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Abstract 
Smooth Approximation (SA) can be successfully applied to the charged particle 
beam dynamics in superconducting (SC) independently phased cavity (IPC) linac 
not only for the consistent description of the transverse optics [1,2], but also for 
the longitudinal beam dynamics as well.  The new derivation of the SA formalism 
in the case of the small longitudinal oscillations in such a linac is detailed in the 
present paper.  The comparison of the analytic prediction with the numerical 
simulation results received using LANA code [3] is shown.  The possible 
applicability of the proposed approach is outlined. 

 
 

1. SA derivation for the longitudinal oscillations. 
 
As per [1] we can write for the longitudinal motion of the charged particle in the presence 
of the accelerating field the following system of the first order equations: 
 

( ) ( ) ( )[ ]⎪
⎪
⎩

⎪⎪
⎨

⎧

+−⋅⋅⋅⋅⋅=

⋅
⋅⋅

=

00

322
0

coscos ϕψϕβ

γβ
ωψ

ψ

ψ

ctEeA
Z

dt
dp

p
cmdt

d

Z

      (1), 

 
where: t  is independent time variable; WWp −= 0ψ  – reversed particle’s kinetic energy 
deviation from the reference; 0ϕϕψ −=  – particle’s rf phase deviation from the 
reference; t⋅=ωϕ  – rf phase of the particle with respect to the maximum of the 
accelerating field; f⋅= πω 2 , and f  are cyclic and normal frequency of the rf field 

respectively; c
v=β  and v  – relative and absolute velocity of the particle; c  – speed of 

light; 0m  – rest mass of the particle; A
Z  – particle’s charge-to-mass ratio; e  – charge of 

electron; and ( )tEZ  – accelerating rf field amplitude profile, that the particle experiences 
along it’s trajectory. 
 
The equations (1) neglects the Bessel function radial dependence of the accelerating field 
[1], but this approximation is still is very good for small deviations from the axis.  To 
simplify this system of equations we can additionally assume: 
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1. ψ  is small, so ( ) ( )[ ] ( )000 sincoscos ϕψϕψϕ ⋅≈+− ; 
2. const≈β  along the considered linac segment (the motion is adiabatic, i.e. the 

acceleration is sufficiently small). 
 
Assuming that the accelerating field profile is periodic, and after changing to the 

dimensionless time variable t
S

c⋅
=
βτ , where S  is the longitudinal length of the 

considered period of the linac channel, and expressing ( ) ( ) ( )ττ ETEEtE ZZ ⋅== 0 , where 
( )τE  is the field profile normalized to 1, we can rewrite (1) as a single second order 

ordinary differential equation: 
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The equation of this kind with the periodic coefficients: ( ) ( )ττ QQ =+1 , are called 
Mathieu equations [4].  One of the methods to solve such an equation is “smooth 
approximation” (SA) approach, which is actually a particular case of the first 
approximation of the “averaging” method, developed by N.N.Bogoliubov and 
Y.A.Mitropolsky [5].  This method can be used for the description of the longitudinal 
periodic motion of the charged particles in the accelerating systems with phase 
alternation [6].  In the present paper author proposes to use this approach for the SC IPC 
linac periodic accelerating channel longitudinal beam dynamic characteristics 
description. 
 
The SA method is valid if the condition: 
 

focLS << 1           (5) 
 
is fulfilled [1], where the focL  is the characteristic “focusing length” of the “lens” – the 
bunching distance of the monochromatic beam after the accelerating field region (cavity) 
with the given parameters in this model.  In the other words – this condition means that 
the frequency of the external force from the lattice is much higher then the 
eigenfrequency of the oscillating system. 
 
We can seek the solution of (2) in form of: 
 

( ) ( )[ ] ( )τττψ Xq ⋅+= 1      (6), 
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where: the ( )τq  is the fast component of the solution, and ( )τX  – is the slow one.  
Defining the ( )τq  function with: 
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for defining of the arbitrary integration constants, we can find the explicit form of the 
function ( )τq  after integrating twice the equation (7), for known form of ( )τQ  from (3). 
 
Substituting (6) in (2) and taking into account (9) and (10), and supposing that the slow 
component ( )τX  is “smooth”, so that we can neglect it’s change on the considered 
period, we can arrive at: 
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where we used the definition: 
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The eq. (11) is the equation of the harmonic oscillator and the value μ  has a meaning of 
the cyclic frequency of the slow component of the solution: ( )τX . 
 
It is known [1,7] that the value of the frequency μ  can be determined more accurately if 
instead of directly using (12) one would use the power series decomposition of the μcos  
for the small μ  to determine the μcos  from (12) as: 
 

2

2
11cos μμ −=        (13). 

 
The given derivation is generally valid for arbitrary form of the ( )τE  function. 
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The condition (5) can be expressed as: 
 

μ  << π2      (14). 
 
For practical purposes the accuracy of the SA is reasonable when [1]: 
 

1cos3.0 << μ         (15), 
or: 

3.10 << μ      (16). 
 
Let us apply the results derived above to the model case of the form of function ( )τE . 
 
 
1.1. Single sharp-edge localized accelerating field region model. 
 
Let us assume that the ( )τE  function can by represented in a sharp edge approximation as 
a square wave on the accelerating channel period as shown on the Fig. 1, where the 
following definition is used for the abscissa variable: 
 

S
Lcavity=ξ      (17). 
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Fig. 1.  Schematic representation of the model accelerating field profile on the period of 
the accelerating channel. 
 
 
Knowing ( )τQ  from (3) we can integrate (7) twice and for function ( )τq  at: 
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where ( )τϑ  is the Heavyside’s step-function. 
 
The arbitrary constants 1C  and 2C  can be determined from the conditions (9) and (10) as: 
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As the final expression for the μcos  from (12) and (13) we can write: 
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2. Comparison of the SA analytic predictions and the LANA 
simulation results. 
 
For comparison of the analytic prediction and the corresponding numerical model results 
several sets of LANA input files for simulation different versions of the proposed RIA 
Driver Linac were used [8].  Without going into the details of the different cases author 
wants just to present this comparison results, which shall be extended in the future 
studies. 
 
Table 1 lists several compared cases of the corresponding longitudinal oscillation phase 
advances for the most critical front-end period of the SC RIA Driver Linac accelerating 
channel. 
 
 
Table 1. The comparison of the longitudinal oscillations phase advance μ [deg] on the 
first period of the accelerating channel of the RIA Driver Linac at NSCL/MSU between 
LANA simulation results and the SA analytic predictions for several simulated cases [8]. 
 

 Case1 Case2 Case3
LANA 99° 84° 97° 

SA 101° 88° 101° 
Error 2 % 5 % 4 % 

 
 
The expected accuracy of 5-8 % is demonstrated in all cases with slightly above the 
upper limit of the SA applicability margins which according to (16) is equal to: 
 

oo 750 << μ      (21). 
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One of the other simulated cases, that has o141≈μ  according to the LANA numerical 
model, is not adequately described by the proposed analytic model because of the 
extreme violation of the applicability region margins. 
 
 

3. Applicability of the proposed formalism for the SC IPC linac 
design. 
 
The derived analytic approach can be very useful at the design stage of the SC IPC linacs 
beam dynamics, when the numerical model for the appropriate accelerating structures and 
the parameters of the accelerating channel have to be chosen.  The recipes from this 
approach can be a good starting point for the numerical model setup and for optimization 
of the linac channel parameters in the computer simulations.  In particular such 
information can be found useful for special matching cells settings as described in [8]. 
 
The other important application of this approach can be the understanding of the 
limitations of different parameters of the accelerating channel of IPC in the SC linacs, 
such as geometric dimensions of the interior drifts in the cryostat and the allowable inter-
cryostat drifts, as well as the adequate injection energy for the desired longitudinal 
frequency in the front-end of the SC linac and maximum limits for the effective 
accelerating voltages in the rf cavities, etc. 
 
The beam quality in linacs can be deteriorated by the parametric resonances.  Sufficiently 
good estimation of possible limitations on the transverse focusing optics parameters can 
be also predicted based on the proposed formalism. 
 
The proposed approach simplifies the investigation and detailed analysis of the beam 
dynamics properties in the SC IPC linacs.  The derived formalism can also be used in the 
beam dynamics computer simulation codes for developing of powerful fitting capabilities 
aimed at the optimization of the longitudinal beam dynamics in SC IPC linacs. 
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