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Abstract

We discuss different aspects which could influence temperatures deduced from
experimental isotopic yields in the multifragmentation process. It is shown
that fluctuations due to the finite size of the system and. distortions due to
the decay of hot primary fragments conspire to blur the temperature deter-
mination in multifragmentation reactions. These facts suggest that caloric
curves obtained through isotope thermometers, which were taken 28 evidence

for a first-order phase transition in nuclear matter, should be investigated

very carefully.
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I. INTRODUCTION

Due to the short range attraction between nucleons, nuclear matter is a Fermi liquid (1]
at low temperature and is expected to undergo a phase transition to a nucleonic gas within a
mixed phase region bounded by a critical temperature of order 15 MeV [2,3]. Experimental
mnvestigations of this phase transition have focused on a variety of experimental observables
ranging from the mass, charge or multiplicity distributions for the emitted fragments [4,5]
to observables sensitive to the temperature of the system [6,7].

Temperature measurements, in particular, have been performed to search for evidence of
the enhanced heat capacity predicted by statistical model calculations reflecting the latent
'li\eat for transforming the Fermi liquid to the nucleonic vapor [6~8]. For example, the Statis-
técal Multifragmentation Model (SMM) [9] predicts a plateau of nearly constant temperature
of T = 5MeV for excitation energies of E* ~ 2 — 7TMeV corresponding to a mixed phase
equilibrium. This is followed at higher excitation energies by a linear rise in the temperature
with excitation energy as expected for a gas of small nuclei having negligible internal heat
capacity [9]. Similar effects are predicted by the Microcanonical Metropolis Monte Carlo
(MMMC) model [10].

This trend was qualitatively reproduced in some experiments [7], but not in others
[11-14]. An essential part of these measurements is the determination of the temperature
of the fragmenting system. Temperatures were extracted from the isotopic abundances of
helium and lithium fragments, using the isotope thermometry method proposed by Albergo
et al. [15]. The idea of the method is to determine the double ratios of the yields of four
suitably chosen isotopes, (Ay, Z1), (A1 + 1, 21), (A2, Z2), (A2 + 1, Z5),

Y(Ay, Z))/ YA+ 1, Z))
Y (A2, Z2)/Y (A2 + 1.2,)

= C exp(AB/Tis) (1.1)

where the Y are the yields of the different isotopes, C is a constant related to spin values and

kinematic factors, AB = B(Ai, Z1) —~ B(A1 +1,Z;) — B(Az, Z3) + B(Ay +1, Z3) is obtained



from the binding energies of the isotopes appearing in Eq. (1.1), and T,, stands for the
temperature deduced from this isotopic thgrmomet;er. In the case of the HegwlLi thermometer
| employed in ‘.'ref. [7], Ay = 6,7 =3, Ag..-_-.. 3,Z2m 2, "Fe,.r; the C-Li t %t}ﬁieter,: more
recently considered by Xi et al. [14], A; = 6,2y = 3,A; = 11,2, = 6. For the Carbon
thermometer studied in this work, A; = 12,7Z; = 6, A; = 11,7, = 6.

However, there are a few aspects which should be carefully analyzed when one wants to
compare information on the breakup configuration of an excited system formed in a heavy-
ion collision to multifragmentation models like the SMM approach. Some of these points
are addressed below. In sect. II we briefly discuss the assumptions underlying this method.
Variations in the temperature of the breakup stage, where the hot primary fragments de-
couple from the system, are intrinsic to finite systems and are explored within the SMM
approach in sect. III. An analytic description of temperature variations is developed in the
érand canonical limit in sect. IV; this description is consistent with the results from the
SMM. In addition, there are finite size effects, discussed in sect. V, that make the concept
of an overall chemical potential somewhat inaccurate. The influence of secondary decay is

discussed in sect. VI. Conclusions are drawn in sect. VIL

II. UNDERLYING ASSUMPTIONS

The basic physical hypotheses of the isotope thermometry method are:

1. an equilibrated source is formed after the most violent stages of the reaction and it

decays simultaneously and statistically,

2. for the experimental event selection employed in the analyses, all the events correspond

to fragments formed at the same temperature, and

3. distortions on the isotopic temperature due to secondary decay of hot primary frag-

ments may be neglected.



Although the Statistical Multifragmentation Model [9], used in the discussion below, is based
on the first assumption, the last two hypotheses are not supported by the model, as we shall
- discuss in detail. | | :

The SMM uses the Monte Carlo method and averages observables with the statistical
weight over decay partitions. A multifragment decay partition is defined in the SMM ap-
proach [9] as a specific set of emitted fragments and light particles. For simplicity, each
partition in the SMM approach is weighted according to the entropy of the partition. The
dominant contribution to this entropy comes from internal phase space of fragments which
plays the role of a heat bath just as an excited residue plays the role of a heat bath within
compound nuclear decay theory {16].

For a given decay partition and by making a Wigner Seitz approximation to the Coulomb
é&lergy, energy conservation within the SMM approach leads to the expression [9],

} 3 Z3e?

E33+E5=5‘ Ry

where E7 is the total excitation energy and EJ° is ground state energy of a nuclei having
0 gy o 158 gy

+ Z NazEsz (2.1)
{4.2}

a mass and atomic number equal to that of the total system, 4o and Z, respectively. The
first term on the right hand side stands for the Coulomb energy of a homogeneous charge
Zoe occupying the volume of the systemn of radius Ry and N4z indicates the number of
fragments of mass number A and atomic number Z in the partition of the system.

In the equation above, E4z is the kinetic plus internal energy for each of these fragments.
It is related to the temperature by assuming all fragments are at a common temperature as

follows,
3
Esz = ET -+ E;Z(T) + EEZ - Byz (22)

where the internal excitation energy of the fragments, E%z(T), may be approximated by
an extension of the semi-empirical mass formula to finite temperatures [9], and the extra
Coulomb energy of the fragment in the fragmentation volume, EY,, may be calculated

within the Wigner-Seitz approximation. Bz stands for the ground state binding energy for

the fragment.



By applying the energy conservation relationship in Eqs. (2.1-2.2) one obtains a temper-
ature T that describes the internal excitation and translational energies of fragments within
‘a given partiﬁon. Even though the overall system is assumed to be iri.equi;ié'ﬁfrium at a fixed
excitation energy Eg, different decay partitions have different Coulomb, binding, and trans-
lational energies and, consequently, different excitation energies of the emitted fragments.
Consistency with Egs. (2.1-2.2) therefore requires that the temperature T' of the fragments
varies from one decay partition to another, reflecting the differences between the Coulomb,
binding and translational energies of the various partitions.

Labeling the partition {N4z} with the index, f, the statistical weight associated with

the partition,

Wf = exp Z NAzsAz(T) (23)
{4,2}

may be found by expressing the entropy of the fragments, S4z, using approximations derived
from the liquid drop model at finite temperature [9]. Consequently the physical observables

can be expressed by a weighted average over decay partitions as,

(Oaz) = (2.4)

where 04z can be any interesting observables such as the yield of a fragment or the

temperature.
This allows one to predict the various results from the SMM that are addressed in the

next section with regard to the temperature variations.

III. PRIMARY TEMPERATURES

The SMM procedure expressed in Eqs.(2.1-2.4) leads to a distribution of the tempera-
tures of the fragmenting system for a given excitation energy in the same sense that the
temperature of the daughter nucleus in compound nuclear decay theory varies as a function

of the Coulomb barrier and separation energy of each decay channel. The points in Fig. (1)



denote the temperature distributions for the fragmentation of an excited '?Sn nucleus at
three different excitation energies obtained with the SMM. These distributigms are well fitted
by gaussian functions, shown by the curves in the figure, with variances‘ig*?{( that are fairly
independent of the energy, or ~ 0.4 MeV, in the range 3MeV < Ej/A < 10MeV. At each
excitation energy, we average over all of the partitions and define this average value as the
"microcanonical” temperature Tpzc.

Since each of the isotopes employed in the thermometer has a specific mass, charge
and binding energy, the application of conservation laws sets a constraint on the values
available to the remainder of the system. Because of this finite size effect, the temperature
distribution obtained when a specific isotope is present is slightly different from the one
czbta.ined when all partitions are considered. In particular, a small difference (< 0.1 MeV)
13 observed between the average temperatures for the various isotopes; this is illustrated in
%ig. (2) for carbon isotopes from the fragmentation of a *25n nucleus at E3/A = 6 MeV.
Even though the average temperatures are different reflecting the different binding energies
of the three isotopes, all these distributions are gaussians with nearly the same variances.
We can extract another température Trvmr by averaging over partitions which contain an
Intermediate Mass Fragment (IMF) with 3 < Z < 10. It’s interesting to note that Tas;c can
exceed Timr at low energies by as much as 0.2 MeV, in part because it takes more energy
to emit an IMF than to emit an equivalent mass in the form of alpha particles, leaving less
energy for thermal excitation.

The basic idea contained in Eq. (1.1) was derived under the assumption that the primary
yields are well represented by the grand canonical approximation at a single breakup tem-
perature; the double ratio was invoked to cancel out the contribution to the yields coming
from the neutron and proton chemical potentials. In the SMM, however, the temperature
varies from partition to partition and the chemical potentials, which appear within the grand
canonical formalism as Lagrange multipliers that conserve charge and mass, are not explic-
itly invoked. Thus, we can not presume the validity of the Albergo’s formula ( Eq. 1.1) in
the SMM and must test its validity instead.



We begin with a test of the validity of Eq: (1.1) when one employs the primary yields.

For a given decay partition {Naz}, we take into account the internal frep.energy F “’"‘(T)

- which i8 parameterized as:

Fiy = —B(A,Z) + F;z(T) + Fiz (3-1)

Fig(T) = FiZ(T) + F33(T) — T In(g%) (3:2)

where g}, is the ground state spin degeneracy, and FZ5, F5%, and FS, correspond to the
excitation energy dependent bulk, surface, and Coulomb contributions to the internal free
energy [17] after the binding energy part has been removed. The reader is referred to ref.
[18] for explicit expressions for the terms entering in the equation above. Then the primary
yield for the ground state can be related to the total yield by

: N3z = Naz - giz exp [F5(T)/T] (3.3)
for this partition. Following the procedure described in the previous section, we will use this
expression and Eq. (2. 4) to obtain the average g.s. yleld dlstrlbutlon (N9%). This, in turn,

can be used in Eq (1 1) to extract 1sotop1c tempera.tures as follows,

(NAI z1> / (NAI+1 21> AB
(Na2 zz) / (Ni2+1 72) = Cexp (Tamm)

180
In previous SMM calculations, experimental binding energies and spin degeneracy factors

(3.4)

g4z were used for light nuclei with A < 5. Liquid drop binding energies and spin degeneracy
factors of unity were used for A > 5. In this work, we will retain these conventions on spin
degeneracy factors so as to be consistent with prior calculations, but we will use empirical
binding energies for all nuclei.

In Fig. (3), the isotopic temperatures T;2»™ for the carbon thermometer (Z1=72=6,
Al=11, A2=12) are plotted as the stars for the multifragmentation of a '*2Sn source at
excitation energies E§/A = 3—10 MeV. For comparisons, the corresponding Thic and Tiur
for the same system are also shown in Fig. (3)'as the dashed and solid lines, respectively.

While supporting the concept of isotopic thermometry, the good agreement between Tiyr

7



and T/7™ is somewhat surprising, given the strong dependence of the Boltzmann factor on
temperature for large AB and the width of the temperature distribution skiown in Fig. (1).
As shown in the following section, it occurs in part due to a large canéellation involving
the Boltzmann factor and the temperature dependences of the effective chemical potentials.
Fig. (3) also reveals that fairly precise information about Ty and somewhat less precise
information about Tasro is provided by the primary yields. This suggests that given a
precise relationship between primary to the final yields, it would be possible to determine

the breakup temperature from the measured yields.

IV. EFFECTS OF TEMPERATURE VARIATIONS

The surprising consistency between Trpr and T2™™ in Fig. (3) suggests that the correc-
’qions to the grand canonical prediction for the isotope temperatures are small, and one may
1itilize this approach to understand why the temperature variations have so little influence
on the results. Taking this tact, we assumé that the isotopic distributions are well approxi-
mated for each partition by the grand canonical limit, use this limit to gain insight into the
finite size effects and at the same time, investigate the accuracy of this approximation. We
take this approach to consider first the influence of the temperature variations and later the
consequences of the finite size on the effective chemical potentials.

Considering the influence of the temperature variations in this approximation, we average
the grand canonical approximation over the temperature distribution-in Fig. (1). If the
approximation works, the expressions that result from this average should be appropriate
for the consideration of the effects of temperature distributions arising from other effects
and within other equilibrium models of multifragmentation as well. Taking this approach,
the yield of a particular isotope 7 in the framework of Albergo’s method [15], when averaged

over all possible partitions, becomes:

o0 3/2
oy =v [ arsr) 20

exp [(Zi ppr (T) + N; prr (T) + B:)/T) (4.1)

8



where f(T') is the temperature distribution, V represents the free volume of the system,
AT = +/2mh?fmT, m is the nucleon mass and upr (unr) stands for the chemical potential
associated with free protons (neutrons) at temperature T'. The ihtefﬁalzzfﬁﬁrtitidn function

of the fragment : is given by:

AE;

G(T) = 23: gl exp [——T—} (4.2)
where AE; is the excitation energy of the state j with respect to the ground state and ¢
stands for the spin degeneracy factor of this excited state.

Assuming that f(T') is a gaussian centered at (T') and with width or < (T) (see Fig. 1
), one may expand 1/T, T%2, and the chemical potentials. By considering only fragments

observed in the ground state, i.e. ((T') = g?, we obtain that

4 0 3/2 3/2
; () = LV AL D)
5 X

exp [ Bi | per((T) Zi+ pvr ((T)) N,-]
T (T)

1 q*

v exp [411] - - | (4.3)
where A\, = \/M In the above expression, the corrections to the grand canonical
relationship are provided by the correction factor VIT:: - €Xp [%;—] which depends on assumed
width of the temperature distribution, the binding energy of the i-th fragment, the neutron
and proton chemical potentials and their derivatives through the parameters p and g. These

two parameters are defined by

-;— + [(Z,.,T)] ' [ZiOfPF + N;anr + § — (J,?:)] (4.4)
3 B
q = ( } (ZﬁPF+NﬁNF+ 5 (T))
where
arr = e (1)) = 2220 - Lt (o) ) (45)
per ((1))

Bpr = ppp ((T)) — T

9



awe = pyr (1)) ~ 2D 2t oy ()

B = s (7)) — 227100

The isotopic temperature can be extracted from the above corrected yields. Replacing
Y(A,Z) in Eq. (1.1) by the right hand side of Eq. (4.3), one cancels out the spin and mass
dependent term C and then obtains:

] = G(A1, %1)/G(A + 1, Z,)
T G(Ag, Z5)/G(Ay + 1,Z;)’

exp [AB/TS (46)

where

B  wurr((T)Z+pnr((T)N

G(A,Z) = exp [(T) + 2 )
ﬁ - eXp [z_p] : (4.7)
Ig? the above double ratio the terms involving the chemical potentials evaluated at the average
témperature cancel; however, terms in the correction factor involving the derivatives of the
chemical potentials remain.

Quantitative estimates of the correction factor require one to obtain estimates for the
effective chemical potentials and their derivatives with respect to temperature. The proton
and neutron chemical potentials at temperature T may be calculated from the free proton

and neutron multiplicities via the expression:

uer(T) =Tlog [&E};"F_‘i(fﬂ] (4.8)
pe(T) = Tlog [,\_gg]\_,;#]

where gpr(gnr) represents the spin degeneracy factor of the proton(neutron). For the
calculations presented in this work, it has proven advantageous and reasonably accurate to
approximate the yields Ypr(T') and Yyz(T) over a modest range in temperature by power

law expressions in the temperature. In this approximation,
YpF(T) = cpplPF , (4.9)
Ynr(T) = cypTNF

10



For the decay of ''>Sn nuclei at temperatures ranging over 4 < T < TMeV |, Ypr and Ynp

~are well described by ypr = 4.5 and ynr = 1.0 {cpr = 1.33 x 1074

enr o= 0.267) -
according to'the SMM; comparisons O'f'--this*-ﬁﬁ%%ﬁizﬁﬁbﬁ-t“‘d yields: c#le Jated with the -
SMM model are shown Fig. (4). These values depend on the density, which has been chosen
to be one third that of the saturation density of nuclear matter. Larger values of the free
nucleon yields are obtained at lower density.

Using this approximation, the explicit forms of the correction factors in Eqgs. (4.3)-(4.5)
become 20pr = Bpr = (ypr — 2) = 3 and 2onr = fnr = (Ywr — 2) = ~1. We note
that the correction factor to the temperature 72 in Eq. (4.6) depends on the power law
exponents ypr(ynr) and not on the absolute values of the proton(neutron) yields.

Even though Eq. (4.1) has an exponent that appears to be strongly temperature depen-
éent, there is a strong cancelation between the contributions from the chemical potentials
ild binding energy factors in the expressions for p and q. As a result, the correction factor
is of order unity. Values in the range of -\715 - eXp [g /2 1 — 2 are obtained, for example, in
the decay of *2Sn nuclei at temperatures in the range of 4 < T < TMeV . |

The isotopic tempefatureé T calculai-:ec'l.frkom Eq.: (46) for carbon thermometer are
éhown in Fig. (3) in cbmpa.risdns with temperatures Tasrc, Trmr and fl",-’;’i"" derived from

the SMM in the previous session. The very good agreement between T2 |, T2™™ and Tyyr
indicates that the corrections to the isotopic temperatures associated with these temperature
variations are small, although the yields can change by as much as a factor of two. This
comparative insensitivity arises because the isotopic thermometers depend logarithmically
on the yields.

This insensitivity depends on the nature and magnitude of the temperature variation.
The corrections to the isotopic temperatures will be somewhat larger in other contexts
or other models where the temperature variations are larger. The limited precision with
which systems may be selected experimentally may also have a similar influence because

the excitation energy and temperature varies experimentally from collision to collision due

to variations in the impact parameter or in the energy removed by preequilibrium particle

11



emission. The influence of this temperature variation, which may exceed the variation
in temperature caused by the averaging over decay partitions, can a.lso be estimated via
‘techniques outlined in the present section. To illustrate how one can estlﬁffate the possible
corrections due to an imprecision in the excitation energy definition, the circles in Fig. (3)
show calculations using Eq. (4.6) for carbon thermometer assuming a width of or ~ 0.8
MeV for the temperature distribution, which is twice as large as that predicted in Figs. 1
and 2. This width is not based upon a dynamical calculation; it is only to illustrate that

larger isotopic temperatures can result if the excitation energy is poorly defined.

V. CHEMICAL POTENTIALS

. The grand canonical limit has a great advantage of providing a simple analytic expres-
sion for the isotopic yields from which other useful expressions can be derived. However,
tile concept of uniform chemical potentials is not a prediction of microcanonical models
and must be investigated to determine its applicability to finite systems. We do this by
trying to comparing the grand canonical expression for the isotopic yields to the predic-
tions of microcanonical calculations. We start by assuming that these isotopic distributions
can be calculated within the grand canonical approximation and then test this assumption
as follows.Using a pair of adjacent isotopes, we invert the grand canonical expression for

the isotopic yields of two adjacent isotopes to obtain an equation for the effective neutron

chemical potential:

-] A 3/2
pft (A, 2) =T10g[ggi%jz (A+1)

exp ((Baz — Bay12) /T) Y;“Z] (5.1)

where g¥;, Baz and Y3 are the ground state spin degeneracy, the binding energy and the
ground state primary yield for a fragment with (A,Z}, respectively. If the Y35 taken to be the
ground state yields predicted by the SMM, u2// (A, Z) becomes an effective ”"SMM?” chemical

potential. By performing SMM calculations, we find the temperature- and isotopic- depen-

12



dences of the effective neutron chemical potentials given in Fig. (5) for Carbon and Lithium
isotopes from the decay of a !*2Sn nucleus at exc1ta,t}on ene.rg:es of E§ /A =.3,6,9 MeV.
These effective chemical potentials are essentla.lly the same for the Ca;rbon and Lithium
isotope chains. This insensitivity to element number is consistent with the concept of a
chemical potential and offers support for the use of the grand canonical expression to de-
scribe isotopic distributions. There is a dependence on the neutron number of the isotope,
however, that lies outside of the grand canonical approximation. This variation in the neu-
tron chemical potential basically comes as a result of mass, charge and energy conservation
for a finite-size system. We can understand the influence of these conservation laws most
easily at low excitation energies, where the two largest fragments in the final state are the
IMF (Carbon or Lithium in this case) and a heavy residue which contains most of the re-
ma,lmng charge and mass. We estimate the influence of conservation laws at low excitation
energy qualitatively by considering binary decay configurations. Assuming that a parent
nucleus (A, Z;) decays into a light fragment (A,Z) and a heavy residue (Ao — A, Zy — Z) ,

we can approximate the yield of fragment (A,Z) in its ground state by

Yiz < p? (A, Z)p" (Ao — A, Zo — Z)Prsr (5.2)

~ gy exp ST (Ao — A, Zy — Z)]

4 (4-4)7"1
Aq xS

where p?* = gi’, p* and S* are the density of states for the light nucleus in its ground state
level, the density of states and entropy of the heavy residue in its excited state, respectively,

The other factor, e Aldo=4)]° )\ , is the thermal average of the state density of
PREL Ay T g

relative motion.

Replacing the yields in Eq.(5.1) with Eq.(5.2) and assuming A << Ao, one finds
that the effective chemical potentiail depends on the difference in residue entropies,
S*(Ao— A~1,Z} — 8* (Ao — A, Zo — Z). Using an expansion for small changes in the
nuclear entropy from ref. [16], this difference can be expressed in terms of the difference of

binding energies,

13



5* (Ao — A—1,Z) — §* (Ao — A, Zo — Z)
= —(Bag-4,2,-7 — Bag-4~1,20-2)/T

—(Baz — Bangz)/T+ f*/T - (5.3)

plus a term depending on the free excitation energy per nucleon, f* = E*/Ay—TS/Ao. This

difference in binding energies is further related to the neutron separation energy s,(Ao —

A, Z[) -7 ):
sn(Ao— A, Zy — Z) = Bag-nze-7 — Bag-a-1,2,-2 (5.4)
One consequently obtains the following expression for the effective chemical potential:

: Hn = —Sn(Ao - A, Zo — Z) + f*. (55)
%

ﬁghere the reduced free excitation energy has been approximated by its low energy limit,

T2 ’ .
f* = —-g;*, Ep = SMeV- (5'6)

For the decay ''?Sn—'?C+X , the chemical potential at T = 0, i.e., —s,(Ao — A, Zy — Z),
is plotted as the stars in Fig.(5); the binding energies for these calculations were calculated
using the liquid-drop parametrization in ref. [19]. The reduced free energy f* gives a rea-
sonable estimate for the trend with excitation energy. The dot-dashed line in Fig.(5) gives
the chemical potential predicted from Eq. (5.5) for E§/A = 3 MeV (T = 4.58MeV). The
predicted trend is close to that predicted by the SMM model (solid circles and squares) but
has a somewhat stronger dependence on N — Z.

In general, the slope of the effective neutron chemical potential is getting slightly flatter
as the excitation energy or temperature increases. If we consider that the system undergoes
a multiple fragment decay at higher temperatures, it is clear that approximating the entropy
of the remaining system by that of a residue of comparable mass becomes rather inaccurate.
The constraints imposed on the total system by the isospin asymmetry of one observed

fragment should, in that case, be less significant. While there is a mass dependence to

14



the effective chemical potential that is inconsistent with the grand canonical approach, it

is useful to note that the mass dependence of the chemical potential (for. these systems of

more than 100, nucleons). is small if one is mainly ‘concerned: W'i:thf':_snuélex wear the valley of
stability. If one cancels the chemical potential effects by constructing double ratios like that

of the Algergo formula, the consequence of such finite size effects becomes negligible indeed.

VI. INFLUENCE OF SECONDARY DECAY

As discussed in sect. II, fragments are forrﬁed in excited states as well as in their ground
states, corresponding to the breakup temperature. Fragrﬁents in short lived excited states
decay before they are detected and, therefore, the observed yields differ from that of the
[%'imary fragments. The effects of secondary decay on the isotopic yields and isotopic tem-
I;eratures have already been reported by some authors (see for example [20-22]). Although
the approaches employed in the description of the decay of hot primary fragments are differ-
ent, all those.works qualitatively agree on the point thé_t the Iisot_épi(; f;émperat.ure is lower
than the thermodynamical one.

At the (iua,ntitative level, details of the population and decay of the excited fragments are
important. One issue concerns the importance of utilizing empirical binding energies, energy
levels and decay branching ratios for the excited fragments. Fig. (6) shows the primary
and secondary carbon isotopic distributions for the decay of a 2Sn nucleus at an initial
excitation energy of Ej/A =6 MeV. The primary distribution (solid line) is calculated by
considering empirical binding energies within the SMM for hot fragments. The simplified
Weisskopf evaporative decay procedure of ref. [18] is used for one final distribution (dotted
line). The other final distribution (dashed line) is obtained by calculating the secondary
decay for Z < 10 hot fragments, as in ref. [22,23], according to empirical nuclear structure
information regarding the excitation energies, spins, isospins and decay branching ratios

where available. For hot fragments with Z < 10 where such information is not available,

15



the decay is calculated according to the Hauser-Feshbach formalism [24]. The contributions
to this latter calculation from the secondary decay of hot fragments with Z > 10, are
calculated, for simplicity, via the secondary evapi)rative decay procedure oﬁ‘ﬁ‘[’.' [18]. .D'eca.ys
of fragments with Z > 10 make a 15% contribution to the yields of 12C isotopes that may
be altered when the decay of hot fragments with Z > 10 is calculated more accurately.

Obviously, in Fig. (6), the final distribution after the empirical secondary decay is much
wider than the final distribution obtained via the evaporative decay approach of ref. [18].
This points out the importance of using the empirical information in such calculations. This
also leads to the extraction of larger isotopic temperatures via Eq. (1.1) for the empirical
approach. Temperatures for the Carbon isotope thermometer and He-Li thermometer cal-
culated for the two secondary decay approaches are shown, for example, in Fig. (7) for the
Iﬁultifragmenta.tion of a 1257 nucleus at E} /A = 4—10 MeV. For reference, the curves Tiasrc
ahd Ty r from Fig. (3) are also shown as the dashed and solid lines in the figure. Clearly,
incorporating empirical information in the decay makes a significant difference. Both calcu-
lations provide lower isotopic temperatures than have been obtained in recent experiments
[7,8,13,14]. - |

It should be noted, however, that the simplified Weisskopf evaporative decay, shown in
Figs. (6) and (7), is only used in the SMM code of ref. [18] to calculate the decay of fragments
with A > 16. The decay of lighter fragments is calculated via a *Fermi Breakup” multipar-
ticle decay formalism. This latter decay mechanism makes the dominant contribution to the
isotope temperatures calculated via the latter SMM code in ref. [25]. Investigations of the
experimental and theoretical basis for the "Fermi Breakup” approach are needed, but are
out of the scope of the present work.

Regardless of the decay formalism, memory of the breakup stage is lost via the secondary
decay mechanism. The degree of memory loss depends on the details of the secondary decay
correction and on the role of short-lived higher lying particle unbound states. A smaller
degree of memory loss ensues in models such as those of refs. [10,26,27], where few, if

any, particle unbound states are considered. The approach of ref. [18] represents the other
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extreme, wherein all states are considered regardless of lifetime. This issue clearly needs
further study to see whether the role of particle unstable nuclei can be, constrained, for
-example, by direct measurements using techniques discussed in ‘refs. {23;28] or by other

experimental observables.

VII. CONCLUDING REMARKS

We discussed some of main aspects that could cause microcanonical predictions for iso-
topic distributions and isotopic temperatures to differ from grand canonical calculations and
influence the determination of the breakup temperature and other experimental observables.
We investigate this problem by checking the consistency of the grand canonical expression

&
for the isotopic yields against the microcanonical predictions and explore the potential role

vfhich may be played by variations in the temperature and in the effective chemical poten-
tials. These variations occur as a consequence of the finite size of the disintegrating system
and are therefore present in.a.llzmicrocanonica,l calculé,tidné. _ )

Concerning the temperature variation, we find that this causes the isotopic yields ob-
tained with the microcanonical SMM simulations for the primary distribution to differ from
those of the grand-canonical ensemble by factors of order unity. One difference stems from
the averaging over the temperatures corresponding to the different breakup partitions. These
vary because the total binding, coulomb and translational kinetic energies vary from parti-
tion to partition and by subtraction, the thermal energy must vary as well. A simple and
relatively accurate prescription that accounts for these temperature variations was given
that may also prove useful for estimating the influence of thermal averaging over the varia-
tions in the actual excitation energy deposition within a data set that is constrained by an
experimental cut on the estimated energy deposition.

We also extract effective chemical potentials by comparing microcanonical and grand

canonical expressions for the isotopic yields. These effective chemical potentials are approx-
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imately the same for isotopes of different elements that lie along the valley of beta, stability,
but vary as a function of {N-Z). For example, we observe for the neutron chemical potential
a dependence upon (N-Z) that can be understood at low excitation-energ‘ieé% arise from the
dependence of the neutron separation energy on the location of the accompanying residue
relative to the line of beta stability.

Typically, these variations in temperature and effective chemical potential cause varia-
tions in the isotopic yields of order unity. The logarithmic relation between the isotopic
temperature and the yields means that the latter may be wrongly predicted by a factor of
two and one may still find a reasonable agreément between the microcanonical and the iso-
topic temperatures provided the binding energy difference A B is significantly larger than the
temperature. When the effects of secondary decay is taken into account, however, the yields
gen change by more than an order of magnitude and the temperature values can decrease
a;ﬁ)preciably. While the magnitude of this change is not yet unambiguously established, it
was shown that the incorporation of empirical information about the decay is essential for
quantitative comparisons to experimental data. Measurements that quantify the role of
higher lying particle unstable states are essential for determining the magnitude of these

secondary decay corrections.
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FIGURES
FIG. 1. The points denote distributions of temperatures calculated with the SMM approach

for the decay of a ''2Sn nucleus at three different excitation energies. The lines-denote gaussian

fits to the calculated distributions.

FIG. 2. The points denote temperature distributions calculated with the SMM approach for the
different isotopes considered in the carbon thermometer for an excitation energy of Ej/A = 6MeV.

The lines denote gaussian fits to the calculated distributions.

FIG. 3. Comparisons of various primary temperatures Tasrro, Timp and o™ from the SMM

and T2 from the analytical calculation in the grand canonical limit. For details see the text.

FIG. 4. The solid squares and circles denote the free proton and neutron yields, respectively,
calculated via the SMM approach. The solid and dashed lines denote fits to the calculated yields

following Eq. (4.9).

FIG. 5. The squares, circles and triangles denote neutron chemical potentials derived from Eq.
(5.1) using SMM predictions for Carbon and Lithium isotopic yields at various initial excitation
energies for the decay of the nucleus 1129n. The stars and the dot-dashed line denote approximate

values calculated from Eq.(5.5) for T=0 and 4.58 MeV, respectively.

FIG. 6. Primary (solid line) and final Carbon isotopic distributions calculated for the decay of
the nucleus ''2Sn using (dashed line) and neglecting (dotted line) the empirical nuclear structure

information in the secondary decay process.

FI1G. 7. Isotopic temperatures for Carbon and He-Li thermometers calculated with the SMM
model for the decay of the nucleus 1125n using (solid symbols) and neglecting (open symbols) the
empirical nuclear structure information in the secondary decay process. The lines are the same as

those shown in Fig. (3).
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