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We investigate the breakup of the one-neutron halo nuclei 'Be and
19C within a dynamical model of the continuum excitation of the projectile.
The time evolution of the projectile in coordinate space is described by solv-
ing the three-dimensional time dependent Schrodinger equation, treating the
projectile-target (both Coulomb and nuclear) interaction as a time dependent
external perturbation. The pure Coulomb breakup dominates the relative en-
ergy spectra of the fragments in the peak region, while the nuclear breakup is
important at higher relative energies. The coherent sum of the two contribu-
tions provides a good overall description of the experimental spectra. Cross
sections of the first order perturbation theory are derived as a limit of our dy-
namical model. The dynamical effects are found to be of the order of 10-15%
for the beam energies in the range of 60 - 80 MeV /nucleon. A comparison
of our results with those of a post form distorted wave Born approximation
shows that the magnitudes of the higher order effects are dependent on the
theoretical model.
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I. INTRODUCTION

UBe and ?C are examples of one-neutron halo nuclei, where the loosely bound valence
neutron has a large spatial extension with respect to the respective cores (see, e.g., [1-3]
for a recent review). Breakup reactions, in which the valence neutron is removed from the
projectile in its interaction with a target nucleus, have played a very useful role in probing
the structure of such nuclei [4-10]. Strongly forward peaked angular distributions for the
neutron [11,12] and the narrow widths of the parallel momentum distributions [13—-19] of the
core fragments are some of the characteristic features of the breakup reactions induced by
these nuclei, which provide a clean confirmation of their halo structure. In the Serber types
of models [18,20], the breakup cross section is directly related to the momentum space wave
function of the projectile ground state.

The Coulomb breakup is a significant reaction channel in the scattering of halo nuclei
from a heavy target nucleus (see, e.g., [21]). It provides a convenient way to put constraints
on the electric dipole response of these nuclei [22,23]. The Coulomb breakup of weakly bound
nuclei can also be used in determining the cross sections of the astrophysically interesting
radiative capture reactions [24].

The breakup of halo nuclei have been investigated theoretically by several authors using
a number of different approaches (see, e.g., [10] for an extensive list of references). Some
of these models [18,25,26] use semiclassical geometrical concepts (mostly Serber type) to
calculate the breakup cross sections. A direct breakup model (DBM) (which reduces to the
Serber model in a particular limit [27]) has been formulated within the framework of the
post form distorted wave Born approximation (DWBA) [28,10]. However so far only the
Coulomb breakup of the halo nuclei has been investigated within this theory. The nuclear
breakup, for these cases, has been studied mostly within the semiclassical [29] and eikonal
models [30,31].

Breakup reactions of halo nuclei can also be described as the inelastic excitation of the
projectile from its ground state to the continuum [32,33]. In an extensively used theoretical
approach, the corresponding T-matrix is written in terms of the prior form DWBA [28]. For
the pure Coulomb breakup, the semiclassical approximation of this theory is the first order
perturbative Alder-Winther theory of Coulomb excitation [34]. It has recently been used
to analyze the data on the breakup reactions induced by ''Be [8] and 'C [9]. However,
higher order excitation effects [35-39] may be substantial in the breakup of these nuclei.
It has been shown [10,40] that for the Coulomb breakup of C, the results of the first
order semiclassical Coulomb excitation theory differ strongly from those of the DBM which
includes higher order effects.

The general methods in the semiclassical description of the excitation process, which
include higher order effects, are the coupled channel approaches [41], explicit inclusion of
successive higher order terms [42], and the direct numerical integration of the time dependent
Schrodinger equation [36-38,43]. The last method, in which all the higher order effects in the
relative motion of the breakup fragments are included, provides a fully dynamical calculation
of the projectile excitation caused by both the Coulomb and the nuclear interactions between
the projectile and the target.

The time dependent Schrédinger equation method has been used earlier [36,37] to inves-
tigate the Coulomb breakup of 'Li and 'Be. However, these calculations have employed



a straight line trajectory for the projectile motion (an approximation valid at higher beam
energies) and have ignored the spins of the particles in the nuclear models. Furthermore,
they are partly perturbative in the sense that the first order perturbation theory has been
used therein to calculate the energy distribution of the breakup cross section at larger impact
parameters. This procedure may lead [38] to a significantly larger cross section as compared
to that obtained in models where the partly perturbative approximation is not used.

In this paper, we present calculations for both the Coulomb and the nuclear breakup of
the one-neutron halo nuclei ''Be and '?C within the time dependent Schrédinger equation
method (this will be referred as the dynamical calculation in the rest of this paper). The spins
of the particles are included explicitly in the nuclear model. The Hamiltonian describing
the internal motion of the projectile contains a spin dependent interaction. No perturbative
approximation has been made in the calculation of the breakup cross sections. We also
calculate first order perturbative results as a limit of our dynamical model so that a consistent
investigation of the role of the dynamical effect in the breakup cross sections is possible. We
compare the results of our calculations with those of the post form finite range DWBA theory
to study the magnitudes of the higher order effects calculated in different approaches.

Our manuscript is organized in the following way. In section II, we give the details of
our formalism. The comparison of our calculations with the experimental data and the
discussion of the results are presented in section III. The summary and conclusions of our
paper are given in section IV.

II. FORMALISM

In this section, we describe a general method for solving the time dependent Schrodinger
equation, which can be used in problems depending upon a single three-dimensional dynam-
ical variable. The potentials involved are assumed to be local. The time development of the
wave function of the relative motion between the neutron and the core nucleus, [¥(r,t)], is
given by the time dependent Schrédinger equation

m%w@w:umm+vmmw@ﬁ, (1)

where Hy(r) is the internal Hamiltonian describing the relative motion between the valence
neutron (n) and the core nucleus (b). It is defined as
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Hy(r,t) = A+ Vp(r), (2)
where [, is the reduced mass of the n + b system and r = r,, —r,. The potential Vj(r) could
contain a central and a spin-orbit term. In Eq. (1), V(r,t) is the time dependent external
field exerted by the target on the projectile. In the present application, it is the Coulomb
and nuclear interaction between the target (A) and the projectile (a). We write
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where ¢ stands for the individual channels characterized by the quantum numbers .J., M.,
and (.. The orbital angular momentum ({.) is coupled to the neutron spin (s = $) to give
the total angular momentum (./.) under the assumption of zero spin for the core nucleus.
Substituting Eqgs. (2) and (3) into Eq. (1), we can write a set of coupled equations for the
radial wave function

zh wc r,t) thc rt)e(r, t), (5)

where
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The solution of the radial equation (5) can be written as
Ye(r, ) = e(r, t:) /dchccrtwcrt) (7)

with the starting time t;. Alternatively, the wave function at time ¢ can be calculated from
the initial wave function by applying the unitary time evolution operator (in the obvious
matrix notation)

Y(t) = U(t, t)v(t). (8)
For a small time step At, the time evolution operator can be approximated as
At h(t)
U(t,t+ At) ~ % (9)
1-— 2mh(t)

where the elements of the matrix h are given by h.. Egs. (8) and (9) are the starting points
for the numerical solution of the problem, which has been done by following the method
described in Ref. [43]. This approach has the virtue that a first order calculation can also
be performed within the same program by keeping the coupling only between the initial
channel (¢’ = ¢;,) and all the possible final channels (¢) in the perturbation potential, i.e.,
by replacing V° by V' §u.. in Eq. (6). Then the matrix h is no longer hermitian and the
time evolution operator U becomes non-unitary.

Unlike the previous calculations [36-38], we do not assume the projectile to move on a
straight line trajectory. In our case, the c.m. of the projectile is supposed to follow a hyper-
bolic trajectory with respect to the target during the scattering process. For application to
the breakup of the one-neutron halo nuclei, the Coulomb part of the external perturbation
[Ve(r, t)] is given by
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where Z, and Z, are the charge numbers of the target and the core nuclei, respectively.
R (t) is the coordinate of the target in the projectile centre of mass (c.m.) frame, and
r, = —mﬁmbr and r, = mﬁ”mbr, are the position vectors of the core nucleus and the
neutron, respectively. The nuclear part of the external perturbation [Vy(r,t)] is the sum of

the neutron-target and core-target optical model potentials, respectively. It is given by

VN(r7 t) - an(|rn - RA(t)|7 RVna aVn) + Zan(|rn - RA(t>|7 RWn7 aWn)
+ Vof(Jry — Ra(t)|, Rvp, ave) + iWo f(Jry — Ra(t)], Rws, aws). (11)

where

-1
f(r, Rya) = [1 +exp (f” - R)] (12)
with the diffuseness parameter a and radius R. The depths of the real and the imaginary
parts of the neutron-target and the core-target optical potentials are denoted by V,,, W,
and V;,, Wy, respectively. The corresponding radii and the diffuseness parameters are given
by Ry,, Rwn, and ay,, aw,, and Ryy, Ry, and ayy, awy, respectively.

Using a multipole expansion of the perturbation potentials, we can write

Vel () = > Ol [oed () + N (. 1)] (13)
A
with the coefficients
= [ a2 V] Vb (14
The time dependent radial potentials are given by
vt (r,t) = 47’;?,4_'_2;62 (m;fjnb)x Rii(t)Y;”(RA(t)) (15)
and
N (ry ) = Vi f Y (rs Ry Gy, t) + iWo f Y (Pny Ry, Gwns t)
+ Vo f Y (ry, Ryy, avp, t) + iWy fY (1, Ry, awp, t), (16)
where
P Roa,t) = [ 49 fllr = Ra(t)], R,a) Y, (5). (17)

The triple differential cross section for the breakup of the projectile a into b and n is
given by
3o _ dog
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Pi(kbn) pf(kn), (18)

where €, 4 are the angles associated with the relative motion of the c.m. of the b + n
system with respect to the target nucleus A. The first term on the right hand side of Eq.
(18) is the Rutherford cross section for the projectile-target scattering. The last term,
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is the density of final states. The excitation probability, P;; (which is a function the relative
momentum %k, between the two fragments), is given by

2
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Z ‘ kbna NWar,(r,t5))

tf—>oo 2] +1

where (1)7(7; ) (kpn,r) is a complete scattering solution for the relative motion of the two frag-
ments with the in-going wave boundary condition. It satisfies the Schrodinger equation (1)
for a vanishing perturbation potential V' (r, ). The wave function Wy, (r, ;) is the solution
of the time-dependent Schrédinger equation with the boundary condition that as t; — —oo,
it goes to the unperturbed wave function ®,;, of the ground state of the projectile. Since we
are interested only in the breakup contributions, it is advantageous for numerical reasons to
replace the full wave function Wy, (r,t), in Eq. (20), by the corresponding continuum wave
function

W (e ) = Wy (1, 8) = Y ( Py (x,8) [ Wy, (r, 1)) Dy (x, 1), (21)

b/

where the sum runs over all bound states of the system.

In the actual numerical realization, the radial wave functions v.(r,t) are discretized on
a mesh with points x, = nAxz where Ax = 0.0025 and n = 0,...,400. They are related to
the points in the radial coordinate r by the mapping, r, = Rya.[exp(az,) — 1]/[exp(a) — 1],
with R, = 900 fm. The parameter a is chosen so that r; = 0.3 fm. The second order
derivative, 3227 in Eq. (6) is represented by a finite difference approximation. In the first
step, the ground state radial wave function is calculated assuming a Woods-Saxon potential,
Vi(r) = Vof(r, Ry, ap), for the n — b interaction in the initial channel with a given set
of quantum numbers, J., M., and ¢.. The time evolution of this initial wave function is
calculated by the repeated application of the time evolution operator (9), using time steps
At =1 fm/c, and taking into account partial waves with ¢ = 0,1, 2,3 for the n — b relative
motion. This leads to a set of coupled linear equations for the radial wave functions which
are solved with the technique as described in Ref. [43]. We use a time interval for the
evolution which is symmetric to the time of closest approach between the target and the
projectile. Its limits are determined by the condition that the perturbation potential is at
least 200 times smaller than its maximum value. In order to avoid spurious excitations,
the time dependent potential was switched on adiabatically. Furthermore, care has been
taken to ensure that unphysical bound states are not populated during the time evolution.
The final wave function is projected onto scattering states and the excitation probability is
calculated according to Eq. (20), after removing the bound state contributions. For each
M. substate of the initial state, an independent calculation has been performed.



III. RESULTS AND DISCUSSIONS

The parameters of the nuclear optical potentials for the n-target and core-target interac-
tion [see, Eq. (16)] used in our calculations, are given in Table I. We have adopted a single
particle potential model to calculate the ground state wave function of the projectile. The
ground state of ''Be was assumed to have a 2s;/, valence neutron coupled to the 07 °Be
core with a binding energy of 504 keV. The corresponding single particle wave function was
constructed by assuming the neutron - *Be interaction of the Woods - Saxon type having a
central and a spin-orbit part. The radius and the diffuseness parameters in both the terms
were taken to be 2.478 fm and 0.5 fm, respectively. The depth of the central term was
searched so as to reproduce the ground state binding energy. This 251/, wave function has
an additional node as compared to a simpler zero-range wave function. The strength of
the spin-orbit term was adjusted by requiring that the first excited (37) state in "'Be is at
the experimental excitation energy of 320 keV. In the dynamical calculation, we assume a
vanishing n-core potential for the higher partial waves so that unphysical resonances can be
avoided. For 2C, the ground state wave function was obtained with the similar procedure
by assuming a configuration in which a 2s;/, neutron is coupled to the 07 *C core. The
radius and the diffuseness parameters associated with the Woods-Saxon interaction were
taken to be 3.30 fm and 0.65 fm, respectively. In the dynamical calculations, we took into
account only the n-core interaction in the s-wave. The spectroscopic factors for the ground
states were taken to be 1 in all the cases. In the multipole expansion of the perturbation
potential [Eq. (13)], we included contributions up to A = 2.

In Fig. 1, we compare the results of our calculations with the experimental data (taken
from [8]) for the relative energy spectrum of the fragments emitted in the breakup reaction
of ''"Be on a 2%®Pb target at the beam energy of 72 MeV /nucleon. In these calculations, the
integration over the theta (0,, 4) angles of the projectile c.m. was done in the range of 0°—3°,
which corresponds to a minimum impact parameter of about 12 fm. The long-dashed and
short-dashed lines represent the results of the dynamical calculations for the pure Coulomb
and the pure nuclear breakup, respectively, while their coherent sum is represented by the
solid line. The Coulomb cross sections consist mostly of the dipole term as the quadrupole
mode contributes negligibly to this.

We note that the pure Coulomb contributions dominate the cross sections around the
peak value while the nuclear breakup is important at the larger relative energies. This can
be understood from the energy dependence of the two contributions. The nuclear breakup
occurs when the projectile and the target nuclei are close to each other. Its magnitude which
is determined mostly by the geometrical conditions, has a weak dependence on the relative

TABLE I. Optical potential parameters for the neutron-target and core-target interaction.

projectile Vi [fm] Ry, [fm]  ay, [fm] Wy, [fm] Ry, [fm]  awy, [fm]  Ref.
B —27.88 6.93 0.75 —14.28 TAT 058 |5l
e —29.48 6.93 0.75 —13.18 7.47 0.58 [51]
projectile Vp [fm] Ry [fm] ayp [fm] Wy [fm] Ry [fm] awp [fm]  Ref.
HBe —170.0 5.45 1.04 —58.9 5.27 0.887  [52]
e —200.0 5.39 0.90 —76.2 6.58 0.38 [53]




energy of the outgoing fragments beyond a certain minimum value. Contrary to this, the
Coulomb breakup contribution has a long range and it shows a strong energy dependence.
The number of virtual photons increases for small excitation energies. At the same time,
a much larger range in the impact parameter implies a substantial breakup probability.
The results shown in this figure are in agreement with those of Ref. [44]. The domination
of the nuclear breakup may explain the failure of the pure Coulomb finite range DWBA
calculations [10] in explaining the data at larger relative energies.
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FIG. 1. The differential cross section as a function of the relative energy of the fragments (neu-
tron and '°Be) emitted in the ' Be induced breakup reaction on a 2°*Pb target at the beam energy
of 72 MeV /nucleon. The long-dashed and short-dashed lines represent the pure Coulomb and pure
nuclear breakup contributions, respectively. Their coherent sum is depicted by the solid line. The
experimental data are taken from [8].

The coherent sum of the Coulomb and the nuclear contributions provides a good overall
description of the experimental data. Although, the pure nuclear breakup contributions
below 0.5 MeV are substantial, yet their interference with the Coulomb part does not change
appreciably the shape of the total cross section in the peak region. It may be noted that
the absolute magnitude of the cross section near the maximum is somewhat underestimated
by our calculations, but the position of the peak is well reproduced. This is in agreement
with the results of the dynamical calculations reported in [38]. However, in the semiclassical
coupled-channel calculations [44] for this reaction, the peak position of the calculated cross
sections are shifted towards larger energies as compared to that of the data.

It may be remarked that use of a some what smaller minimum impact parameter in the
angular integration over the "'Be c.m. would increase the cross sections which may reduce
the difference between the experiment and the theory. However, this would mainly affect



the nuclear contribution since it is more sensitive to the smaller projectile-target distances.
The Coulomb contributions arise mostly from the much larger impact parameters as long
as the excitation energy is not too large. At very small impact parameters the absorption
due to the imaginary parts of the optical potentials will result in an effective cutoff. Since
the optical potentials are not sufficiently well known, the choice of the maximum scattering
angle introduces an uncertainty but our choice for this is a reasonable one.
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FIG. 2. The relative energy spectrum of the fragments (neutron and '*C) in the breakup of ?C
on a 2%Pb target at the beam energy of 67 MeV /nucleon. Part (a) shows the results obtained with
a binding energy of 530 keV for the neutron-core configuration in the ground state of *C while
part (b) is the result with a value of 650 keV for the same. The dashed and dotted lines represent
the pure Coulomb and pure nuclear breakup contributions, respectively, while their coherent sum
is shown by the solid line. The experimental data are taken from [9].

In Fig. 2, we show the results of our dynamical calculations for the relative energy
spectrum of the fragments (neutron and '®C) emitted in the breakup of '*C on a 2°°Pb
target at the beam energy of 67 MeV /nucleon. The integrations over 6, 4 were done in
the range of 0° — 3°. Since the binding energy (B,,_ore) 0f the valence neutron - core system
in the ground state of C is still an unsettled issue [21,45-48], we present in this figure the
results of calculations performed with two values [530 keV (part a) and 650 keV (part b)]
of B,,_core- This is for the first time that the dynamical calculations including the nuclear
breakup have been performed for this case. The experimental data are taken from [9]. We
see that the Coulomb breakup dominates the cross sections in the peak region while the
nuclear breakup is important at larger relative energies in this case too.

The dynamical calculations carried out with the binding energy of 530 keV [part (a)]
overestimate the cross sections in the peak region by about 35 - 40%, while those done



with 650 keV [part (b)] are in good agreement with the data. Our calculations, therefore,
seem to support the latter value for B, _.. Which is within the error range of the value
[(530 + 130) keV] for it reported in [9]. The expected shift in the peak position in part (b)
is within statistical error of the data. We would like to recall, however, that we have used a
spectroscopic factor of 1 for the neutron-core configuration for the ground state of *C.

An alternative scenario has been presented in [9], where the same data have been analyzed
within the first order semiclassical perturbation theory of the Coulomb excitation. With a
binding energy of 530 keV and the same neutron-core configuration for the ground state of
9C, these calculations overestimate the data in the peak region by about 40-50% (see also
[40]). Instead of using a larger value of B,, .o in order to fit the data, these authors try to
extract a spectroscopic factor (SF) for this configuration by comparing their pure Coulomb
dissociation calculations with the data (which are corrected for the nuclear breakup effects
in an approximate way). The value of SF (0.67) obtained in this way is close to the shell
model results of Ref. [49].

However, a note of caution must be added about the significance to this result. The
spectroscopic factors reported in [49] correspond to various specific states of the ¥C core.
The data of Ref. [9] are, however, inclusive in the sense that the specific core states of 1¥C are
not observed there. Therefore, measurements of the relative energy spectra in experiments
of the type reported in [45], where specific core states of '®C are identified by tagging to
the decay photons, are required for a meaningful comparison of the SF extracted from such
studies with those of the shell model. Moreover, the procedure adopted in [9] to correct the
data for the nuclear breakup effects may not be valid due to the long range of the nuclear
interaction in case of the halo nuclei [44]. Obviously, the value of the SF extracted from the
breakup studies depends critically on the theory used to calculate the corresponding cross
sections. Therefore, more experimental data and their theoretical analysis within different
models of the breakup reactions are required for arriving at a more definite conclusion in
this regard.

Another argument put forward in [9] in favor of their procedure is that with the values
0.530 MeV and 0.67 for B,,_.,.. and SF, respectively, the angular distribution of the n + *C
c.m. measured in the same reaction is well reproduced. However, this conclusion assumes
that the shape of this angular distribution is not affected by the nuclear breakup effects
below the grazing angle (~ 2.7°). To study the role of the nuclear breakup for this data,
we show in Fig. 3 the angular distribution of the c.m. of the n + '8C system for the values
of By, core 0f 530 keV (upper part) and 650 keV (lower part). The integrations over the
relative energy is performed in the range of 0.0-0.5 MeV (the same as done in Ref. [9]). It
is clear from this figure that the nuclear breakup effects start becoming important already
from c.m. angles of 1.5°, and the total cross section (coherent sum of the Coulomb and
nuclear contributions) differes from the pure Coulomb one even below the grazing angle.
Beyond this angle, the absorptive part of the optical potentials reduces the cross section.
In this figure we have not shown the comparison of our calculations with the experimental
data as it would require folding the calculations with the experimental angular resolution
[9]. However, the comparison of the unfolded and folded results as shown in [40] suggests
that the quality of agreement between calculations done with both the options and the data
would be the similar.
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FIG. 3. Dynamical model results for the angular distribution of the center of mass of n + 8C
system in the breakup of '2C on a Pb target at the beam energy of 67 MeV /nucleon for two values
[530 keV (part a) and 650 keV (part b)] of the C ground state. The dashed and dotted lines
represent the pure Coulomb and pure nuclear contributions. Their coherent sum is represented by
the solid line.

The magnitude of higher order effects in the Coulomb breakup reactions of 'Be and
YC is a subject of current interest. In an earlier calculation [36], higher order effects were
found to be rather small for the reaction studied in Fig. 1. However, comparing the result of
the adiabatic model of Coulomb breakup reactions with that of the first order semiclassical
perturbation theory of Coulomb excitation, it has been concluded in [39] that higher order
effects are substantial for the reaction investigated in Fig. 2, which would have a considerable
influence on the extracted spectroscopic factor. In contrast, these effects were found to be
rather small in [50] where the first order and the higher order terms were calculated within
the same model. As discussed in section II, the first order perturbation theory results can
be obtained from our dynamical model in a particular limit. In Fig. 4, the first order results
obtained in this way are compared with those of the full dynamical model for the pure
Coulomb breakup contribution to the same reaction as in Fig. 2. It can be noted that the
higher order effects are rather small. They reduce the peak cross sections of the first order
theory by about 10% for both values of B,,_.,.. but leave the shapes of the spectra largely
unaffected.
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FIG. 4. Comparison of the dynamical model and the first order perturbation theory results for
the pure Coulomb breakup contribution to the relative energy spectrum of the fragments (neutron
and '®C) emitted in the breakup of ?C on a 28Pb target at the beam energy of 67 MeV /nucleon.
The solid and dotted lines represent the results of the first order and the dynamical model calcu-
lations, respectively, obtained with the value of By, _.ore equal to 530 keV while the dashed and
dashed-dotted lines represent the same for the B,, .o value of 650 keV. The first order perturba-
tion theory results have been obtained from the dynamical model in a particular limit as discussed
in section II.

In Fig. 5, we compare the pure Coulomb breakup contributions to the reactions studied
in Figs. 1 and 2, calculted within the dynamical model and the finite range DWBA [10].
In the finite range DWBA theory the higher order effects in the target-fragment interaction
are automatically incorporated. The interesting aspect of this comparison is that while for
the "' Be case the finite range DWBA results are slightly larger than those of the dynamical
semiclassical calculation, the former is smaller than the latter for **C induced reaction for
both the values of the binding energy. This clearly shows that higher order calculations
for the Coulomb breakup performed within different theories could be different from each
other. The reason for this difference is the fact that fully quantal higher order approaches
take into account effects which are beyond the semiclassical dynamical model calculations.
Therefore, the results of the semiclassical first order perturbation theory will differ from those
of different higher order models in different ways. Thus, the conclusion about the role of
higher order effects will differ if the first order and higher order calculations performed within
two different theories are compared with each other. It may also be remarked here that the
spectroscopic factors extracted from the comparison of the Coulomb breakup calculations
of different models with the corresponding data could be quite different from each other, as
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has already been pointed out in [40].
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FIG. 5. (a) Comparison of the pure Coulomb dyanmical model (solid line) and the finite range
DWBA (dotted line) contributions to the relative energy spectrum of the fragments (neutron and
the core) emitted in the pure Coulomb breakup of ''Be on a 208Pb target at the beam energy of
72 MeV /nucleon. (b) The same as in part (a) for the breakup of *C on the same target at the
beam energy of 67 MeV /nucleon. In this case the full and dashed lines represent the results of the
the dynamical model and finite range DWBA, respectively, corresponding the *C binding energy
of 530 keV while dashed and dashed-dotted lines show the same for the binding energy of 650 keV.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have studied the Coulomb and the nuclear breakup of the one-neutron
halo nuclei, ''Be and °C, on a 2°®Pb target within a semiclassical fully dynamical model of
the projectile excitation process. The time evolution of the projectile system is described by
numerically solving the time dependent Schrodinger equation in three dimensions. Through
this nonperturbative method higher order effects are fully taken into account in the breakup
process. Unlike previous such calculations, we assume the projectile to move along a hyper-
bolic trajectory instead of a straight-line one. A simple single particle potential model was
used to calculate the ground state wave function of the projectile nuclei.

With a configuration for the "Be ground state in which a 2s;, neutron is coupled to
the ground state of the "Be core with a binding energy of 0.504 MeV and a spectroscopic
factor of unity, the experimental relative energy distributions of the fragments (neutron and
19Be) emitted in the breakup reaction of 'Be on a lead target at the beam energy of 72
MeV /nucleon are described rather well by our model. The Coulomb breakup dominates
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these cross sections around the peak region while the nuclear breakup is important at higher
relative energies. This provides a natural explanation for the failure of the pure Coulomb
breakup calculations in describing these data at the larger relative energies.

For the C case, the comparison of the dynamical calculations with the data for the
relative energy spectrum of the fragments suggests that the ground state configuration of
this nucleus is consistent with a 2s;/5 neutron coupled to the ground state of the 18C core
with a binding energy of 0.650 MeV and a spectroscopic factor of 1. Alternatively, it could
also have a binding energy of 0.530 MeV but a spectroscopic factor of about 0.6 — 0.7.
The current data [9] on the relative energy spectrum are not sufficient to rule out either of
these possibilities. Further experimental studies in which the relative energy spectrum is
measured by tagging the specific core states and calculations of the Coulomb and nuclear
breakup effects within different models (e.g., finite range DWBA) are clearly needed to settle
this issue.

By comparing the dynamical model results for the pure Coulomb breakup with the first
order calculations (which are deduced from the same model in a particular limit), we find
that higher order effects in these reactions are generally small. They reduce the magnitudes
of the first order relative energy distribution of the fragments by about 10-15% in the peak
region. Their shapes, however, remain almost unaltered by the higher order effects. However,
a comparison of the higher order and first order calculations of two different models may lead
to large differences in the two results. This is due to the fact that higher order calculations
performed within different theories include these effects in different approximations and
could differ quite a bit from each other.
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