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Abstract

A method to treat a N-component percolation model as effective one compo-
nent model is presented by introducing a scaled control variable p4. In Monte
Carlo simulations on 163, 322, 643 and 1283 simple cubic lattices the percola-
tion threshold in terms of py is determined for N = 2. Phase transitions are
reported in two limits for the bond existence probabilities p— and px. In the
same limits, empirical formulas for the percolation threshold p& as function
of one component-concentration, f;, are proposed. In the limit p- = 0 a new

site percolation threshold, ff = 0.145, is reported.
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The percolation model goes back to Flory [1] who introduced it in the context of polymer
gelation. Since then it has been used in a wide range of approaches and techniques [2-9].
In standard percolation models either bond or site percolation is dealt with [10,11]. Site-
bond percolation [12,13] combines the two formulations, dealing with randomly occupied
sites (vertices) and randomly existing bonds (open edges) connecting these sites. However
in this version of the model only one active component exists, the other sites are considered
unoccupied. A further generalization is to consider several components, which was done
for site percolation as well as bond percolation by Zallen [14] and called polychromatic
percolation. Zallen focused on the coexistence of percolating species in highly connected
lattices, giving a criterion for the occurrence of a panchromatic regime where all species
percolate. Site-bond percolation using two components was investigated previously by one
of us [15] and applied to the question of the nuclear liquid gas phase transition. Site-
bond percolation with several species was considered in [16] and an approximate percolation
criterion was given.

In this Letter, we investigate a two component site-bond percolation model on a simple
cubic lattice, focusing on two specific limits which exhibit novel behavior. Let us begin by
describing the approach we have taken, in the general case of N different component flavors.
No agssumption concerning topological dimensions or lattice structure is made. We have N
component concentrations f; with Eg";l fi = 1 and different bond probabilities to connect all
possible combinations of sites, resulting in Ay, = (N —-1)+ (N "'22‘1) free parameters a;. The
bonds have been assumed to be directionless, meaning that their probabilities only depend
on the species of the sites they are connecting. We now want to know in which region of this
Apqr-dimensional parameter space an infinite network Cy, of connected bonds occurs, that
is, where the probability for a given site to belong to the infinite network, p,({a;}), is non-
zero. The particular type of a bond shall be irrelevant in order for it to belong to the infinite
network. For a system with N > 3 components, however, this approach is quite impractical.
It would be preferable to be able to reduce the dependence of the order parameter, p, to

one variable at fixed particle concentrations. We propose one such variable in following the
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definitions of [15], generalizing them to N components. In analogy to the bond existence
probability used in ordinary one component bond percolation models, which gives the bond
density in the system under observation, we introduce the scaled control parameter Pyt
N
pr= Y, Qipij. (1)
i>j=1

Here, the p;;’s denote the probability for a bond to exist between two sites occupied by
species 7 and j and oy; = a; is the probability that any given nearest neighbor edge is one

that connects two sites of flavors ¢ and j:

a;; = 2fif;, (2)

with the constraint that 7. a;; = 1.

For our simulation we consider a two component system on 163, 323, 64% and 128? simple
cubic lattices. For simplicity we shall call one species blue, the other red. We now have
four free parameters to vary: The fraction of one of the components, say of the blue sites,
fo and three bond activation probabilities: py, for bonds connecting two blue sites, p,, for
bonds connecting two red sites and py for b-r-bonds. However we shall set p— = py, = Dyr,
introducing a symmetry in the system. This is motivated by considerations of, for example,
isospin symmetry, where the e*e™ and e~e~ interactions are identical. Eqs. (1) and (2) now

read

P+ = Gz Pz + 0= P, (3)

with o= = (1 — ay), and

ax = 2fp(1 ~ fo), (4)

respectively, where we have replaced the double indices by a more intuitive notation for only
two components. Again the question is in which region of the three dimensional P=—"Ps—fp
space an infinite network of bonds appears in the lattice. We defer the question of the

concentration dependence to later and for the moment set f, to some fixed value, which
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shall, for now, be f; = 0.5. In the simulation the lattice is populated at random, without
correlations, according to f, and bonds are formed for varied values of p_,p. € {0, 1] using
a Monte Carlo algorithm. The resulting cluster structure is analyzed using a cluster-find-
algorithm described in [3] and pe(p=, p,) is recorded. As always, a cluster is defined as a set
of vertices connected by open edges. In Fig. 1 we show p., as a function of the two control
parameters, p.. and py, at a concentration of f, = 0.5. We can see that p,, changes from 0
(front corner) to 1 (back corner), with a critical line of a second order phase transition in
the (p~, p«)-plane. We now follow our previous consideration and analyze the same data in
terms of the scaled control parameter p., the result of which is displayed in Fig. 2. Two
distinct branches are seen, both in the shape of a second order phase transition. Figure
2 first suggests that p, is a good control parameter, as we only have these two universal
scaled curves, but furthermore that another transition seems to take place in the system.
Analysis of the data shows that the *upper’ branch constitutes of points with both p— and P
non-zero, whereas all points with (p= = 0,px # 0) and (p= # 0,px = 0) fall on the ’lower’
branch. For other values of f, the same behavior is found, but then the two curves for the
zero-limits in p— or p, are not the same. Also shown in Fig. 2 are the expectations from one
component bond percolation theory, po, o (py —p%)?, (smooth lines). For the finite (p=, D)
regime the critical value p} has the same numerical value as the bond existence probability
in one component bond percolation (aside from a small difference due to finite size effects),
p5 = 0.251 £ 0.002. As long as both bond-types are active, the system under observation
here and the one component model show an identical phase transition behavior, which is
consistent with the findings presented in [15]. In the zero-limits of p— or Dy, however, p§
is shifted to pS = 0.280 £ 0.002. The critical exponent § = 0.41 from one component
bond percolation theory is the same in both cases presented here, as shown in the double
logarithmic plot in the inset of Fig. 2.

What causes the change of pS in the limits p— — 0 and px — 0?7 We restrict ourselves to a
discussion of px — 0, as the same line of arguments applies in the other limit. For simplicity

we first choose p— = 1. Then setting px = 0 corresponds to a lattice in which all available
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bb- and rr-edges are open, but all br-edges are closed. There will be an infinite network
present, as usual identified with the biggest percolating cluster (with two components each
above the site percolation threshold being present we could have two percolating clusters),

with p., given by
oo—1
Peo(p2=0)=fo— > nbs, (5)
s=1

where n® is the number of b-clusters of size s and the upper limit in the sum is meant
to indicate that the infinite cluster is excluded. Letting p£=¢€¢=1 /Ngdges introduces on
average one br-bond in the lattice. This bond might, with some small probability, which is
related to the number of perimeter edges of all finite clusters, connect two finite clusters.
With a noticeably higher probability however, it will open an edge that connects the infinite
cluster to the biggest r-cluster, C7, ., with |C7 .| =~ |Cw|. The infinite cluster can now

consist of both b and r-sites and p., reads

oo—1
poo(P;é = 6) =1~ ny 8, (6)
s=1
which, by rewriting f; in Eq. 5 as fy =1 — 3.7% n] s, leads to a difference in p,:

800(€) = Poo(P2 = €) — Poo(pz = 0)

co—1 maz co—1

=(ans+2ngs)—2n33, (7)

s=1 s=1 s=1

with the property that lim,_,g d..(€) # 0 for all events where C,, and C”,__ are connected.
Averaging over all events will yield some effective §%F with 0 < 6% < 6. This leads to the
conclusion that in the limit p» — 0 a first order phase transition takes place in p,,. The
simulation results support this conjecture. Figure 3 shows these results, where the average
was taken over events in which the number of br-bonds actually formed in the simulation,
Ter, Was non-zero. For values of p— other than 1 one still finds the same behavior, somewhat
less pronounced due to smaller |Cy| and |C7,,.|. The same holds for f; # 0.5 where it is

clear that the effect vanishes continuously in the limit of a one component bond percolation

system: f, — 0 or f — 1. Obviously the question arises what the behavior of P is.
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We found that for p» — 0 the percolation threshold p5 continually changes to a new,
concentration dependent value. In Fig. 4(a) we show this transition, which is of second
order type. We also show a fit to the curve, which is of the form

¢ 1
S e

(8)
where the fit parameters were found to be u = 34.6 +£ 0.3, v = 1823 + 72 and ¢ = 0.2462 +
0.0003. It has to be noted that this formula only stands on empirical grounds, fits by
exponential functions may also be useful. As stated earlier, the same line of thought is
applicable to the p— — 0 limit and indeed do our simulations present the same results in
the system with f, = 0.5. For f, # 0.5 this direct symmetry is broken, but qualitatively
the results are still the same. Even for f, = 0.5 they differ however with respect to the
afore-mentioned dependence of pS on the concentration f; in the limits p— = 0 and pz =0.

For p (fs, pz = 0) we find the functional form depicted in Fig. 4(b). The results shown are

fits of p. to the scaling relation,

|pS.(L) — p| oc L7, (9)

as given in Ref. [10], where we kept v fixed at 0.88 and lattice sizes L = 16, L = 32, L = 64

and L = 128 were taken into account. The simulation data is fitted with

2,1
Pilnpe=0) = 202005 (10

This is Eq. (3) with the purely empirical assumption of a hyperbola for p¢(f;), which is
in agreement with the results of Heermann and Stauffer for a one component site-bond
model [13]. Fitting the parameters to our simulation data results in h = 4.007 + 0.002
and m = —4,428 £+ 0.005. A comparison with the formula given by Heermann and Stauffer
yields h = 1/p§on4(0) = 4.019 and m = (1 — pfona)/ (05 (FEse — 1)) = —4.386, where p§, , =
0.2488 and fJ;, = 0.3116 are the percolation thresholds for one component bond- and site-
percolation on a three dimensional simple cubic lattice, respectively. However, in contrast

to the one component model, due to the symmetry introduced in the system, notably that
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P= = Py = Prr, We only have f, € [0.0,0.5] as independent regime here, with the interval
fo € [0.5,1.0] being symmetric to the one shown here, with only the roles of blue and
red sites being switched. This is a manifestation of the two components behaving like
two superposed, non-interfering one component site-bond percolation systems and lets us
conclude that the phase transition in p% for px — 0 discussed above may be interpreted as
an effective transition from a one component bond percolation model to a one component
site-bond percolation model. For the case of the second limit discussed, p- — 0, the results
are shown in Fig. 5. In Fig. 5(a) we go back to the bond existence probability p.. Its critical

value, as a function of the concentration, p%(fy), is well reproduced with an exponential fit:

¢ =p%(fo) =a exp(—d fi) +c (11)

Fitting this empirical formula to the simulation data gives o = 2.1 £ 0.07, d = 10.9 + 0.2
and ¢ = 0.547 £ 0.002. We define ff = ¢~!(px=1) and numerically get f¢ ~ 0.14 from Eq.
(11), whereas in an independent simulation we find ff = 0.1449 + 0.0003, which again is a
result from a fit to the scaling relation Eq. (9). The parameter f¢ can be regarded as a new
threshold, which would correspond to the percolation threshold in a simple site percolation
model in which nearest neighbors only belong to the same cluster if they are of opposite
flavor, unlike the normal site percolation model which yields f¢,, = 0.3116. In Fig. 5(b) f¢
determines the critical point of the phase transition line p5{fs, p= = 0). Another argument
in favor of a qualitatively new behavior arises by considering the density of accessible edges
at the critical concentrations in the two models. For the one considered here it is given by
ax(ff), see Eq. (4), for the usual site percolation model we might define one in an analogous
manner: Qgise = (f54)%. By setting ax(ff) = 0, one would expect f¢ to be 0.051 which
stands in contradiction to our findings.

In concluding, we introduced a new way to treat N-component percolation. This ap-
proach was applied to a two component site-bond percolation model and new first order

phase transitions of p,, were reported in the limits p. — 0 and p_ — 0. In the latter case

we could furthermore establish a novel empirical formula for the percolation threshold as a
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function of component concentration, whereas in the first earlier findings of a one compo-
nent site-bond percolation model were found to apply in the two component model too. The
field for future work in this area seems vast, one might, for example, try to apply the same
method to muiti-component systems on lattices of higher dimensions and/or higher connec-
tivity. This approach should also find a broad range of possible applications. One might
think of special networks or gelation phenomena with several components involved, which
only interact with each other, as well as wetting phenomena. Furthermore an application to
stock-market simulations seems possible and is being undertaken by the authors.

This work was supported by the National Science Foundation under Grant No. PHY-
9605207. One of us (H.M.H.) is supported in part by the Studienstiftung des deutschen
Volkes.
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FIG. 1. Probability to belong to the infinite cluster, py, in a simple cubic two component

site-bond percolation lattice of size 1282 as a function of the two parameters, P= and p4, calculated

for a fraction of the blue species of f, = 0.5.
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FIG. 2. Probability to belong to the infinite cluster, p,,, as a function of the scaled control
parameter, p,, in a 128% simple cubic lattice with f, = 0.5, for values of p., px € [0,1), fitted
with pe o (p4 — p$)? (solid line). Here p% = 0.251 for the "upper’ branch, p§ =~ 0.280 for the

'lower’ branch and § = 0.41 in both cases. The inset shows the same data in a double logarithmic

representation.
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FIG. 3. Probability to belong to the infinite cluster, ., as a function of the scaled control

parameter p., in a 128% simple cubic lattice with fo = 0.5, at fixed p- = 1 for varied p;. 50
independent simulation events where taken into account and the average was taken over events in

which the number of br-bonds actually formed in the simulation, ng,, was non-zero.
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FIG. 4. Critical value of the scaled control parameter, p%, in a 1282 simple cubic lattice with

fo = 0.5, (a) plotted as a function of px, and (b) plotted as a function of the fraction of blue sites,
fb, in the limit p+ = 0 and obtained by a fit to the scaling law [p% (L) — p% | o L~Y¥_ The errors,

estimated as described in [5], are smaller than the symbol sizes in (b).
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