 
Above this p value, the vertical oscillations become 
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Fig.  3. P lo t  o f  f r equency  rz (ver t ical  o sc i l l a t i ons  pe r  loop)  
vs m o m e n t u m  v a r i a b l e  Pv/k.  L o w e r  curve  shows  real  pa r t  o f  va, 
whi le  u p p e r  cu rve  shows  i m a g i n a r y  pa r t  v~. Ver t ica l  l ines ind ica te  
reg ion  o f  in s t ab i l i t y  f rom p~/k  = 0.215 to 0.253. Broken  l ine 

shows  a p p r o x i m a t i o n :  vz = p ~ / ( 2 k ) .  

unstable as a result of  "over-focusing".  In this over- 
focusing region ("~z s top-band") ,  which extends from 
p = 0.215/\/k to p = 0.253/,,/k, the values of  vz are 
complex and given by: 

l " * v_ ~+av= . (19) 

• where appro-  The code also provides the values of  v= 
priate, and these are plotted at the top of  fig. 3. 
Al though the values shown for v*(<0.11)  may appear 
small, they are actually quite substantial. To grasp this, 
it should be recognized that the vertical oscillation 
amplitude will (eventually) grow by a factor exp (27%*) 
on each loop. 

Fig. 4 shows the values of  the ratio Wo/WI plotted 
against p,j'k in the region of  vertical stability, p < 0.215/ 
,,/k. For  p ~ 0 ,  W(s) is nearly constant,  so that  
Wo/Wi ~ 1. The values of  Wo/W1 shown in fig. 4 fall 
slowly at first with increasing px/'k, and then drop 
sharply to 0 as the critical value Px/k =0.215  is 
approached. Given the choice, a low value o f  Wo/W 1 
would be most  desirable, since such a value would 
produce a higher density in the central core of  the 
Migma. 

For  the sake of  clarity, fig. 3 does not show the 
rapid changes in v~ which occur in the small range 
betweenp = 0.253/\ /k a n d p  = 0.272/\/k,  the maximum 
possible p value. First, from p = 0.253/,]k to p = 0.268/ 
\ /k,  the value of  v= becomes real again and rises f rom 
v= = 1 to v= = 1. Then, in the remaining narrow range 
of p values, the value of  v= passes through at least two 
additional regions of  instability (the 27r and 3rr stop- 
bands). Since the Migma ions must  have a distribution 
of  p values, it would therefore be rather dangerous to 
operate anywhere except in the primary region o f  
stability, p < 0.215/,/k. 
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Fig.  4. P lo t  o f  r a t io  Wo/W1 of  m i n i m u m  to m a x i m u m  a m p l i t u d e  
o f  ver t ica l  osc i l l a t ions  as a func t ion  of  the  m o m e n t u m  v a r i a b l e  
p~/k wi th in  the  r eg ion  o f  s tab i l i ty ,  p ~ / k < 0 . 2 1 5 .  M i n i m u m  
a m p l i t u d e  W0 occurs  a t  r = 0, whi le  m a x i m u m  a m p l i t u d e  W1 

occur s  a t  r = rmax.  
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Any median plane orbit which starts at r = 0  
returns exactly to that point after one loop. In this 
case, the frequency of the horizontal oscillations about 
the given EO must have the value: v, = 1. 

All of  the results discussed above were obtained for 
EO's  which start at r = 0(Yo = 0). Comparable data 
have also been obtained for the cases where Yo = +-0.01 / 
,¢/k. As expected, for positive (negative) value of Y0, 
the values of v~ are larger (smaller) than those for 
3:o = 0. However, for the Y0 values considered, these 
differences are not large enough to be significant. 

4. Summary and conclusions 

For the median plane field used by Maglich et al. 
B~ = Bo(l -krZ/R2), all of the orbit properties depend 
on the field index k only through a scale factor x/k for 
lengths and momenta.  This scaling property is indicated 
in our figures where we use the momentum variable 
p~/k=(mvc/qBoR),]k. We have found that the 
approximate formulas used by Maglich et al. for the 
orbit radius a, for the precession fraction J~,, and for 
the vertical oscillation frequency v~, are generally valid 
only for p,]k < O. 15. 

In order to maximize the space charge limit, it 
would be advantageous to have v~ as large as possible. 
However, to avoid vertical instability through over- 
focusing, the value of v~ must be restricted to the range: 
v~<0.5, which (as shown in fig. 3) requires p, /k <0.215 
for this particular field. Moreover, it should be noted 
that the behavior of v~ versus p will be qualitatively the 
same for any field which is suitable to a Precetron- 
Migma device. 

As discussed at the end of sect. 2, the injection of  
primary Migma ions would be facilitated if the preces- 
sion fractionfp (shown in fig. 2) is as small as possible. 
However, our data show that the formula: 

v~ = x/(2fp), (20) 

is a good approximation for fp  < 1/25 or v~ < 0.3. Thus, 
lower fp values will always coincide with lower Vz 
values which, as indicated above, are undesirable. A 
possible solution to this dilemma might be achieved 
by injecting the ions off the median plane under 
conditions where the precession period and the vertical 
oscillation period combine in such a way as to provide 
eL much longer time before the ions return to strike the 
inflector. Maglich apparently proposes such a scheme 
in his discussion of the injection process1). 

In his design of the "Migma  Cell", Maglich uses 
2 .2MeV deuterons in a field characterized by 

B o = 200 kG, k = 0.8, and R ~ 5 cm 1). Together with 
a 4% energy spread, these parameters imply: 
p\/k ~0.27+0.003>0.215 ,  so that according to our 
data, the resultant orbits will lie in tile region of 
vertical instability. It should be kept in mind, however, 
that the effect of  this "instability" is not unlimited 
provided sufficient space is available for the resultant 
large amplitude vertical oscillations. Since the horizon- 
tal oscillation frequency has the value vr = 1, then for 
v~ ~ 0.5, these vertical oscillations will come under the 
influence of the vr = 2 v~ nonlinear coupling resonance. 
This resonance commonly occurs in the extraction 
region of most cyclotrons, and its properties are well 
knownS). It is characterized by a (conservative) back 
and forth interchange of energy between the vertical 
and horizontal oscillations. In this situation, the 
focusing is centered not on a median plane EO, but 
rather on a three-dimensional periodic "fixed-point" 
orbit which resembles a "figure 8" bent at the middle 
and nearly doubled over. Unfortunately, Maglich 
does not supply sufficient data on the orbits of the 
2.2 MeV deuterons for us to reach more definite 
conclusions. 

The only specific orbit data furnished by Maglich 
appears in his fig. 2 and fig. 3 which show orbits of 
ions scattered (or injected) at r = z = 0 with different 
angles 0z relative to the median plane~). Although 
these orbits relate to other energies and different 
fields, they display some interesting properties. The 
orbit in his fig. 2 with 0z = 10 ° can be recognized as one 
which executes a small oscillation about the fixed- 
point orbit of the v, = 2v~ resonance discussed above. 
Also, the orbit shown in fig. 3 with 0z = 40 ° resembles 
the fixed-point orbit associated with the higher order 
v~ = 6v~ coupling resonance. Ions moving in such 
orbits would spend relatively little time near the median 
plane. Maglich does not show in these figures any 
orbits for very small 05 values, but judging from the 
given data, we conclude that such orbits would be 
"unstable".  That  is, these orbits would remain close 
to the median plane only for a short time, and under 
the action of the nonlinear coupling resonance, the 
amplitude of the vertical oscillations would then grow 
rapidly and reach a very large value before declining 
again. Considering these complications, a more sys- 
tematic investigation should be carried out in order to 
establish the desirability and the consequences of  
operating a Migma device under the strong action of 
nonlinear coupling resonances. 

The orbit computations presented by Maglich et al. 
(and by us in this paper) are based on a specially 
chosen magnetic field shape which they have success- 
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fully fitted using two (or three) pairs of coils1). This 
special field contains terms only to order r 2 and z 2, 
and has the property that curl B = 0 everywhere, so 
that its sources are nominally located at infinity. 
Such a fiield should not be used for orbit computations 
unless these orbits have a radial and vertical extent 
which is negligible compared to that of the coils. In 
particular, this simple field cannot be expected to 
provide very reliable information on nonlinear coupling 
resonances. Furthermore, our results suggest that any 
axially symmetric field B~(r, z) which, in the median 
plane, falls off with increasing radius will produce the 
basic orbit precession and vertical focusing required for 
a Migma device. The design of an optimum coil 
configuration should therefore be based on more 
practical considerations. 

Note added in proof(9~74): Further calculations, which include 
all nonlinear effects, have confirmed the inferences made above 
regarding the action o f  nonlinear coupling resonances in con- 
trolling the behavior of  large-amplitude vertical oscillations. 
A detailed report on these calculations will be submitted for 
publication soon.  
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