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Abstract. Self-potentials and �elds of charged particle beams are found by the tem-
plate potential algorithm. The approach is based on a discrete representation by
auxiliary macro-elements or templates of the charge density distribution. Superposi-
tion of the potentials and �elds including image forces for each template is used to
reproduce the total potential and �eld of the original charge distribution within a
conducting boundary. The technique is fast and especially useful for the simulation
of charged particle beam dynamics in accelerators, when the Poisson solver is being
used repeatedly. Applications to space charge beam simulation are presented.

1 Introduction

To �nd a numerical solution of the Poisson equation within a region R,

�u(x) = �4��(x) for x = (x; y; z) 2 R

with speci�ed conditions on the boundary @R, such grid numerical methods, as Fast Poisson
Solvers, are often employed. These algorithms are based on the Fast Fourier Transform
(FFT) or cyclic reduction for simple regions and multi-grid algorithms for more complicated
boundary shapes. These techniques derive the grid potential u(x) (x = (x; y; z)) and �eld
Ex;y;z from a grid density �(x) assumed known apriori by solving a set of �nite-di�erence
equations. The results usually have an accuracy of  (h) = O(h2 = h2x + h2y + h2z) (where
hx;y;z are the mesh sizes). These solvers are in common use. See, e.g., [1] and references
therein.

During charged particle beam simulation, at each step of the integration of the motion
equations, only the coordinates of Np macro-particles are known. The spatial grid charge
density �(x) is derived from the position of the beam particles. Since the reproduction of
the grid density inuences both the speed and the accuracy  � =  (h;Np) of the calculated
potential [2, 3], we present an alternative fast Poisson Solver approach to �nd self potential
and �eld from macroparticle coordinates.

The new formulation is based on the template potential concept [4, 5] for reconstruction
of the total potential of a charged particle beam in the presence of conductiong boundaries.
This approach allows a signi�cant reduction in the number of macroparticles, Np, and a
sparser spatial grid without concomitant loss of accuracy.

The technique may be used for either envelope or PIC models in either two-dimensional
(2D) or three-dimensional (3D) geometries. The template technique has been veri�ed by
independent algorithms and shown to be fast and accurate and to be appropriate for many
practical space charge related applications.



2 Green's Function, Moment Method and Templates

Analytical and semi-analytical methods. A potential u(x) generated by a charge den-
sity distribution �(x) inside a volume R with speci�ed boundary conditions on @R can be
represented via the Green's function [6]:

u(x) =

Z
R

�(x0)G(x;x0)dx0 +
1

4�

Z
@R

[G(x)
@u(x;x0)

@n0
� u(x)

@G(x;x0)

@n0
]ds0

For free space, the potential u(x) can be expressed by a simple Green's function of the form
Gfree(x;x

0) = 1=jx� x0j. DiÆculties arise in the presence of a conducting boundary, where
it is necessary to �t the solution u to boundary constraints.

For Dirichlet boundary conditions (throughout this paper we will consider this case) the
Green's function G = GD must satisfy GD j@R = 0, and the solution becomes:

u(x) =

Z
R

�(x0)GD(x;x
0)dx0 �

1

4�

Z
@R

u(x)
@GD(x;x

0)

@n0
ds0 (1)

However, in the absence of simple geometries, the Green's function approach is diÆcult, lim-
iting its applications. The representation of GD in cylindrical coordinates to meet boundary
conditions, uses the Fourier-Bessel series ([6], p. 116). Therefore, as a practical manner,
the Green's function approach is limited to only simple beam distributions and surface @R
geometries.

Nevertheless the idea of the Green's function can be employed for numerical Poisson
solvers, appropriate for rather general beam distributions and boundary shapes. In the
moment method [7], the Green's function formulation is used as a part of computational
technique, where the total potential is represented as utotal(x) = ufree(x)+uimage(x); x 2
R satisfying on the boundary utotalj@R = 0:

utotal(x) =

Z
R

�(x0)Gfree(x;x
0)dx0 +

Z
@R

�image(x
0)Gfree(x;x

0)ds0 (2)

The potential ufree is produced by the charge density � in free space with Gfree(x;x
0). The

corresponding image-potential, uimage(x), de�ned by �image is found from a set of equations
kAk�image = �ufree that satisfy the constraint utotal(x)jx2@R = 0 on the conducting
surface. Thus, the di�uculty in the construction of the proper Green's function GD for
complex geometries is replaced by �nding the image density from a set of equations.

Now the moment method with some modi�cations is known as the charge density method
with numerous applications in, e.g., ion optics [8]. Both methods are slower than contem-
porary grid methods, but can be used in situations in which rapid grid algorithms may be
diÆcult to employ.

Templates. In a previous paper [4], we introduced a numerical method, called the slice
algorithm, based on the use of the template potential concept for space charge calculations
of a 3D bunched beam. The beam bunch is represented by charged, in�nitesimally thin disks,
or slices, and the total beam potential is found by the superposition of the potentials from
all slices.

The space charge potential of an individual slice of radius Rslice within a conducting
boundary is found by the moment method (2). Then, the matrix jjAjj is calculated, �image

is derived from the set of equations, and the total potential utotal obtained from:

uslicetotal(x; S(z)) = uslicefree(x; S(z)) + usliceimage(x; S(z)) (3)
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where S(z) is a shape function which de�nes the longitudinal z-pro�le of the beam for the
case of round slices. For elliptical slices, there are two shape functions Sx;y, which determine
the z-pro�les. Fig. 1 illustrates the moment method.
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Fig. 1. Template potentials produced by three charged slices of di�erent radii within a conducting
beam pipe 4 cm in diameter respectively. Left: ufree(x) (positive) and uimage(x) (negative) with
x = (0; 0; z), plotted with dotted, dashed and solid lines for slices of 1, 2 and 3 cm in diameter.
Right: The corresponding total potentials utotal = ufree + uimage for each slice respectively.

As an illustration, for the case of free space, the potential from a charged disc may be
evaluated by the formula:

ufree(x0; y0; z0) =

Z
2�

0

Z Rslice

0

�slice(r; �) � rdrd�p
(r cos�� x0)2 + (r sin�� y0)2 + z2

0

In the case of radial symmetry, a simple analytical representation exists, reducing this for-
mula to: uslicefree(x = 0; y = 0; z) = 2��slice

0
(
p
(R2

slice + z2)� jzj). All numerically obtained
free-space potentials in Fig. 1, coincide with this formula.

Fig. 2. Two possible 3D beams within a conducting beam pipe 4 cm in diameter represented by
Ns = 50 slices. Left: Ellipsoid-like beam bunch with semiaxes R0 � R0 � zm=1 cm � 1 cm �

10 cm and the shape function S(z) = R0

p
1� (z=zm)2. Right: Beam bunch with more general

longitudinal variation.
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For this speci�c case all slices were assumed to have constant transverse density �slice(r) �
�slice0 . The potential for each template satis�es the zero potential boundary conditions and
therefore, the superposition of all Ns slices representing the total beam bunch satis�es the
Poisson equation. In Fig. 2 are shown two possible bunched beam geometries. In both cases,
the beam was assumed to have a total charge of 10�11 C and be contained in a conducting
chamber 4 cm in diameter. The potentials ubunchtotal shown in Fig. 3 were obtained by super-
position of the potentials of Ns =50 slices, representing the bunch. These Ns slice potentials
were found by appropriate scaling and interpolation of the tabulated template potentials.

-0.10 -0.05 0.00 0.05 0.10 0.15
Z [m]

0.0

0.5

1.0

1.5

P
ot

en
tia

ls
  

u(
r,

z)
  

[V
]

-0.10 -0.05 0.00 0.05 0.10 0.15
Z [m]

0.0

0.5

1.0

1.5

P
ot

en
tia

ls
  

u(
r,

z)
  

[V
]

Fig. 3. Potentials u(x; y; z) of bunched beams from Fig. 2 (left and right corespondingly) as a

function of longitudinal position, z, for di�erent radii 0 � r =
p
x2 + y2 � Rcyl, with 2Rcyl=4 cm.

(See [9], p. 407 for comparison).

3 Templates for Arbitrary Beams.

The template approach can be used for variable transverse charge distributions and ellipti-
cal beam shapes common to quadrupole focusing channels. However, the beam is assumed
centered within the conducting chamber.

A general two-dimensional model of the charge density, �slice, for templates is based on
the concept of equivalent beams [9{11]:

�slice(x; y; p) = �m(p)
n
1�

x2

x2m(p)
�

y2

y2m(p)

op
(4)

where xm(p); ym(p) are maximal slice coordinates dependent on the parameter p. The rms
size may be found from [11]:

< x2 > (p) =

R
x;y

x2�slice(x; y; p)dxdyR
x;y �(x; y; p)dxdy

In Fig. 4, rms-matched 2D charge density distributions are plotted. For p > 0 the densities
are maximum in the center going to zero near the edge. For p = 0, the charge density is
constant, and for p < 0 hollow beams may be represented. For p ! 1 the charge density
is Gaussian [11]. Thus, this approach allows the representation of a broad range of possible
charge densities �slice(x; y; p) with rms-matched transverse dimensions.
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The rms sizes for beams of elliptical symmetry are given by

< x2 > (p) =
�2r2m(p)

2(p+ 1)
and < y2 > (p) =

��2r2m(p)

2(p+ 1)
(5)

where the semiaxes are ax = �rm(p); ay = ��1rm(p) with � being the aspect ratio.

For the case of non-round (� 6= 1) beams, it is necessary to calculate the o�-axis potentials
only for the �rst quadrant: � 2 [0; �=2]. (See Fig. 4.) We found the template potentials
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Fig. 4. Left: Rms-matched charge densities �(r; p) as functions of r for di�erent \p". Right: Slice
within elliptical conducting boundaries. For elliptical symmetry there will be horizontal and vertical
shape functions Sx;y(z). See section 4.

along three rays (� = 0; �=4; �=2) to be suÆcient to interpolate potentials for intermediate
� values. Further 10 � 15 di�erent aspect ratios (�) were found to provide good accuracy
for possible transverse beam con�gurations.

4 Beam Simulation, Using Templates

For the simulation of charged particle beams with signi�cant space charge e�ects, either rms
envelope equations or step-by-step PIC codes may be used. The envelope formalism though
computationally fast, is appropriate only for beams with elliptical symmetry propagating
through a linear focusing channel in the absence of image forces. The PIC methods are sig-
ni�cantly slower, but accomodate arbitrary beam particle distributions, conducting chamber
geometries, and focusing structures. The template technique may be applied with di�erent
degrees of generality to bridge the gap between rms envelopes and general PIC formulations:

4.1 Extension of 2D and 3D RMS Envelope Equations.

In [11] it was shown how using the template technique the 2D rms envelope formalism [9,
12] can be extended to include the e�ects of a conducting elliptical chamber. In this context,
charged cylinders, instead of disks, are used as templates. The di�erence between the more
complete template approach and that presented by the free space KV formalism is most
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pronounced for elliptical bondaries with large aspect ratios. The rms envelope equations for
ax;y;z, may be also generalized for 3D ellipsoid-like beam bunch:

a00x;y;z +Kx;y;zax;y;z �
"2x;y;z
a3x;y;z

� F sc
x;y;z = 0 (6)

where "x;y;z are rms emittances, Kx;y;z is the linear focusing and F sc
x;y;z the space charge

force (see [12], p. 278).
However, with the inclusion a conducting boundary, equation (6), assuming linear space

charge forces in free space, is not valid. In the presence of conducting walls, the behavior
of the space charge forces becomes strongly non-linear even for an ideal ellipsoid [9, 13] or
non-ellipsoidal beam, as shown in Fig. 5. However, the template potential method may be
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Fig. 5. Longitudinal space charge �elds Ez(x; y; z) = �@u=@z as a function of z, at di�erent radii

0 � r =
p
x2 + y2 � Rcyl. Left: Ez for the ellipsoid-like beam. Right: Ez for the arbitrary beam

from Fig. 2.

used to correctly obtain the required �elds, even for rather general beam distributions and
boundary shapes. Both longitudinal F total

z and transverse �elds F total
x;y may be obtained from

the potentials, by averaging and linearization of F total
x;y;z . Substitution of this result in lieu of

F sc
x;y;z in (6), provides a more self-consistent model.

4.2 3D Non-Ellipsoidal Beam.

Arbitrary beams, like that of Fig. 2 (right), may not be appropriately accomodated by an
envelope model. We need to include macro-particles fxig; i = 1; : : : ; Np in the model. In
this case, the template approach may again be applied to general beam distributions and
conducting boundaries. The transverse rms beam dimensions < x2 >1=2 (z) and < y2 >1=2

(z), as functions of the longitudinal coordinate, z, are calculated. The shape function Sx;y(z)
is then found from (5) for a speci�c p. Previous analysis [11] has shown that for 0 < p < 3
the result is not sensitive to the precise form of Sx;y. See Fig. 6. The space charge �elds
Etotal
x;y;z are derived from utotal(x; y; z); utotal(x � hx; y � hy; z � hz) and de�ne the space

charge forces Ftotal = F total
x;y;z on each particle. The integration of the motion equations:

x00i (s) +Fext(xi; s)�Ftotal(xi; s) = 0 (7)
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Fig. 6. Left: 3D bunched beam from Fig. 2 (right) within a conducting chamber of radius Rcyl = 2
cm, showing the macroparticles ensemble in ZX plane. The dashed line shows the rms beam size
and the solid line corresponds the actual beam shape S(z). Right: Potentials, found by the sub-3D

Poisson Solver as a function of z, at di�erent radii, 0 � r =
p
x2 + y2 � Rcyl. The solid lines are

the solutions of the template technique and symbols are from the sub-3D Poisson Solver for NT
z =15

\thick" slices.

can be implemented in a self-consistent manner even with arbitrary non-linear external forces
Fext. After that, new coordinates fxig are found and new rms-pro�les, shape functions, and
total potentials obtained [14]. Note, that with this approach explicit calculation of charge
density is not required. See Fig. 7.

The number of macroparticles required is relatively small, e.g.,Np / 104, since the macro-
particles are used only to generate the shape function, Sx;y(z), rather than the spatial density
�(x). In contrast, other PIC approaches such as those using cloud-in-cell (CIC) density
algorithms, require 106� 107 macroparticles. As a result, the integration of equations (7) is
very fast.

4.3 Sub-3D Poisson Solver for General Beam Simulation.

The space charge potential in the region R, satisfying zero boundary conditions at @R may
be found from the 3D Poisson equation, which can be re-written as:

@2u

@x2
+
@2u

@y2
= �4��(x; y)�

@2u

@z2

Introducing the corrected charge density [5], we obtain:

�corr(x; y; z) = �(x; y; z) +
1

4�

@2u

@z2
(8)

Then the standard Poisson equation may be re-written as:

@2u

@x2
+
@2u

@y2
= �4��corr(x; y) (9)

Note, that the series of 2D solutions of (9) could be used to obtain the solution of the
original Poisson equation if the term @2u=@z2 would be known. Dividing the beam along
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the longitudinal, z, axis by NT
z \thick" slices, we can rewrite the Poisson equation (9) and

for each \thick" slice zT 2 [z �HT
z ; z +HT

z ] a 2D Poisson equation is solved with the new
density �corr:

�corr =
�2D(x; y; z

T )

HT
z

�
1

4�

@Ez

@z
(10)

Instead of @2u=@z2 in (8) we substitute in (10) the driving term �@Ez=@z, obtained from the
template technique solution for the same boundary constraints. Thus, the 2D Poisson solver
for (9)-(10) for each \thick" slice �nds the transverse self-potentials and electric �elds Ex;y

with all possible generality, whereas the longitudinal �elds Ez are supplied by the template
technique. See Fig. 6. The corresponding space charge forces F total

x;y;z are substituted into the
equation (7) for trajectories integration.

u E3D( ),x x,y,z u E2D( ),x x,y

Rms profile
Shape ( )S zx, y

Ez

Template algorithm

3D coordinates { }xi

pi=1,...,N

3D coordinates { }xi

pi=1,...,N

Rms profile
Shape ( )S zx, y

Template algorithm

3D coordinates { }xi

pi=1,...,N

r 3D( )x

u E3D( ),x x,y,z

r 2D( )x

Fig. 7. Space charge calculations by di�erent methods for one step of integration of the 3D beam
motion equations. Left: Method from section 4.2. Middle: Sub-3D Poisson Solver from section 4.3.
Right: Regular 3D Solver.

Note, that the generation of the transverse forces is separated from the longitudinal
forces. The derivative @Ez=@z participates in each of the 2D Solvers by correcting the 2D
charge density. Without inclusion of the driving term @2u=@z2 the calculation of Ex;y would
be in error [5]. Fig. 7 illustrates a step of integration using the sub-3D and a general 3D
Poisson Solvers.

5 Templates as Special Functions

Tabulation, parameterization, interpolation. The tabulation of the template poten-
tials prior to beam simulation follows the principle used for other special functions that do
not have a simple analytical representation. During the actual space charge simulations, the
template data is extracted from the table with appropriate scaling and interpolation. The
storage requirements for the template table can be minimized. Since each template poten-
tial represents an even function, it is necessary to store only half of them, say u(x; y; z)
for z > 0. See Fig. 1. In addition, the template data could be parametrized and only the
resulting coeÆcients stored.

The number of templates required depends on the geometry of the problem. For the axi-
ally symmetric beam of Fig. 2, only 10 di�erent radii were required. For each such template,
10 o�-axis potentials should be calculated, resulting in a total of 100 templates. For cases
with less symmetry, e.g., for beam and boundary with elliptical symmetry of Fig. 4 about of
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3000 templates are required with the increase from necessary di�erent azimuthal positions
(3�) and aspect ratios (10�). Thus, the table of templates is of a moderate size. All inter-
mediate quantities are obtained by interpolation and scaling of the tabulated data. For 2D
cases, when there is no dependence on z, the memory demands are an order of magnitude
less.

Limitations of the template formalism. The accuracy of the sub-3D Poisson solver
approaches is that of the general 3D PIC models. Nevertheless, the template formalism is
not completely self-consistent because the pre-calculated data may not adequatedly reect all
possible evolutions of the particle distribution. Since the transverse 2D analysis can be used
for arbitrary densities �2D(x; y; ), the 2D problems are solved with all possible generality.
The lack of self-consistency is in the replacement of @2u=@z2 by @Ez=@z in (10).

Nonetheless, the quantitative analysis in [10, 11] showed that for a large class of density
distributions �(x; y; p) there is a relatively weak sensitivity of the longitudinal Ez �elds to
the details of transverse charge densities. As the result, the space charge �elds: Ex;y found
from a series of 2D problems (9) and Ez, supplied by the slice algorithm, provide an accurate
representation of space charge forces.

For beams, whose transverse densities may be described analytically (4), the template
formalism is appropriate. However, for cases where the beam bunch has, e.g., isolated o�-axis
clusters, the template formalism is not appropriate and a general 3D PIC method should be
employed.

6 Discussion and Conclusions

The template techique is oriented toward repeated calculations, e.g., for charged particle
beam dynamics simulation. For those situations, where the beam pipe sizes are �xed or
only slightly varying and the beam is \well-behaved" in the sense discussed above, the tem-
plates procedure signi�cantly reduces simulation computational time. The veri�cation of the
method has shown a good agreement with general 3D grid solvers for a large class of charge
density distributions. The proper inclusion of changing boundaries would require additional
pre-calculated template data. This might be justi�ed if only a few possible geometries are
required. However, when the boundaries are complicated and/or changing signi�cantly, and
if the beam distribution is arbitrary (i.e. o�-set from the axis, disintegrated into clusters,
etc.) the template technique is likely inappropriate and conventional grid methods are rec-
ommended.

Preliminary numerical studies provide con�dence that the template formalism is an ef-
�cient method for fast space charge calculations in the presence of conducting boundaries.
It allows the extention of 2D and 3D beam rms-envelope equations including conducting
boundaries. It provides a transition to self-consistent rather general sub-3D PIC, that is
signi�cantly faster than conventional 3D PIC formulations.
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