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The generd microscopic formalism is presented for the description of the

i quasielastic knock-out of ¢ - clusers from p - shdl nude by ultrardaivigic
electrons. Manifestations of nuclear structure in differential cross sections and
angular digtributions are studied. The typical 12C(e,e’a)®Be reaction is con-
gdered in the PWIA and DWIA gpproximations, the particular attention is
pad to the effects of virtualy excited cluser states insde the initid nucleus.
Suggestions for the observation of nuclear restructuring effects (interplay be-
tween diagond and off-diagond trandtions with respect to the intrindc date
of the cluster) are proposed.



I. INTRODUCTION

Cluster structure of atomic nuclei is usually studied in two types of complementary exper-
iments. Cluster transfer reactions [1] are characterized, as a rule, by high energy resolution
and give reliable relative values of spectroscopic factors. The absolute values are not equally
accurate due to complexities [2] inherent to the distorted wave Born approximation (DWBA)
used for theoretical interpretation of experimental data. It is difficult to extract the most
interesting object of such studies, the wave function of relative motion of the transferred
éluster in the initial nucleus, in the region of relatively low momenta.

The second, and the most direct, type of experiments is the quasielastic (quasifree) knock-
out reactions [2-7]. These reactions are distinguished by a number of tangible experimental
shortages: one needs high beam energy, the counting rate in coincidence experiments is
typically low, and the energy resolution is not sufficient. But the wave function of cluster
rglative motion in the target nucleus is extracted in the broad range of momenta. In addition,

we show below, the signatures of virtually excited nucleon cluster configurations [8-10]
are most noticeable in the quasielastic knock-out reactions.

The quasielastic knock-out reactions at sufficiently high energies are particularly attrac-
tive because of the domination of the simplest pole reaction mechanism {11] and, hence-
forth, the possibility of the accurate extraction of quantitative spectroscopic information.
Currently, an overwhelming majority of experiments are set up with the use of low or inter-
mediate energy (200-300 MeV) proton beams. The theoretical analysis of experimental data
is carried out in the framework of the simplest plane wave impulse approximation (PWIA)
or with the more realistic distorted wave impulse approximation (DWIA) [12]. Both ap-
proaches utilize the factorization of the reaction cross section [2-7] which imposes serious
limitations on the allowed states of the cluster inside the target nucleus. To be exact, it is
assumed that the cluster was already preformed inside the nucleus in the same state as it
had after the reaction being registered in coincidence with the projectile. This assumption

can be reasonable at relatively low beam energy when the reaction is localized at the surface



region of the target nucleus. Hewever, at high energies the cluster may be knocked out
from a deep interior inside the target {4,13]. In this case the cluster can be formed in an
arbitrary quantum state allowed by the conservation laws and selection rules. Therefore, the
reaction cross section cannot be expressed in a simple factorized form [10,14]. The problem
of calculating the cross section for the quasielastic knock-out (p,p’e:) reaction, with clus-
ter deexcitation amplitudes (nondiagonal amplitudes describing the intrinsic reorganization
of the cluster) properly accounted for, was addressed in our previous works [14-17] in the
framework of Glauber multiple scattering theory [18]. The final state interaction between
the knocked out cluster and the residual nucleus was taken into account in the standard
DWIA approximation [20]. The calculations have revealed a number of nontrivial peculiar-
ities of the reaction. It turned out that the momentum distribution of the residual nuclei
strongly depends upon the angle of the scattered proton and the orientation angle of the

recoil momentum of the residual nucleus with respect to the initial beam and the proton

gattering plane.

The use of electron beams for similar quasielastic knock-out experiments [14-17] has well
kﬁown advantages {21-23]: (i) the reaction mechanism may be well separated from nuclear
structure effects; (ii) light and medium nuclei can be studied without a noticeable distortion
by the electromagnetic field (the final state interaction is essential only between the knocked
out cluster and the residual nucleus and can be taken into account with the aid of the usual
optical model); (iii) at a given energy transfer one can independently vary the momentum
transfer. From the viewpoint of extracting the cluster properties, the main attractive feature
1s the possibility of seeing the signatures of the deexcitation amplitudes connected with the
spin-isospin rebuilding of the cluster internal wave function. The restructuring of the spin-
isospin part of the cluster wave function is suppressed in the (p,p’a) reactions due to a weak
dependence of the nucleon-nucleon scattering amplitude on spin variables [10,18] at high
proton beam energy which is necessary for the manifestation of the quasielastic reaction
mechanism. In the electron induced reactions this mechanism reveals itself most clearly at

energy E, exceeding 400 MeV [23] although even at much lower energy (~100 MeV) one
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can study specific features of (e,e’ar) processes [19].

At the same time the use of reactions induced by electrons implies a number of difficulties
as compared to the hadron analogs: (i) the reaction cross sections are substantially lower and
therefore the requirements to experimental accuracy are considerably increased; (ii) since
the electron scattering is a single-step interaction with one of the cluster nucleons, the elastic
amplitude falls down rapidly as the momentum transfer increases. The first problem can be
solved by progress in the electron beam and target technology. In particular, the method of
superthin internal nuclear targets in an electron storage ring [19] is promissing, especially for
the coincidence experiments. The second feature of electron experiments is important for our
specific goals because, compared with the multiple proton scattering, the contribution of the
deexcitation ampliudes to the total reaction cross section is significantly smaller. Moreover,
anisotropy of the angular distributions of emitted a-particles with respect to the direction
of the momentum transfer, found for the (p,p’e) reaction [15,16], is absent here (see Sec. 4
a?d Figs. 8-10). This puts a heavier load on theoretical calculations of the cross sections.

The present work is apparently the first attempt to estimate the influence of internal

restructuring of the knocked out cluster on the observable (e,e’a) cross sections. The choice
of the « - cluster is natural because this is a sufficiently large multiparticle system possess-
ing a wide spectrum of virtual excitations. The lighter clusters, such as deuterons or 3He,
have only few deexcitation amplitudes, and their influence on the reaction cross section is
expected to be weaker [10]. Nevertheless, we need to note that the simplest deexcitation pro-
cess 12C(e,e')'"B*(0F,T=1) with the spin-isospin rebuilding of the virtual singlet deuteron
e+d*(5=0,T=1)—¢'+d(S=1,T=0) has been investigated experimentally [24]. The theoreti-
cal description of this reaction within a semi-microscopic approach allowing the restructuring
of the knocked out deuteron cluster was developed in [25]. The results indicate an impor-
tance of taking into account the deexcitation amplitudes. More traditional approaches like
DWIA cannot reasonably describe available experimental data.

Recently a series of experiments was carried out at NIKHEF to study the knock-out

(e,e’a) reactions on '?C and '®0O nuclei (26]. Below we have chosen as an object of investiga-
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tion a particulat reaction '2C(e,¢’a)®Be which is an electron analog of the proton knock-out
reaction *C(p,p’a)®Be studied earlier [15-17]. Here we have an opportunity to compare
different reaction mechanisms and distinguish more clearly effects due to the cluster struc-
ture of the target nucleus. In addition, the residual nucleus ®Be has relatively low rotational
levels 2*(E,=2.9 MeV) and 4*(E,=11.4 MeV) that can be populated in the interaction
process.

In order to closely approach the conditions of the NIKHEF experiment, we calculate
the reaction cross section as a function of the scattered electron energy (the energy sharing
experiment). We give the angular distributions too because they are sensitive both to the
deexcitation amplitudes and to the variations of kinematical conditions.

In Sec. 2 of the paper, the basic microscopic formalism is developed which takes into ac-
count the nondiagonal transition amplitudes with the intrinsic restructuring of the knocked

out o - cluster. Since the main attention is given to the observable effects of the nondiago-

" ality, the reaction mechanism is treated here in the simplest PWIA approximation. Sec. 3
i devoted to the analysis of the modification caused by the distortion in the exit channel.
The final state interaction is taken into account in the framework of the traditional DWIA
approach. In Sec. 4 the results of the numerical calculations of differential cross sections
and angular distributions are presented and discussed for different final states of the residual

nucleus. The perspectives for further studies are discussed in Conclusion.

II. THE (E,E'a) REACTION IN THE PWIA

Throughout the work we use the following notations: A is the target nucleus; Ay is the
cluster knocked out from the target; 4, is the residual nucleus; e is the unit positive charge.
The usual metric with the signature (+ — — —) is assumed [27], and the natural unit system

with ¢c=1 and A=1 is used. All calculations are carried out in the laboratory system.



A. Kinematics

'The kinematic scheme of the reaction is shown in Fig. 1(a), and the corresponding
Feynman diagram is depicted in Fig. 1(b}. The notations for involved four-momenta are:
initial electron k¥ = (E,, k); final electron k* = (E!,k’'); momentum transfer g# = k* —
k" = (w,q); target nucleus Py = (M,,0); cluster inside the target nucleus p* = (Fy, p);
knocked out cluster in the final state p* = (E}, p’), and the residual nucleus P{ = (E1,Py).
Quantities p, k k', ... are the absolute values of the three - dimensional vectors p, k, ¥, ...
The scalar four - momenta product is k¥ - k!, = (k - £').

For definitiveness, we choose the kinematic conditions for the guasielastic knock-out of
the o - particle from the target nucleus '2C as in the NIKHEF experiment [26]. The energy
of the initial electron beam is F,=637 MeV so that all calculations can be carried out in the
ultrarelativistic approximation for the electron. The electron scattering angle &/, is fixed at

b.06°; « - particles are registered at 71.08° with respect to the beam direction, see Fig. 1(a).
a The kinetic energy of knocked out « - particles T, falls almost linearly from =100 MeV to
rbr"ero, Fig. 2(a), in the most interesting for our purpose energy range 500< E! <626 MeV for
all transitions into different states of the residual nucleus. In the vicinity of the quasielastic
peak for the transition into the ground state 0% of the residual nucleus 8Be, T, is close to 30
MeV. The momentum transfer varies insignificantly in this region, the typical value being
around 283 MeV/c. The exact position of the quasielastic peak on the energy scale E! for
three possible transitions is seen in Fig. 3 where the momentum of the residual nucleus ®Be
is shown. By definition, the quasielastic peak is fixed by the condition P,=0. Displaying a
typical signature of the quasielastic mechanism, the angle 6s5,_, between the momentum of
the residual nucleus Py and the momentum transfer q, Fig. 2(c), changes abruptly from 180°
to zero at the crossover through the quasielastic peak on the energy scale. Figs. 2(b) and 2(d)
show additional kinematic reaction characteristics, E,.;, the energy of relative motion of the

knocked out « - particle and the residual nucleus ®Be, and the angle between pye1 = p' — P4

and q, respectively. These quantities are important for calculating the cross section with



distortion in the exit channel because they determine the choice of parameters of the optical

o - 3Be potential.

B. Differential cross section

The electromagnetic interaction between the electron (projectile) and the target nucleus

is given [22,23,27] by the operator

V() = —e [ J#(z)A,(z)dr, (1)

where z = (¢,r) and J#(z) is the four-vector of the nucleon current. The four-potential of
the electromagnetic field of the electron A*(z) can be found from the Maxwell equation in
the Lorentz gauge. In the lowest order of perturbation theory (one-photon exchange) we
obtain the well-known Méller potential [22,23,28] for the electron transition (k, o) — (k’, o")

Blp) = — an s (K v u ~i(g-x) o
() = = ()P, ()8 @

l?ere us(k) are the electron Dirac bispinors normalized according to @, (kK)u, (k) =

f

(m/E)8,,; m is the electron mass. This normalization is not relativistically covariant
but it is suitable in nonrelativistic nuclear physics.

Taking into account the connection between V(t) and the § - matrix [27] one obtains
the process amplitude as

dmie

S = R (k') 7uu (k) - 2m6(Ep + By — Ma — w)Jg(a), (3)

where the transition four-current is

T = (pa(@), Ja(@) = (F1 [ &7 T4(r)drl), @

and the functions [7) and |f) describe the internal states of the nuclear system before and
after interaction, correspondingly. The integration in the matrix element is done over all
nucleon coordinates r; (j=1,...,4) in an arbitrary coordinate system. Extracting center-
of-mass motion by means of the transformation to standard Jacobi coordinates [13] and

introducing the scattering amplitude T'; [27],
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(ff) T (K, (k) - (27)4T4(), (5)

Tf,' - -
we obtain
Spi = i(2r)*6(p' + Py — q)8(Ef + By — Ma — w)Th, (6)

In Eq. (5) and below, the internal states of the nuclear system |z) and |f) depend upon the
Jacobi coordinates only. We use the same notations as in {3} for the new states in order
to avoid an excessive overload of formulas. All information about center-of-mass motion is
now contained in the ¢ - function which reflects the momentum conservation law.

The differential cross section of the A(e,e’Ap)A; reaction is related to the scattering
amplitude [22,23,27,28] and, for the unpolarized electron beam and target nucleus, may be

written as

do . 1 1 EeprzkrE; \
d%dQUdE! 27 + 1 2 STl (7)

M .My My, < o0

l’!ere J is the target spin (full angular momentum), and M its projection; M,;, and My,

are projections of the spins (full angular momenta) of the knocked out cluster and residual

nucleus, respectively. The factor f takes into account the recoil of the residual nucleus 3],

' ; -1
— O
P P —9c8y , (8)

=g E

where 7 is the angle between p’ and g, see Fig. 1(a).

After averaging over electron polarizations [27] we obtain the well known [23,29] differen-
tial cross section (7) of the quasielastic knock-out of the cluster Ay from the target nucleus
A,

do 1 e 1 p?K
dUdUdE, 204+ 1 MJA,Z wigar k!

My, My,
x {psip7ik'k(1 + cosd,) + Ja - Tk'k(1 — cos J)

+ 2Re [(Jg - K)(F} - k)] — 2Re [T pa (kK + K'k)]}. (9)

The whole information on nuclear structure is contained in the transition charge density

pri(d) and the transition current density Jg(q).
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In the energy region E, ~ 600 - 650 MeV and for the analyzed transitions 2C(J™ =
0+, T = 0) »8Be(J™ = 0%, 2+,4%: T = 0}, the dominating contribution to the reaction cross
section comes from the Coulomb part of the electromagnetic interaction ps;(g). The con-
tribution of the current components J;;(g) does not exceed 3% + 5% and becomes visible
mainly through its interference with the Coulomb part. We have performed direct calcu-
lations of this contribution for the transition into the ground state of the residual nucleus
®Be at three different E! values around the quasielastic peak. As usual, the convective and
magnetic components of the current were taken into account [23]. We do not expect any
significant enhancement of the current components for the transitions into 8Be excited states
which have collective rotational nature. Therefore, below we restrict ourselves with the de-
tailed consideration of the Coulomb interaction between the electron and those nucleons of
the target nucleus that form the « - cluster.

We use in our calculations the charge density operator [23]
!

j Ao 1
3 pla) =e) e I3[+ T ()F(a)d(r — ry), (10)

=1
where F'(g2) is the electromagnetic form-factor of a free proton parametrized in the same

way as in [30]. For brevity we omit the form-factor F'(¢2) in the explicit expressions but it

was included in all numerical calculations.

C. Wave function of the target nucleus

The wave function |i) of the target nucleus '2C with total spin J and isospin 7 is taken

in the intermediate coupling scheme [13],
= Y afthl(1s) (AT Ies L) (11)
TR
Each component in (11) can be decomposed, with the help of the fractional parentage
coefficient (fpc) techniques [13], into components containing intrinsic wave functions of the

o - cluster and the residual nucleus, and a function of their relative motion. Particular



values of coefficients af}’]iTS obtained by the diagonalization of the nucleon-nucleon interaction

Hamiltonian were taken from [31]). The basis functions in Eq. (11} are
[(Ls)*(1p) A4 f]FT+VESIDL )y = |AN(f]LSIT M, Mr) =

= > (AN[f]LST|A N[ f1]L1S1Th; nA, AoNo[fol LoSoTo{L})
Nl: [fl]: Ll;Sla J11T1:A1 £1

NO, [fO]i LD: SU; JO? TU:j'r n

x (—1)MbotitSe, (2, 4+ 1)(25 + 1)(2L +1)(25 + 1)(2L + 1)(2Jp + 1)

L 5 J
ALy L
x L SO J Z: (TIMTl:TOMTolTMT)
SO .7 JO My ,Mr,
L 5§ J
X > (LoMy,, SoMso|JoMyo) (1 My, jmy| T M)

MLD)MS():MJosMAsmj:MJl
X (AMA, JDMJD]jmj) I’TLAMA) |A1N1[f1}L181T1J1 : MJI, MT1)

i
§ x | AgNo{fo)LoSoTp : My, Ms,, My,), (12)

where all quantities Jabeled by subscript 0 and 1 are related to the cluster A, and to the
residual nucleus A,, respectively; N; (i=0,1) is the number of oscillator quanta per nucleus;
N is the number of oscillator quanta for the target A; n = N — N; — Ny and A are quantum
numbers of the relative motion wave function (the number of oscillator quanta and orbital
angular momentum, correspondingly). In (12) we used the following angular momentum
coupling scheme: Ty + To = T; Lo + Sg = Jg, A +Jg = j, J1 +j = J. The intrinsic wave
functions of the o - cluster (A4g) and the residual nucleus (4;) depend on corresponding
Jacobi coordinates and the relative motion wave function |nAM,) depends on the relative

coordinate R = R21 — RA¢ . The coefficients
(ANUFILST} AN, [f1] L1 Ts; n, AoNo[fol LoSeTo{ £})

are the fpc for the separation of four particles from A nucleons of the target nucleus. The

fpc can be calculated in the translationally invariant shell model (TISM) {13]. The method
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of calculation of these coefficietits from the usual shell model fpc [13] is described in Refs.
[33,10,16], and the majority of these fpc were tabulated in [17). The remaining factors in

(12) are the standard 63-, 95- symbols and Clebsch - Gordan coefficients.

D. Matrix element of Coulomb interaction

The final state wave function for the nuclear system (the o - cluster plus the residual

nucleus) in the plane wave approximation (PWA) is
~ . A . A
|f> — A{eipl-Rc.:n.fAlezp’-Rc.?n. IAONU[fO]LOSOJDTO . MJOMTO)}’ (13)

where A is the antisymmetrization operator which can be removed from the matrix element
due to the antisymmetry of the initial nuclear wave function and symmetry of the electro-
magnetic interaction operator with respect to particle permutations. As a result, we obtain
tl;e combinatorial factor (A!/Ag!(A — A)!)}/2. The exponential factor exp(iPgna1 - Re.m.)
c%scribing the center-of-mass motion of the whole nuclear system has already been taken
iito account during the derivation of the differential cross section (the & - function of mo-
menta in Eq. (6)). F“ is the internal wave function of the residual nucleus which can be
written (31} in the intermediate coupling scheme as
Fh = > E:'LIJ]?PSA |AsNa, [fa,)LaySa,JaTa, : My, Mr, ). (14)
{IfalLa;.Sa;}
Then the matrix element for the Coulomb part of electromagnetic interaction becomes

prfa) = (AYANA=AD)? 5 afs S aph %

{[f] L S} {[fll?-[’lvsl} NOl[fo]1L0)SD=T0:J0|AsE1j|"

X (AN[fILST| A N1 [f1)L1 51 T1; nA, Ao No|fo)lLoSoTo{L})(—1)A+Eeti+50

ALy L
x /(201 + 1)(25 + 1)(2L + 1)(2S + 1) (2L + 1}(2Jo + 1)
So j Jo
Ll S] Jl
X L SO _7 Z (TIMT“TOMTolTMT) Z
Mt M, My, Mg Mp M;
L S5 J
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X (AMp, JoM ol M) (J; My, 1 M;|J M)

% (eiR.Pl Ie—(2i/3)R-q!nAMA)P?i(CI)' )

The quantum numbers of the residual nucleus A;: Ny, [f1), Ly, i, Ji, Ty, My, My, are
fixed by the experimental conditions which select definite final states. The appearance of
the additional factor exp [—(2:/3)R - q] in the matrix element for the relative motion part of
the wave function is due to the transformation from the center-of-mass of the whole nuclear
system to the two-center system of the a-cluster plus the residual nucleus. In Eq. (15)
7:(q) is the matrix element of the Coulomb interaction of the electron with the nucleons of
the knocked out a-cluster.

The experiment detects a free a-particle with the ground state quantum numbers |og) =
| Ao No[ fo] Lo SoJoTy : My, Mr,) = |40[4]0000 : 00), and the corresponding matrix element can
be easily calculated. Using again the fractional parentage technique and separating a single
n?cleon from the wave functions of the a-cluster, we obtain

]
!

H p%i(a) = (oo [ €97 5(r)dr|4Ng[fo]LoSoJoTo : MjyMr,)

=4 Y (000]e” /D% Ny Lo My ) (LoMiy, SoMs,| JoMj,)
My, Ms,

X (40[4]000|30[3]0S5Ts, 00)(4No| fo] LoSoT5]30[3]0S5T3, NoLo)
S3,1s

1 1 1 e 1
x > (TaMTasgmtlToMTo)(TsMTa,§m2|00)(§m§|§(1+Ts(4))|§mz), (16)

MTaamt )m;
since the Coulomb interaction is diagonal with respect to spin variables. The particular
values (4Ny|fo]LoSp0|30[3]0S55T3, NoLe) of the one particle fpc in TISM are tabulated in [32].
The orbital matrix element for the separated nucleon is calculated by means of decomposition

of the exponential function in a spherical harmonic series. After some algebra, one obtains

; _ . /3
(000]e 9| No Lo My, ) = Vadmi—*Y,u, (q) [o Lo (qu) B0 (x) P, (x)x* dx. (17)

Here ®p,1,{(x) is the radial part of the separated nucleon wave function which was taken as
that of the harmonic oscillator. For brevity we introduce below the notation Iy,;,(q) for

the integral in (17). The actual argument in the oscillator functions ®y,1, is z/xo, where x,
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is the oscillator radius of the separated nucleon with the corresponding Jacobi coordinate
z. In all calculations the value zo=1.3 fm had been used [34] determined from the elastic
electron scattering data for the *He nucleus.

The isospin part of the matrix element (16) is defined by the particular isospin value of
the residual nucleus (T +Tp = 0) and in the case of the isospin-diagonal transition 2C(T =
0) —®Be(T = 0) is equal to unity. For a diagonal transition, the intrinsic wave function
of the cluster retains its spatial symmetry in the process of electromagnetic interaction
which is equivalent to the conservation of the Young tableaux [fo] = [4]. We have here a
nearly complete formal analogy with the case of nucleon - o low energy scattering, the case
considered in Ref. [17]. The structure of the matrix element is the same except for minor

details. Finally, the transition charge density to be used in Eq. (15) can be written as

97(a) = 2ev/Er (4Nl fo)Lo00J30(3103 ., NoLo) (40[4]000}30[3]0; . 00)

{ X Yoty () oo (4)- . (18)
’3he relative motion part of the matrix element is calculated similarly to (17)
(eRPLe~@ERARARAMY = 4mi™ Yap, (5, ) e (P), (19)

where the integral J,a(P1) = [7° ja(PiR)®,a(R)R?dR gives the effective momentum dis-

tribution of the residual nucleus or, equivalently, of the knocked out o - cluster inside the

target nucleus. In the absence of the dynamical rebuilding of the cluster, Jyo(P,,) would be

the usual momentum distribution which is determined in the traditional (e,e'a) experiments.
Taking into account (19) we can rewrite the matrix element (15) in the form

1/2

A
AJT Az, i T
pri(q) = 2e(4m)3? > s 2 8 niLs: >,
AO {[f],L,S} {[fI]!LlrSI} No,[fu],Lu,So,To,JQ,A,,C,J',N

X (AN[f]LST'A]N] [fl]LlSlTl; nA, AQNU[fo]LoS()T(){C})(—1)A+L°+j+su

ALy L
S 7 Jo

x /(21 + 1)(25 + 1)(2L +1)(25 + 1)(2€ + 1)(2Jp + 1)
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L, 5 h

Xe L Sy j <4N0[f0]L000|30[3]0 NULD)(40[4]00N30[3]0‘“ 00)

22’
L s J
X 2'_A—LDJT'?»’\(}F:’l)INDLG(q) Z (AMAs JOMJoleJ')(JlMJx:ijl‘IMJ’)
My, Ma,M;
X Yanma (S0P ) Yion,, (2g)- (20)

This is the general expression for the matrix element of quasielastic knock-out of the a -
particle from any p-shell nucleus with isospin T' = 0 provided that the residual nucleus has
zero isospin (17 = 0) too. A further simplification is possible for particular values of the
total angular momentum of the target nucleus J. In the case of the reaction >C(e,e’a)®Be,

J1=0, and, using the specific values of 65~ and 95— symbols [35], we obtain

1/2
12 1
pri(q) = 2e(dr)*? > a[l,? DD a?ff]fw )Y, ——
4 {LALL) {tAa)L1,L} No.LoA 4/ (2J1 + 1)
§ x (—1)ltlg=A~Lo(19 8 FILLOI8 4[f1] L1 LO; 4 ~ NoA, 4N,[4]Lo00{ 1 })
i 11 11
x (4N, [4]L000|30[3]0—2—§, NOLO)(40[4]000[30[3]0§§, 00) Jna (P}
X INDLD(Q) Z (AMAy LOMLolJl - MJ1)YAMA (QPI)YLOMLO (Qq) (21)

My,,Ma

The differential cross section (9) involves the absolute value of the matrix element squared

and summed over the angular momentum projections of the residual nucleus,

1/2
12
* 12 ,00 12 00
2 prl@)pala) = 16me? > > > > iy
MJI 4 {[f]’L’L} {[f']=L’7L’} {[fllabl:L} {[fi]sL;’L }
8,.J10 8,0 L1+ L4 Lo+ L+ L'+ LL+ 0y . ~A~Log+ A+ L)
x G'[f]]leLa’[fl]lL' v Z (_1) + L4 Lo+ Ly +L'+ L+ 14 0 +1Lg

No,NJ.Lo,Ljy,A A
x (128[f]LLO|8 4[f1]L1L0; 4 — NoA, 4N[4]Lo00{J, })

x (128[f|L'L'0|8 4] f{]L' L'0;4 ~ N)A' AN}[4]L} 00{J1})

(4N0[4]L000|30[3]0 NOLO)(4N’[4]L’ 00|30[3]0 Nng)

x (40[4]000|30[3]0§§,00) V@A + 1)(2A + 1)(2Lo + 1)(2L} + 1)

L0+L6

X Jon(Pi)ua (PO Inoro{@) Iwvizg (@) Y- (A0, A'0JI0)

t=|Lo—L|
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Ly A J,
N Lyl

x (L0, Lg0]10) P(cos(q, Py)). (22)

Changing the particular values of the fpc for the separation of four particles from the target
nucleus, we can adjust this expression for the description of any reaction (Ja=0,Ts =
0) = (Ja, =0, T4, = 0), for example '50(e,e'a)12C.

In contrast to traditional approaches, Eq. (22) exactly accounts for all cluster transition
amplitudes allowed by conservation laws and selection rules. The diagonal amplitude with
respect to the intrinsic state of the cluster and the amplitudes describing the rebuilding
of the orbital part of its wave function appear on equal footing. Thus, for the transition
into the ground state J™ = 0% of the residual nucleus ®Be, the diagonal amplitude is the
one with the quantum numbers Ny = 0, Ly = 0, n = 4 and A = 0, and the nondiagonal
amplitudes are those with the following sets of quantum numbers: 2,0,2,0; 2,2,2,2; 3,1,1,1
a_gd 4,0,0,0. In the transition into the first excited state J™ = 2% of 8Be (the excitation
e; ergy E; ~ 2.9 MeV), the diagonal amplitude has quantum numbers 0,0,2,2, whereas there
dre six nondiagonal amplitudes: 2,0,2,2; 2,2,2,0; 2,2,2,2; 3,1,1,1; 3,3,1,1, and 4,2,0,0. The
second excited state J™ = 4t (E, ~ 11.4 MeV) is characterized by the diagonal amplitude
4,4,0,0 and nondiagonal ones 3,3,1,1; 2,2,2,2 and 0,0,4,4. All amplitudes, diagonal and
nondiagonal, are calculated with their specific wave functions of the knocked out « - cluster
and the residual ®Be nucleus in the target nucleus *C and different sets of quantum numbers
n and A. The existence of a large amount of interfering amplitudes puts limitations on
the possibility of extraction of the momentum distribution of the residual nucleus in such

experiments.

III. FINAL STATE INTERACTION EFFECTS

Here we discuss modifications of the basic formalism caused by the distortion in the
exit reaction channel. The simplest way of including the final state interaction between the

knocked out cluster and the residual nucleus is the standard DWIA approach. The wave
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function of the nuclear system {a plus ®Be) in the final state is
|f) = A{e ot Bem £45 ) (p o), R)|AgNg[fo]LoSodoTo : My, My, )} (23)

Here x(')(prel, R) is the wave function of the relative motion of the « - cluster and the resid-
ual nucleus with asymptotics of an outgoing spherical wave; p.; = (4y/A)P1 — (A1/A)p’
is the momentum associated with the corresponding coordinate R. After same algebra we
obtain the matrix element for the Coulomb part of electromagnetic interaction which is
similar to that for the PWIA case (15) but the relative motion part in the last line of Eq.
(15) is replaced by -

(X prer, R)le”*/IRenAM,). (24)

The calculation can be performed with the help of the partial wave expansion of the

relative motion function

oo Iy
X(_)(prela R} =4n Z Z illex (Prei, R)Y11M11 (QR)Y;;MH (qul)’ (25)

1;=0 M]l =k

RRSS. SRR

and of the exponent

. o0 Iy . ' 9 .
e_(21/3)Rq o= 411' Z E ("""Z)b‘?[? (qu) leIz (QR).Y}QMIQ (Qq)- (26)
{00 My, =—l3
After the integration over the angular arguments, we obtain

(X(_)(prel:R)le_(Zils)R'qlnAMA) = (471—)3/2 Z Z (_,c')h-f-lz(_l)hHg—A

i 7l2 =0 Mf] }MIQ

2 + 1)(2 + 1
X\/ (2h > A)qu )(210,IZQ]AO)(llM,I,lth[AMA)
X Jlllzn/\(preh Q)YLM,I (Qprd)}/EQM;z (Qq)) (27)
where
O (ha A
Ttz @rets© = [ X" (Brety )i (S-aR)®un (R) B2 dR. (28)

Then, after summation over My, M;, and My, [35], the matrix element of Coulomb interac-

tion becomes, similar to (15),
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pri(a) = 6VBbe(4n)*® 37 eyl N el 3 (-nbEHAis
{[f]’L1L} {[fl]?Ll}L} NO‘DLOJA

2L+ 1

21 +1

x (ANG4ILo00J30(3103 5, NoLo) (40141000[30(3105 7 00 Iz, ()

(12 8[fJLLOI8 4[f1] L1 L0; 4 — NoA, 4No[4]Lo00{J1 })

oo Lotz
X > (2l + 1)/2l + 1(140, 120|A0) Ty, t3na (Pret, 9) S (Lo0,1,0}050)
U da=0 {4={Lp—13|
J ALy
X Z (_1)—'MJl (J4Ml47 llMlll - MJl)
lo 1y L | MMy,
x ¥y My, (QPNJ)YI:&MJ., (Qq) (29)

Going over to the ¥, 5, Pri(@)pa(q) as in the case of PWIA approximation and implementing

all needed transformations, we obtain ultimately the DWIA analog of PWIA formula (22)

Y onl@pp@=702m Y Y Y Y o202,

MJI {[fLL’L} {[f'},L’,L"} {[flLLlaL]' {[fi]:L'pL’}
; o 8,J1 CRL AT - :
§ X a?ﬁ]ll?lLa’[f{]I?’lL’ Z (_1)L1+L+A+L1+L +A +le Lo+Ly
; No,Nj,Lo,Lj,A A
fi x (128[f|LLOI8 4] f1]L, L0; 4 — NoA, 4No[4]Lo00{J; })

x (128[f|L'L'0|8 4[f])L, L'0; 4 — NJA', AN} [4]L400{J;})

y (4N0[4]L000|30[3]0%%, NoLo) (4N, [4]L300|30[3]0%%, A

11
X (40[4]000[30[3]0 5, 00)* oz, (9) Iy s (4)/ (2Lo + 1)(2Lb + 1)
je9) oo

x Yo 3 dverhehion 4o 1)(20, 4+ 1) (20 + 120 + 1)
hda=0 £,1,=0
x (‘!10: JZOIAO)(I;O, I’ZOIA’O)JllbnA (preh Q) J;’;I’zn’/\’ (preta Q)
Lo+iy Lo+

x 3 Do (LoD, LOJLa0) (L0, 150150)/ (2Ls + 1)(204 + 1)

l1=|Lo—12| by=|L'0—1]

JUALy | | 2L ALy | itk

x 42 (10,40]10)
lg l4 Iy l’z l; lfl TI=|11—£’1|
. ol J
x (L0, 0[50 (—1) 4 ¢ T A e (cos(arBrar))- (30)
. A

An essential weak “technological” point of the approach is the necessity to sum up over a
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large number of partial waves (formally we have to sum from zero up to infinity over Iy, Iy, I,
I; in the final DWIA formula). Although each individual partial wave expansion converges
rather rapidly, especially in the quasielastic peak region, we have four coupled summations in
eq. (30). Another difficulty is due to the need for an optical potential for the system a—8Be
in the wide energy range (from zero up to few hundred MeV). At present we limit ourselves
with a preliminary study of the influence of the distortion on the differential cross section,
using a schematic optical potential for a—®Be taken from Ref. [4]. The questions of stability
of the cross sections under variations of the parameters and their possible energy dependence
are not discussed in this work. We intend to consider these problems more carefully for the

reaction *O(e,e’a)'®C where the final state optical potentials are well defined.

IV. RESULTS AND DISCUSSION

i The differential cross section is experimentally obtained as a function of the scattered
egectron energy E! (energy sharing experiment). Along with that, we also calculated the
z;ngular distributions for fixed energy (and momentum transfer) because this might be more
informative from the viewpoint of possible signatures of the nondiagonal transition ampli-
tudes.

In our calculations of the overlap integrals, J,o(P), Eq. (19), in the PWIA, and later
the similar integrals, Ji,;na(Prer,q) Eq. (28), in the DWIA, we used for the bound @,
and scattering states of the a—®Be system the corresponding wave functions in the Woods
- Saxon potential [4] with the parameters: real part V=-—88.9 MeV, R=1.98 fm, a=0.81
fm; imaginary part W=—4.9 MeV, R=6.02 fm, a=0.58 fm; and the Coulomb potential as
the field of a uniformly charged sphere with the radius Rggy=2.4 fm. The real part of the

potential has the following spectrum of the lowest states

n 0 1 2 2 3 3 4

A 0 1 0 2 1 3 0

E (MeV)|-55.60{-41.95|-29.03|-28.60|-16.92 -15.77|-7.363
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so that the state ®4(R) is associated with the bound state a—®Be as a ground state of the
2C nucleus. The dependence of the overlap integrals J,A(P;) and J1y13na (Pret, q) O scattered
electron energy E, determines the behavior of the differential cross section of the reaction.

We start the discussion of the differential cross sections of the 2C(e,e’a)®Be reaction with
the simplest PWIA approach. For a crude estimate of the relative contribution of different
transition amplitudes (diagonal and nondiagonal with respect to the internal structure of
the knocked out a - particle), we calculated the reaction cross section according to (22) for
each amplitude separately. The results are presented in Fig. 4 for the transition into the
ground state 07 of the residual nucleus ®Be. Although the diagonal amplitude in general
dominates, in certain regions a number of nondiagonal amplitudes are either comparable to
or even greater than the diagonal one. This occurs, in particular, in the diffraction minima
of the diagonal amplitude. One should keep in mind that this result does not take into
account a possible interference of the amplitudes and therefore provides merely a qualitative
ilgustration of different contributions.
i The PWIA differential cross section for the ground state 0% of ®Be is presented in Fig. 5
(two lower curves). The solid line corresponds to the full crosslsection where all allowed
transition amplitudes (22) are accounted for while the dashed line shows the contribution
of the diagonal amplitude only. The maximum difference between the two cross sections
is localized in the region of the quasielastic peak and reaches approximately 20-25%. The
interference of the transition amplitudes is destructive and effectively reduces the cross
section.

In the case of the transition into the first excited state 2% of ®Be the pattern is different.
As seen from Fig. 6 (two lower curves), here the interference of amplitudes is constructive
and enhances the cross section by approximately 15-20% near the quasielastic peak. The
peak shifts to lower energies by the excitation energy F,=2.9 MeV. An even more noticeable
effect exceeding 60% is seen for the transition into the second excited state 4+ of 3Be, see
Fig. 7 (two lower curves) ; again the interference is constructive.

Figs. 5-7 show the cross sections for different final states of the residual nucleus calculated
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in the DWIA (two upper curves in each figure). The DWIA curves are plotted together
with their PWIA analogs. For this reason the scale of the DWIA data was changed (the
magnification coefficients are indicated near the corresponding curves). As we mentioned,
these results are more of qualitative character but they give an idea about the influence
of distortion in the exit channel. The manifestations of the restructuring of the internal
structure of the knocked out cluster are generally suppressed by the distortion, at least at
relatively low electron energy used in the present work.

It is instructive to observe the changes in the angular distributions for the transitions
into various states of the residual nucleus when one moves over the region of the quasielastic
peak. These results obtained in the PWIA are presented in Figs. 8-10 for different energies
of the scattered electron. The angular distributions of the knocked out o - particles are
shown with respect to the direction of the electron beam and, therefore, are asymmetric
with respect to 90°. The recalculation to the direction of the momentum transfer leads
tg the shift of the angular distribution through a constant angle between the momentum
téansfer and the electron beam and restores the symmetry. The remarkable feature of the
results is the sharp sensitivity of the angular distributions near the quasielastic peak to the
missing momenfum P; = p’—gq. The whole pattern is very different for different states of the
residual nucleus. Form this viewpoint, the presentation in terms of the angular distributions
is more revealing than the traditional depicting as a function of the missing momentum.
Angular distribution experiments seem to be the most promising for the aim of observing

the signatures of nondiagonal processes.

V. CONCLUSION

We have formulated a general microscopic formalism for the description of the quasielastic
knock-out of o - clusters by ultrarelativistic electrons from p - shell nuclei. Qur major
interest was focused on the influence of nuclear structure on the experimentally observed

differential cross sections and angular distributions. We have derived all necessary formulas,
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including those accounting for the final state interaction between the knocked out cluster

and the residual nucleus. Our numerical calculations of the particular 12C(e,e')®Be reaction

were carried out mainly in the simplest PWIA approximation. The DWIA results bear

only qualitative character. The reasons for this are (i) the desire to avoid overloading

the formalism by technically complicated details which are of minor importance from the

viewpoint of nuclear structure; (ii) the absence of well defined optical potentials for the o

- ®Be system. Nevertheless, even at this stage the calculated cross sections and angular

distributions allow us to make a number of conclusions.

B e i

1. Our consideration shows the importance of the contributions of processes with virtually

excited clusters and their subsequent restructuring in the exit channel. We call those
contributions “nondiagonal” with respect to the internal state of the knocked out a-
cluster. The importance of the virtual processes of this kind was stressed earlier in

our study of similar proton-induced knock-out reactions [17].

. The most appreciably the nondiagonal effects become visible in the vicinity of the

quasielastic peak, in particular for the transitions into the excited states of the resid-
ual nucleus. For the transitions into 2+ and 4* states of ®Be we have obtained a clear
enhancement of the nuclear restructuring effects. The considerable difference of the
internal wave functions of the groﬁnd state and excited states of the residual nucleus is
favorable for the manifestation of the virtually excited cluster components. The differ-
ent angular momentum coupling schemes in the shell-model wave functions of excited
states leads to the constructive interference of various paths of the cluster formation.
A fairly poor theoretical description of the '*C(p,p'a)®Be(J™ = 2+) experimental data
in [4] (a hadron analog of our reaction) can, at least partly, be explained by neglecting

the nondiagonal effects.

. The effects due to the final state interaction are in general comparable to the effects

caused by the nuclear restructuring. In future comprehensive theory, the distortions

in the exit channel are to be fully taken into account, along with all interference
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effects. The main problem in this direction is related to the absence of a reliable
optical potential for the knocked out cluster interacting with the residual 8Be nucleus.
We hope to extend this work to the ®0(e,e’a)'?C reaction for which there exist well

established optical potentials.

. In the energy sharing experiments, the observational signatures of the nondiagonal
transitions in the cross sections are relatively weak. The influence of virtually excited
clusters is quantitative rather than qualitative, at least in the considered electron

energy range. This influence is further washed away by the distortion effects.

. Available experimental data (in plane kinematics) apparently do not allow one to point
out clearly the signatures of nuclear restructuring phenomena because of the nonopti-
mal choice of kinematic conditions. It might be possible to demonstrate nondiagonal
effects more clearly by changing the kinematic scheme of the reaction, namely by pass-
ing from the plane kinematics to the out-of-plane measurements. Different interfering
contributions reveal themselves differently with the arrival of new degrees of freedom.
However, since the observables here are determined mainly by the interference be-
tween transverse current and Coulomb (plus longitudinal current) components, the
effective cross sections and form-factors have considerably lower values. This gives
rise to a number of practical dufficulties which increase the demands to the experi-
mental setup. At present, neither theoretical calculations nor experimental data for
out-of-plane measurements are available. The formalism presented above can be easily
modified in this direction which seems to be a desirable prerequisite for planning the

out-of-plane measurements.

. Angular distribution experiments near the quasielastic peak, especially with polar-
ization observables, seem to be rather promising for disentangling the nondiagonal
processes because of the strong sensitivity of the results to the final state of the resid-

ual nucleus. The recent technological advances (high duty-factor electron beams and
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significant progress in developing polarized targets) give a remarkable opportunity
to study polarized electron/target coincidence reactions [19]. Even in the framework
of the traditional approaches (without the cluster rebuilding effects), by varying the
direction of the target polarization it is possible to decompose each of the response
functions into a number of terms involving specific interferences between the multipole
matrix elements [36-38]. The use of a polarized electron beam adds more information
due to the presence of two extra response functions [36]. The situation looks even more
promising when we take into account the restructuring effects due to strong interfer-
ence between different internal states of the knocked out cluster. The extension of the
outlined formalism for the description of polarization phenomena is straightforward
and will be the object of following investigations. Our first estimates already reveal

the perspectives of such an approach.

7. The comparison, at similar conditions, of the reaction 12C(e,e’'a)®Be with its hadron

analog "?C(p,p’a)®Be studied earlier [15-17] indicates that, because of the multiple-

e g R A

step character of the interaction of the projectile with the nucleons of the knocked-out
cluster in the proton-induced reaction, the momentum distribution of the residual
nucleus strongly depends on the orientation angle of its recoil momentum with respect
to the initial beam and the proton scattering plane. Such anisotropy is impossible
in the case of the single-step interaction, the case of the (e,e'e) scattering, at least
in the plane kinematics. Of course, the theoretical calculation for the proton-induced

processes is less reliable.
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Figure captions

Figure 1. (a) The kinematic scheme of the reaction 2C(e,e’@)®Be. (b) The Feynman
diagram of the reaction 2C(e,e’a)®Be. For the notations see Sec. 2.

Figure 2. Kinematic observables for the reaction 2C(e,e’a)®Be at energy of the initial
electron beam E,=637 MeV, the electron scattering angle 6, = 26.06° and o - particles
registered at 71.08°; solid lines for the transition into the ground state J*=0t of 8Be,
dashed curves for the transition to the first excited state J™=2* (E,=2.9 MeV), and dash
- dotted curves for the second excited state J*=4* (E,=11.4 MeV). (a) Kinetic energy of
knocked out o - particles; (b) energy of relative motion of the knocked out « - particle and
the residual nucleus; (c) the angle between the momentum of the residual nucleus P, and
the momentum transfer g; (d) the angle between p,; and q.

Figure 3. The momentum of the residual ®Be nucleus. The notations are the same as
in Fig. 2. The minima of the curves correspond to the quasielastic peak.

Figure 4. Relative contributions of different transition amplitudes, diagonal and nondi-
agonal with respect to the internal structure of the knocked out a-particle, to the calculated
reaction cross section for the transition into the ground state 0% of the residual nucleus ®Be.
Contributions of individual amplitudes are shown separately (no interference). The solid
line corresponds to the diagonal transition, Ny=0, Ly=0; long-dashed line: Ny=2, Lo=0;
short-dashed line: Ny=3, Ly=1; dashed-dotted line: Ny=2, Ly=2; and dotted line: Ny=4,
Lo=0.

Figure 5. The differential cross section for the ground state 0" of Be calculated in
PWIA (two lower curves) and DWIA (two upper curves). The DWIA data are multiplied by
10% times. The solid curves correspond to the full cross section where all allowed transition
amplitudes, eq. (22), are accounted for; the dashed curves show the contribution of the
diagonal amplitude alone. |

Figure 6. The same as Fig. 5 but for the transition into the first excited 2+ state of

Be. The scaling coefficient is equal to 10.
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Figure 7. The same as Fig. 5 but for the transition into the second excited 4% state of
¥Be.The scaling coefficient is equal to 10.

Figure 8. The a - particle angular distributions for the transition into the ground state
of *Be. The scattered electron energy is 600 MeV (a) and 610 MeV (b). The notations are
the same as in Fig. 5.

Figure 9 The same as Fig. 8 but for the transition into the first excited 2 state of 8Be.

Figure 10. The same as Fig. 8(a) but for the transition into the second excited 4* state

of ®Be and the scattered electron energy 580 MeV (a) and 590 MeV (b).
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