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Abstract 

The dissociation reaction 6He à α + 2n was studied with 6He projectiles at 23.9 MeV/u in 

targets of C, Al, Cu, Sn, Pb and U.  Relative to Al, the 2n removal cross section n2−σ with each of 

the other targets was determined.  With U, the Coulomb part accounts for 2/3 of n2−σ .  The widths 

of the α-particle and neutron parallel momentum distributions increase with target Z.  For the α-

particle, 6He dissociation on C gave width σ = (40.2 ± 2.3) MeV/c, corresponding to an rms radius 

of the halo neutrons of (2.95 ± 0.17) fm — (0.35± 0.17) fm larger than the rms radius of all four 

neutrons.  The relation between the widths of the α-particle and neutron distributions indicates 

only a small correlation between the two neutrons.  This conclusion is supported by the 

distribution function for the angle between the two neutrons, which was obtained in kinematically 

complete measurements.  The latter measurements with the U target also yielded an E1 strength 

function, and it agreed with one determined in an experiment at ten times our beam energy.  

 
I.  INTRODUCTION 

A neutron halo nucleus has one or more neutrons that are so lightly bound that their wave 

function extends well beyond the rest of the nucleus.  Such nuclei are found near the neutron 

dripline.  Examples are 11Be, with a one-neutron halo, and 6He and 11Li, with two-neutron halos.  

When a halo nucleus is used as a projectile, the halo manifests itself by producing a larger reaction 

cross section than do neighboring nuclei [1], with the obvious interpretation that the radius of a 

halo nucleus is enhanced.  A dominant channel in the reaction of a halo nucleus is the separation 

of the halo neutron(s) from the remainder of the nucleus.  The momentum distribution of either the 

remainder or of the neutron has been found to be narrower than those of normal nuclei, suggesting 

again a large spatial distribution of the nuclear matter [2]. 

 These observations led to the picture of a halo nucleus as a lightly-bound structure 

consisting of two parts—a core and a neutron (or neutron pair) [3,4].  A consequence of this 

binary structure is the possibility of Coulomb exciting the structure into an oscillation of the core 

against the halo neutron(s) [4].  In comparison to the giant dipole resonance, the excitation energy 

of this resonant mode would be rather low because the restoring force on the core would be 

supplied by only the one or two halo neutrons rather than by all the neutrons in the nucleus.  

Hence, the word soft precedes dipole resonance in the name of this mode.  What has been 

observed, whenever looked for, is a peak in the electric dipole strength function at an energy less 
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than a few MeV above the dissociation threshold [5,6,7]. 

One may expect similar structure and properties for all nuclei near the neutron dripline.  

Apart from the deuteron, the 6He nucleus is the lightest of the halo nuclei, and with an α-particle 

for its core, it should also be the simplest; its study may contribute to the understanding of the 

properties of other dripline nuclei as well as of itself.  When 6He is excited to an energy above the 

2-n separation energy of 0.975 MeV, the three-body decay 6He → a + n + n may occur.  A brief 

review of the medium- and high-energy literature on 6He begins with Tanihata et al. [1] who 

measured the interaction cross sections of 6He at 0.79 GeV/u on Be, C and Al targets, from which 

the nuclear interaction radius was deduced.  Then, Kobayashi et al. [8,9] measured the interaction 

cross sections of 6He around 1 GeV/u and the transverse momentum distribution of the a-particle 

from the fragmentation of 6He.  Later, the transverse momentum distributions of neutrons from 
6He at 0.8 GeV/u on Pb and C targets were measured by the same group [10].  The momentum 

distribution of the a-particle from 6He fragmentation, detected at 5° for beam energies near 65 

MeV/u, was measured [11].  The early studies of neutron halo nuclei have been reviewed [12, 13].  
In 1996 total reaction cross sections of 6He at intermediate energies (20-40 MeV/u) were reported 

[14].  An experiment was performed recently to study the one-neutron stripping mechanism of 6He 

at 240 MeV/u [15], and a similar group reported on inelastic excitations of 6He [16].  Last year the 

soft dipole resonance was observed in the 6Li(7Li,7Be)6He reaction at 65 MeV/u [17]. 

The experiment reported here is on dissociation of 6He.  The data deal with four aspects of 

the structure of 6He: (1) The cross section for the dissociation n2−σ , in combination with 

previously-measured [18] reaction cross sections for 6He and the α-particle, provide a test of the 

core-2n model of 6He.  Also, by using both low-Z and high-Z targets, we were able to separate the 

Coulomb and nuclear contributions to the dissociation.  (2) Measurements of the parallel 

momentum distributions of the α-particle gave a value for the rms radius of the halo neutrons.  (3) 

A measure of the correlation between the two halo neutrons was obtained from two kinds of 

data—the momentum distribution of the α-particle in comparison with the momentum distribution 

of the neutrons, and the distribution of the angle between the neutrons.  (4) From kinematically 

complete data and the Coulomb fraction determined in (1) above, we were able to measure the 

first few MeV of the E1 strength function.  After a description of the experimental setup, each of 

these four aspects is presented in order. 
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II.  EXPERIMENTAL SETUP 
A 6He beam of 25.2 MeV/u was produced with the K1200 cyclotron and A1200 fragment 

separator [19] at the National Superconducting Cyclotron Laboratory at Michigan State 

University.  The beam delivered to the targets consisted of 81% 6He and 19% 9Be, and the 

intensity was about 104/s.  The 9Be particles were distinguished from 6He particles by their time of 

flight over a path of 41.5 m between a thin plastic scintillator placed just after the A1200 separator 

and one of 16 plastic scintillator bars which constitute the E detectors of Fig. 1. 

That figure shows the remainder of the experimental setup.  The direction of each 6He 

incident on the target was determined to ~ 0.2° FWHM by two position-sensitive parallel-plate 

 
Fig. 1  Schematics of the experimental setup. The neutron walls, one behind the other, 

were placed 5.00 and 5.84 meters from the target.  A plastic scintillator array (E detectors) was 
mounted inside the vacuum chamber about 1.8 meters from the target.  Silicon strip detectors (∆E 
detectors) were located at the entrance of the magnet, 15.2 cm  from the target.  PPACs were 
mounted 39 and 130 cm upstream from the target. 

 
avalanche counters (PPAC’s) [20] positioned 39 cm and 130 cm upstream from the targets.  The 

experiment was performed with six targets—C, Al, Cu, Sn, Pb and U— whose thicknesses were 

94, 237, 274, 373, 384 and 344mg/cm2, respectively .  We also took a run with a blank target in 

order to see events from anything other than the targets.  For this run the beam energy was reduced 

by 2.6 MeV/u, the typical energy loss in the targets.   

Neutrons in the experiment were detected by a pair of neutron walls [21] with   active area 

2m ×  2m.  Each wall consisted of 25 horizontally stacked, rectangular Pyrex cells filled with NE-
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213 liquid scintillator and with photomultiplier tubes (PMT) attached to their ends.  Neutron time-

of-flight was obtained from the time signal of the coincident α-particle in the E detector and the 

mean time of the two PMT signals.  Horizontal position of the neutron was determined from the 

time difference between the two PMT signals.  For a 25-MeV neutron the energy resolution is ~ 

4% FWHM, and one wall has an efficiency of ~ 11% if a threshold of 1 MeV electron equivalent 

energy is set for the two phototubes at the ends of a cell. 

The fragment detection system [22] consists of two silicon ∆E detectors, a deflecting 

magnet and 16 scintillator bars (E detectors).  The magnet reduces background by deflecting 

unreacted projectiles (6He in this experiment) away from the beamline into a scintillator bar so that 

most neutrons produced by the stopping 6He are directed away from the neutron walls.  A neutron 

shield, not shown in Fig. 1, was interposed between the bars and the walls.  By varying the 

magnetic field we deflected an a-particle beam into each scintillator bar for energy calibration 

purposes. 

Each ∆E detector, 5cm x 5cm x 250µm, was a MICRON 16x16 double-sided silicon strip 

detector. The strip detectors were 15.2 cm from the target.  The two Si detectors were placed side-

by-side, giving horizontal and vertical acceptances of 36° and 19° for the pair. 

 
III. 2N REMOVAL CROSS SECTION n2−σ  

A sample of the basic data is shown in Fig. 2, where we see pulse height spectra in 12 of 

the 16 scintillator bars in coincidence with a neutron; the target was U.  The sharp peaks around 

channel 250 are from unreacted 6He projectiles in accidental coincidence with neutrons.  Most of 

these events are in Bars # 5 and 6.  Coincidence with a neutron has reduced the number by almost 

a factor of 1,000.  The bar number increases with magnet deflection angle, and starting with Bar 

#8 we see the lower-rigidity a-particles increase in intensity to a maximum in Bar # 11 and then 

fall off.  Kinematic spread in 6He breakup is the main cause of the width of the a-particle peaks.  

From these spectra it is easy to count the number of a- particles in spite of the fact that they are 

only ~ 10-4 of the particles entering the magnetic field from the target. 

From the integrated α-particle counts in Bars 8-14 and 6He counts in Bars 3-8 in Fig. 2 and 

in similar spectra for the other targets we determined the relative values of n2−σ .  To get absolute 

values we normalized the Al value to n2−σ of 6He on Si, measured by Warner et al. [14] to be 
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Fig. 2.  Light output distributions in scintillator bars 3-14 for the U target.  The sharp peak 
in Bars 3-8 are unreacted 6He projectiles.  The broad peak in Bars 8-14 are a-particles.  Note the 
different intensity scales. 
 

(0.47 ±  0.06) b.  The n2−σ values for all of the targets are listed in the second column of Table I, 

and two Glauber predictions are given in the third and fourth columns.  Glauber calculations of 

reaction cross sections were first applied to data at bombarding energies near 1 GeV/nucleon [23], 

where they are most rigorously justified.  However, they were also found to predict well the 

magnitude and energy dependences of Rσ and n2−σ data at bombarding energies near 50 

 
Table I.  Values of σ-2n in barns.  In addition to the given statistical errors on the measured values, 
there is a 13% systematic error since the cross sections for five of the targets were determined 
relative to 0.47 ± 0.06 for Si [14] and Al.  The third, fourth and last columns give the results of 
model calculations; columns 2 and 5, present experiment.  
 

 Target    Measured  
      Here 

    Warner   
[   [18] 

 Ferreira et al. 
        [25] 

    Coulomb       
        σ-2n 

 Warner [18] 

    U   1.87 ± 0.10     1.69    1.25± 0.17     1.10 
    Pb   1.70 ± 0.10     1.51    1.80   1.02± 0.14     0.92 
    Sn   1.22 ± 0.07    0.92    0.42± 0.06     0.39 
    Cu   0.82 ± 0.05    0.62    0.89   0.16± 0.02     0.15 
    Al   0.47    0.43    0.037± 0.005     0.04 
    C   0.36 ± 0.025    0.35    0.46   0.009± 0.001     0.01 
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MeV/nucleon [18].  The predictions in the third column of Table I were made following 

identically the method used in Ref. [18] with matter densities taken from [24].  The result given 

by Ferreira et al. [25] is somewhat different.  Most of the difference is in the calculation of the 

nuclear cross section since both authors used the same model to obtain the Coulomb cross section.  

The 6He projectile energy in Ferreira’s calculations is 30 MeV/u, but we adapted Warner’s code 

[18] to our energy of 23.9 MeV/u; it is probably the better one for comparison with our data.  For 

all targets, Warner’s predictions are below our measured values, and Ferreira’s are above them. 

A test of the core-2n model [26] applied to 6He is to check whether 

)()()( 6
2

6 THeTTHe nRR +++=+ −σασσ .         (1) 

The simple additivity in Eq. 1 says that quantum mechanical interference is negligible for 

interactions of core+halo nuclei.  There are two reaction (R) cross sections and one target (T), and, 

of course, the projectile velocity should be the same throughout.  A test is available for the Pb 

target since Rσ has been determined [18] to be (4.51 ± 0.10) barns for 6He and (2.69 ± 0.08) b for a.  

The difference, (1.82 ± 0.13) b, compares well with our measurement of  (1.70 ± 0.10) b for 

)(6
2 PbHen +−σ in Table I.  The three projectile velocities in Eq. 1 are not exactly the same in this 

test, but [18] shows only a small velocity dependence.   

3.1 Coulomb contribution 

The purpose of using both low-Z and high-Z targets in the experiment was to separate the 

Coulomb and nuclear contributions to n2−σ .  To perform this separation we used the expected 

nuclear and Coulomb dependencies on A and Z: 
8.13/1

2 )6.22.1( bZAacoulombnuclearn ++=+=− σσσ                      (2) 

The nuclear part is assumed to proceed via peripheral collisions, hence the proportionality to the 

sum of the target and 6He radii [27, 28].  The Coulomb part depends on the intensity ),(1 γEZnE  

[29] of equivalent E1 photons surrounding the target nucleus.  If one examines ),(1 γEZnE  vs. Z,A 

for the six targets in the region covered by our experiment ( γE ~ 1-3 MeV), one finds to good 

approximation that 8.1
1 ),( ZEZnE ∝γ .   The increasing distance of closest approach with A (and Z) 

prevents the dependence from being Z2.  The n2−σ data, and the best fit to them, are shown in Fig. 3 

with 0065.00734.0 ±=a barns and 410)50.066.3( −×±=b barns.  Hence, the Coulomb cross 

sections, which are also listed in Table I and are the dot-dashed curve in Fig. 3, are given by:  
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8.1410)50.066.3( ZCoulomb
−±=σ barns.    (3) 

 

 

 

Fig. 3. Total 2n removal cross 
sections for the six targets.  The 
points are the experimental data. The 
solid curve is a fitting model to 
extract the Coulomb part of the cross 
section (Eq. 3).  The results are also 
listed in Table I.

 

It can be seen that for U and Pb the Coulomb effect accounts for more than half of the total 2-n 

removal cross section of 6He.  The essential agreement between our measurement and Warner’s 

calculations [14, 18] may mean that his matter densities, nucleon-nucleon cross sections, and E1 

strength functions are realistic. 

 
IV. MOMENTUM DISTRIBUTIONS and HALO RADIUS 

The Serber model [30] tells us that the measured momentum distribution of a fragment or 

neutron resulting from a “sudden” dissociation is the same as the momentum distribution of that 

component in the 6He projectile.  In our experiment the beam velocity is ~ c/4, and the interaction 

time with a nucleus in the C target ~ 50 fm/c, whereas a halo neutron orbit has a radius of ~ 3 fm 

(see below), a momentum of ~ 40 MeV/c (see Table II below) and, therefore, a period of ~ 400 

fm/c.  Hence, the interaction time is much less than the period of the motion, and the sudden 

approximation is valid.  That validity means that a measurement of momentum distribution will, 

by means of a Fourier transform, give a spatial distribution.  To study the 2n halo, we use the 

momentum distribution of the a-particle, which, by momentum conservation is the same as that of 

the two neutrons but does not require an n-n coincidence measurement.  In fact, we used the 

distribution of only the parallel component of the a-particle momentum because Coulomb 

deflection of the incident 6He and of the released a-particle increases the transverse momentum 

but has little effect on the parallel component for the small angles of this experiment. 
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Following Hansen and Jonson [4], we use the simple Yukawa-type wave function to obtain 

the asymptotic behavior of the wave function, where peripheral reactions are strong: 

      
ψ

ρπ

ρ

( )
/

r
e

r

r

∝
−1

2
  ,                                   (4) 

where ρ is a size parameter and r is the distance between the a-particle core and each halo neutron.  

After Fourier transforming ?(r) and integrating over the two transverse dimensions, the parallel 

momentum distribution has the form 

22
0 )2/()(

2/
Γ+−

Γ
=

ppdp
dN

,                            (5) 

with maximum at p0 and FWHM = Γ =
2η
ρ

.  This distribution and a Gaussian with the same 

FWHM are almost identical in the central region, so the width σ of the equivalent Gaussian can be 

used to determine the rms halo radius:  

    r 2
1
2

2
≈

ρ
= 

2354.2
2

σ
η

.   (6) 

       For all six targets the parallel momentum distribution of the a-particles is well fitted with a 

Gaussian.  As a representative sample, we show the distribution and fit with the U target in Fig. 4.   

 

 

 
 

 
  Fig. 4.  Alpha particle and neutron parallel 

momentum distributions from 6He breakup on  
U.  The curves are Gaussians.

 

The width (σ values) for each target is listed in Table II and plotted against the Z of the target in 

 
Table II.  Widths, in MeV/c, of the parallel momentum distributions for the six targets.  

 
         C        Al        Cu        Sn        Pb        U 
   σP// (a)   40.2±2.3   44.6±2.2    33.1±1.6   33.0±1.3   32.4±1.4   31.2±0.9 

   σP// (n)   26.9±2.2   24.7±1.4    21.9±1.5   23.0±1.3   19.8±1.2   19.5±1.0 
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the top part of Fig. 5.  (For use in the next section, Sec.V, the same information for neutrons is 

included in Figs. 4 and 5 and in Table II.)  It can be seen that the widths of both the neutron and  

the a-particle distributions decrease with increasing target charge.  Perhaps the decrease may be
 

 

 
 

 
 Fig. 5  (top) Widths of a-particle 

(open points) and neutron (filled 
points) parallel momentum 
distributions for the six targets.  
(bottom) Ratio of the above widths 
compared to 2 and 2.

attributed to a weakening of the validity of the sudden approximation when the long-range 

Coulomb interaction makes a significant contribution to the breakup, since long range implies 

long interaction time.  Then the distributions with the C target should most reliably give the 

distributions within 6He.  Using σa = (40.2±2.3) MeV/c for the C target, Eq. 6 implies that 

fmr )17.095.2(2
1

2 ±≈ . 

The rms radius of all four neutrons in 6He has been determined from 6He interaction cross 

sections [1] to be (2.61±0.03) fm [27] and (2.59±0.04) fm [28].  The rms radius determined here 

from the a-particle parallel momentum distribution reflects only the two halo neutrons because the 

calculation is based upon an asymptotic wave function.  Therefore, the rms radius determined here 

should be larger, and it is, by (0.35 ± 0.17) fm. 

Many refinements have been made in computing the matter density of 6He.  Cs?t? [31] 

included a t + t configuration and found 2.65 fm for the neutron radius.  Arai et al. [32] allowed 

the a-particle core to have a 3N + N cluster and for various models got neutron radii in the range 

2.57-2.77 fm.  Oganessian et al. [33] applied a three-body calculation using the method of 

hyperspherical harmonics [34] to fit 2n transfer data and found that of the two configurations in 

that model the “dineutron” configuration was dominant over the “cigar- like” configuration.  

Proton-6He elastic scattering data of Alkhazov et al. [35] at 717 MeV/nucleon were fitted by them 
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with separate density distributions for the a-particle core and the valence neutrons.  For two sets of 

their distributions they determined separate radii for the valence neutrons alone (2.97 ± 0.24 fm) 

and for all the neutrons (2.48 ± 0.11 fm), which gives a difference of 0.49 ± 0.26, in agreement 

with the result of our elementary analysis above.   They also found 2.30 ± 0.07 fm for the rms 

radius of all the nuclear matter.  Al-Khalili and Tostevin [36] showed that inclusion of correlations 

among the projectile and target constituents increased the size of the rms matter radius, from 2.30 

fm [35] to 2.50 fm in the case of 6He [37].  In another fit to the data of Alkhazov et al. [35], Abu-

Ibrahim, Fujimura and Suzuki [38] used a complete expansion of the Glauber amplitude instead of 

the oft-used optical limit approximation and got a matter radius of 2.51 fm.  They also determined 

a radius for all of the neutrons--2.78 fm.  However, Tomaselli et al. [39], applying the dynamic 

correlation model to the same data, got a smaller matter radius, 2.38 fm.  Finally, Karataglidis et 

al. [40] could find no clear evidence for a neutron halo in 6He in their analyses of p-6He elastic 

scattering data at 70 MeV/nucleon [41] or in 6Li(?,p+)6He data [42, 43].  The first analysis used a 

fully-microscopic folding model and the second a DWIA model. 

 
V. CORRELATION of the HALO NEUTRONS 

If the two halo neutrons in 6He are correlated in their motion, sudden dissociation of 6He 

will preserve the vector momenta of the neutrons and allow the correlation to be observed in the 

laboratory.  An extreme example occurs when the two neutrons have the same space coordinates, 

hence, a “dineutron.”  Sudden dissociation will, in this case, reveal an a-particle moving in one 

direction and two neutrons with identical momenta in  the opposite direction.  The angle ?nn 

between the neutrons will, of course, be zero.  We have two methods, using independent sets of 

data, with which to look for a correlation.   

One method applies conservation of momentum to the momentum distributions of 

the preceding section.  Conservation of momentum requires the momentum of the a-particle in 
6He to be balanced by the momentum of the two neutrons.  It follows then that the widths of the a-

particle and neutron distributions should be related.  Applying the law of cosines to the triangle 

formed by the three momentum vectors gives 

    2p(n1)•p(n2) = pa
2 – [pn1

2 + pn2
2].   (7) 

Averaging, and noting that Gaussians have <px
2> = <py

2> = <pz
2> = s 2, so that <p2> = 3s 2, gives: 

  (2/3)<p(n1)•p(n2)> = s a
2 – 2s n

2 and   (8) 
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   s a/s n = 2
21 /)()()3/2(2 nnpnp σ•+    (9) 

We apply Eq. 9 to three special cases:   

Case 1.  The two neutrons form a dineutron.  Then p(n1) = p(n2), <p(n1)•p(n2)> becomes 

<pn
2> = 3s n

2, and s a/s n = 2.   

Case 2.  The two neutrons are not correlated, i.e., <p(n1)•p(n2)> = 0.  s a/s n = 2 . 

Case 3.  The two neutrons and the a-particle are emitted in accord with the 3-body phase-

space model.  This model is not a model of zero correlation; momentum conservation forces a 

correlation.  It was shown by Sackett et al. [44] that <p(n1)•p(n2)> is negative, with the 

consequence that s a/s n < 2 .  In fact [44],  

<p(n1)•p(n2)> = -Ed[mn
2/(2mn+ma )];   (10) 

Ed is the decay energy, the sum of the kinetic energies of the three particles, and mn and ma are the 

neutron and a-particle masses.  A typical value of Ed is 1.8 MeV [45].  With s n in Table II ranging 

from 26.9 MeV/c for the C target to 19.5 MeV/c for the U target, Eq. 9 gives s a/s n = 1.32 to 1.23. 

The values of s a/s n for the six targets and for Cases 1 and 2 are shown in the bottom part 

of Fig. 5.  Case 1, where ?nn = 0 and s a/s n = 2, is not supported by Fig. 5.  The data fluctuate near, 

but not around, the uncorrelated value, 2 , so the halo neutrons are not completely uncorrelated, 

but the correlation of Case 3 is below the data. 

In the other method we look directly at the ?nn, or the cos(?nn), distribution function.  The 

events in this set are sparse since each event has an a-n-n triple coincidence.  The measured cos 

?nn distribution functions for the six targets [45] are statistically equivalent.  To reduce the 

fluctuations we summed the distributions, and that sum is shown in Fig. 6.  The response of the 

detection system distorts the true cos ?nn distribution.  For example, the solid-angle acceptance of 

the system favors breakups with small values of ?nn.  To take that response, finite resolution, cross 

talk and other effects into account in comparing two theoretical models with experiment, we 

folded all effects with each theoretical cos ?nn distribution in a Monte-Carlo simulation.  The 

dashed histogram in Fig. 6, for the dineutron model, is strongly forward peaked; without the 

detector response it would be a delta function at cos ?nn = 1.  The solid histogram is for the 3-body 

phase-space model.  In that model momentum conservation and a-particle recoil force a 

correlation in which the average value of cos ?nn is somewhat less than 90°[44]. With Eq. 10 and 

the approximation <p(n1)•p(n2)> = <pn
2><cos?>, <cos?> ?  -0.2.  The model calculation shows
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this effect, but the data do not.  As in Fig. 5 for s a/s n, the dineutron model is also not favored by 

the cos ?nn data of Fig. 6, but there is a tendency towards it.  This may be evidence for the hybrid 

model [46], a model in which the two valence neutrons of 6He stay in shell-model orbits when 

they are close to the core, but form a cluster (dineutron) when they are far from the core. If the 

 

 

 
 

Fig. 6.  Distribution of angle between the 
two neutrons from 6He breakup.  The points are 
from 2n-a coincidence events for the six targets 
used in the experiment.  The angle was calculated 
in the (2n + a) CM frame.  The solid histogram is 
a Monte-Carlo simulation with the 3-body phase  
space model, and the dashed line is the same          
simulation with the dineutron model.  The 
dashed line reaches above 10,000 at cosθ = 1.

 
6He nucleus breaks up when the neutrons are far from the core, the neutrons tend to be strongly 

correlated.  If the 6He breaks up when the neutrons are close to the core, the neutrons tend to be 

uncorrelated. 

VI. DIPOLE STRENGTH FUNCTION 

In Sec. III. we saw that with targets of Pb and U most of the 2-n removal cross section of 
6He is Coulomb induced.  For each such event the final-state kinematics gave us the decay energy 

Ed and, therefore, the energy of the photon absorbed, resulting in some information on the dipole 

strength function dB(E1)/dEx through the following relation [29] to the measurable spectral 

function ds E1/dEd: 

   
d

E

Ed dE
d

En
c

dE
EdB 1

1
3 )(

1
16
9)1( σ

π γ

η
=                                   (11) 

In this equation Eγ = Ex = S2n + Ed, and n EE1 ( )γ is the number of equivalent E1 photons with 

energy Eγ surrounding the target nucleus.  For 6He the value of S2n is 0.975 MeV. From vector 

momentum measurements of each of the three decay products, the decay energy was calculated for 

each 2n-a coincident event, and a measured spectral function was constructed.  The function 

ds E1/dEd in Eq. 10 differs from the measured function in two respects.  The measured function 

contains distortions introduced by the detection system, and it contains both Coulomb and nuclear 
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contributions.  In computer simulations using the detector response function, the distortions were 

removed.  Table I and Fig. 3 show that, for the U target, 2/3 of s -2n, or 1.25 b, is Coulomb induced.  

We used this value to normalize the dipole strength function determined with the U target, and we 

assumed that the shape of the function was not significantly altered by the nuclear part.  The result 

is shown in Fig. 7, where the shaded area gives the range allowed by the statistical uncertainty in 

ds E1/dEd.  The function agrees with that determined by Aumann et al. [16] for 6He projectiles at 

240 MeV/nucleon.  The dashed curve in Fig. 7 comes from a 3-body model [47] based on a 

hyperspherical harmonics approach.  The dot-dashed curve, which is normalized to our peak, also 

comes from a 3-body model, and the authors [48] present a simple algebraic formula that gives an 

excellent approximation to  the exact expression for the shape of the strength function. The 

 

 
 

 

 

Fig. 7.  Dipole strength function.  
 Shaded area determined from the  
U data.  Dashed curve [47] and  
dot-dashed curve [48] from two  
3-body models. 

 

experiment and the calculations agree that there is a strong concentration of the dipole strength at 

low energy, Ed  ∼ 1.25 – 2.5 MeV.  

 
VII. SUMMARY  

The dissociation reaction 6He à α + 2n was studied with 6He projectiles at 23.9 

MeV/u in targets of C, Al, Cu, Sn, Pb and U.  Relative to Al, the 2n removal cross 

section n2−σ with each of the other targets was determined.  They were systematically higher in 

comparison to one model calculation [18] and systematically lower in comparison to another [25].  

For a Pb target, values of total reaction cross sections s R [18] were available for comparison with 

our value of (1.70 ± 0.10) b through a prediction of the core-2n model [26] that n2−σ (6He ) = s R 

(6He)- s R (a).  The difference of the reaction cross sections [18], 1.82 ± 0.13, agrees with our 
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directly-measured value. 

To determine the separate nuclear and Coulomb parts of the dissociation we applied our 

measured values of n2−σ to 8.13/1
2 )6.22.1( bZAacoulombnuclearn ++=+=− σσσ . 

For U, the Coulomb part accounts for 2/3 of n2−σ .   

Widths of the α-particle and neutron parallel momentum distributions decrease with target 

Z, perhaps indicating a weakening of the validity of the sudden approximation as Coulomb 

dissociation becomes important.  The α-particle width for 6He dissociation on C gave σa = (40.2 ± 

2.3) MeV/c, corresponding to a rms halo radius of (2.95 ± 0.17) fm, (0.35± 0.17) fm larger than 

the rms radius of all four neutrons [27,28]. 

Conservation of momentum requires a relationship between the α-particle and neutron 

momentum distributions and between the widths of those distributions.  The observed relation 

indicates only a small correlation between the two neutrons, and this conclusion is supported by 

the distribution function for the angle between the two neutrons, which was obtained in n-n-a 

kinematically complete measurements. 

The kinematically-complete measurements with the U target, for which the dissociation is 

2/3 Coulomb, also yielded an E1 strength function up to ~ 2.5 MeV, and it agreed with one 

determined in an experiment at ten times our beam energy [16]. 
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