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Abstract

The excitation of the motion of ions in a Penning trap at twice their cyclotron

frequency, 2νc, by means of an azimuthal octupolar RF field has been studied.

Presented is the first experimental verification of such an RF octupolar excitation.

Compared to ion excitation at νc by means of quadrupolar fields an increased resolv-

ing power is observed in the cyclotron resonance curves, which may have important

implications for Penning trap mass measurements. Numerical simulations have been

used to characterize important properties of this type of excitation in detail and to

predict the behavior of the ion motion under realistic conditions. Good agreement

with the experimental observations is observed. Furthermore, the quadrupolar ex-

citation of the ion motion at νc has been revisited and its dependence on the phase

of the ion motion and the RF field been studied.
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1 Introduction

Penning trap mass spectrometry has proven to be one of the most precise and

accurate techniques for the determination of atomic masses of both stable and

unstable nuclides. Mass accuracies of 10−10 and better have been achieved for

stable isotopes, [1–3], providing important data for metrology and QED tests.

Mass measurements of unstable isotopes are of interest for nuclear structure

studies, for providing key data for fundamental interaction tests, and for a

better understanding of the nuclear synthesis of elements in our universe.

Despite low production rates and short half-lives mass measurements of short-

lived nuclides today reach accuracies of better than 10−8 [4,5].

Mass measurements in Penning traps are performed via the determination

of the cyclotron frequency νc = 1
2π

q
m

B of an ion with mass m and charge q

stored in a strong magnetic field. The achievable precision δν ∝ (ν · Tobs ·
√

N)−1 depends on the frequency ν to be observed, the observation time Tobs,

and a statistical factor
√

N , where N could be the number of measurements

performed or the number of ions detected. In the case of rare isotopes half-lives

can be as short as a few milliseconds and beam rates can be well below one

ion per second. Since the half-life determines the observation time, gains in

precision can only be achieved by maximizing ν ·
√

N . Compared to improving

statistics by prolonging the measurement time, if the beam rate is limited, the

∗ Corresponding author.
Email address: ringle@nscl.msu.edu (R. Ringle).

2



largest gain factor is obtained by increasing the frequency ν to be observed.

At present, all Penning trap mass spectrometers designed for the study of

short-lived nuclides [6–11] employ a technique in which an azimuthal quadrupo-

lar radiofrequency (RF) field is used to excite the radial motion of the ions

in the trap [6,12]. At a frequency νRF = νc = ν+ + ν− this field couples the

(reduced) cyclotron motion and the magnetron motion, which have eigenfre-

quencies ν+ and ν+. In resonance, a change in energy can be obtained which

is detected with a time-of-flight (TOF) resonance detection technique [13].

Several options exist for increasing the frequency ν to be observed. Going to-

wards a higher magnetic field strength is a straightforward approach, realized

in the case of LEBIT at the NSCL [7]. More complicated, but with substantial

potential, is the employment of highly-charged ions as planned for the TITAN

[14] facility at TRIUMF. Another promising idea is to observe higher harmon-

ics in the ion motion in the Penning trap, for example at twice the cyclotron

frequency, 2νc.

General considerations lead one to conclude that an octupolar RF field with a

frequency νrf = 2νc will drive the ion motion in a resonant manner. One could

also expect that the widths of the cyclotron resonances for both quadrupolar

and octupolar excitation are in first order fourier-limited and should therefore

be the same for a given observation time. In this case the octupolar excitation

would yield a factor of two increase in resolving power over the quadrupolar

excitation.

The Low Energy Beam and Ion Trap (LEBIT) facility at the NSCL at MSU

is the first to perform Penning trap mass measurements on isotopes produced

by in-flight separation of relativistic projectile fragments. In order to take
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full advantage of this fast production technique, LEBIT has been optimized

towards sensitivity and reaching high precision and accuracy for very short-

lived nuclides. LEBIT already uses a 9.4 Tesla field, to be compared to 6-7

Tesla used in most of the other systems. LEBIT has been designed to allow for

the investigation of octupolar excitation. Early simulations [15] performed at

MSU have indicated that octupolar excitation at 2νc should indeed be possible

and lead to an increase in resolving power.

In this work the first experimental verification of ion motion excitation with

an octupolar RF field is presented together with a systematic study of the

main features of this new excitation mode. So far no analytical solution has

been found for the equations of motion. Therefore, very detailed numerical

simulations have been performed to characterize this excitation mode. The

simulation results are found to be in excellent agreement with the experimental

observations. The most remarkable observation made both in experiment and

simulations is a drastic increase in resolving power well beyond the expectation

of the factor of two stated above. Similar observations have been made in an

independent study [16] at SHIPTRAP at GSI, also presented in this volume.

Hence, once fully established, octupolar excitation may provide a significant

advance in Penning trap mass spectrometry, in particular for the study of

short-lived isotopes.

In the simulation studies of octupolar excitation a strong phase dependence

of the ion response was found. This motivated us to revisit the quadrupolar

excitation. Both theoretically and experimentally we found that in the case of

well-defined phase relations between the RF field and the initial ion motion the

resonance shape can become asymmetric. This could provide a possible source

of systematic errors in the mass determination if not considered appropriately,
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but also a tool for spectrometer diagnostics and tuning.

2 The LEBIT Facility

Test beam
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Fig. 1. Partial schematic of the LEBIT facility at the NSCL/MSU. Only components

relating to the present work are shown.

The primary experimental goal of the LEBIT, Low Energy Beam and Ion

Trap, project is to perform high-precision mass measurements of rare isotopes

produced by projectile fragmentation. For this purpose, relativistic rare iso-

tope beams are converted into low-energy beams with excellent quality by us-

ing gas stopping and advanced ion guiding, cooling, and bunching techniques

[17]. Mass measurements are performed with the LEBIT 9.4 T Penning trap

system. In the following a brief summary of the components of the LEBIT

facility which are relevant to the present work will be presented.

Fig. 1 shows the components of the LEBIT facility used in the present study.

LEBIT is equipped with a plasma ion source station. The plasma ion source

provides beams of noble gasses and alkali metals. Most of the measurements

presented in this work were performed using 23Na+ and 39,41K+. Those ions are

transported to the LEBIT beam cooler and buncher [17,18]. The beam cooler

and buncher consists of a pair of RFQ ion guide structures which converts
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the continuous beam delivered from the ion soucre into a cooled ion pulses

which are then delivered to the 9.4 T Penning trap system [7]. The Penning

trap system features a high-precision trapping electrode system inside of a

room-temperature bore of an actively-shielded 9.4 T persistent superconduct-

ing magnet. Holes in the endcaps allow the ions to be injected and ejected by

switching the applied potentials to the appropriate endcap electrode. The ring

electrode is eight-fold segmented allowing for the application of multipolar RF

fields. Dipole RF fields can be used for mass-selective ion removal. Quadrupo-

lar RF fields applied at the proper frequency can be employed to excite the

ion’s motion at the ion’s cyclotron frequency, νc [19]. Octupolar RF fields can

also be applied, the study of which comprises a majority of this work.

Fig. 2. The LEBIT high-precision Penning trap with the endcap electrode removed.

Note the eight-fold segmentation of the hyperbolic ring electrode.

Before the ion pulse from the buncher is captured in the Penning trap an initial

magnetron motion is introduced, which is required previous to the application

of a quadrupolar RF field. With LEBIT this is accomplished by employing

an E×B drift technique using a so-called Lorentz steerer. This steerer is a

quartered cylindrical tube at the end of the retardation optics preceding the

Penning trap that can be used to create an electric dipole field perpendicular

to the magnetic field.
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Fig. 3. Quadrupolar resonance curve of 40Ar+ ions with a fit of the theoretical line

shape. An excitation time of Trf = 200 ms was used in this measurement. A full

width ∆νFWHM ≈ 4.6 Hz is observed.

After being captured the ions are exposed to an azimuthal quadrupolar RF

field applied at a frequency νrf close to νc. In the case where νrf = νc, choosing

the appropriate RF amplitude and excitation time converts an initial mag-

netron motion into cyclotron motion, resulting in a gain of radial energy. The

energy gain is then detected via a time-of-flight resonance detection technique

[12,13,20] in which the ions are ejected from the trap and their time of flight

to an ion detector, located outside of the magnetic field, is measured. While

passing through the inhomogenous section of the magnetic field the radial en-

ergy gained during the excitation is converted into axial energy, reducing the

time of flight to the detector. Repeating this process of trapping, excitation,

ejection and time of flight measurement for different frequencies results in a

resonance curve centered at νrf = νc. As an example, Fig. 3 shows a sample

quadrupolar resonance of 40Ar+ for an excitation time of Trf = 200 ms. A full

width, ∆νFWHM , of ≈ 0.9/Trf = 4.5 Hz is expected [12].

Soon after LEBIT had become fully operational the first octupolar excitation
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tests were performed. Fig. 4 shows one of the early resonances, obtained with

an excitation of 40Ar+ also using an excitation time of Trf = 200 ms. A full

width of ∆νFWHM ≈ 4.8 Hz is observed, yielding a factor of two increase

in resolving power over an equivalent quadrupolar excitation. However, as is

discussed more fully in Chapter 4, simulations and additional measurements

show that even greater increases in resolving power should be possible.
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Fig. 4. Octupolar resonance curve of 40Ar+ with a Gaussian fit. An excitation time of

200 ms was used in this measurement. A full width ∆νFWHM ≈ 4.8 Hz is observed.

3 Aspects of the Quadrupolar Excitation

In order to provide some background for the discussion of both quadrupolar

and octupolar excitations we will briefly review the major steps leading to the

equations of motion for a quadrupolar excitation, as derived in [12].

3.1 Equations of motion

Begin by introducing the vectors
−→
V

+
and

−→
V
−

[21] such that

−→
V
±

= −̇→ρ − ω∓ · −→ρ × êz, (1)
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where −→ρ is the ion’s position vector. Additionally,

x = −V +
y −V −y

ω+−ω−

y = V +
x −V −x

ω+−ω−
,

(2)

where x and y are the ion’s position in Cartesian coordinates. Eq. 1 successfully

decouples the equations of motion of an ion confined in a Penning trap. Using

this coordinate transformation and applying the rotating wave approximation

the equations of motion can be solved [12] for an ion subjected to an applied

quadrupolar RF field. The solution is

ρ±(t) = [ρ±,o cos(ωBt)∓

1
2

ρ±,o[i(ωrf−ωc)]+ρ∓,ok±o
ωB

× sin(ωBt)]e
i
2
(ωrf−ωc)t

(3)

where ρ±(t) are the magnitudes of the cyclotron and magnetron radii as a

function of time and ρ±,o are the initial cyclotron and magnetron radii. Addi-

tionally,

ωB =
1

2

√
(ωrf − ωc)2 + k2

o (4)

and k±o = koe
±i∆φ where ko =

Urf

2a2
q
m

1
ω+−ω−

. Here, q is the ionic charge, m is

the ionic mass, Urf is the applied RF amplitude, a is the radius at which the

RF is applied and

∆φ = φrf − (φ+ + φ−). (5)
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φrf is the phase of the applied RF and φ± are the cyclotron and magnetron

phases. As stated above, radial energy gained during the excitation process

is detected via a reduced time of flight of ions ejected from the trap to the

detector. Under normal conditions ω+ � ω−, so we can write the radial energy

as Er(t) ≈ 1
2
mω2

+ρ2
+(t).
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Fig. 5. (a) surface plot of ρ2
+ as a function of Urf and νrf for a given excitation

time Trf . (b) cut from plot (a) at Urf = Uo. Full conversion from magnetron to

cyclotron motion is achieved at ∆νc = νrf - νc = 0. (c) slice from plot (a) at ∆ν =

0 illustrating the beating of ρ2
+ as a function of Urf .

Fig. 5(a) shows a calculated 3D plot of ρ2
+, which is proportional to the gained

energy, as a function of Urf and frequency detuning for a given Trf for a single

ion initially executing pure magnetron motion, ρ+,o = 0. Fig. 5(b) shows a cut

at Urf = Uo, which is the excitation amplitude at which a full conversion of

magnetron to cyclotron motion has occurred for νrf = νc. Such a response is

reflected in the experimental resonance curve shown in Fig. 3. Fig. 5(c) is a

cut along ∆ν = νrf - νc = 0 illustrating the change of ρ2
+ as a function of Urf

for a constant excitation time.
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When performing a quadrupolar excitation for a mass measurement one picks

the appropriate combination of amplitude and excitation time, Urf and Trf ,

such that the initial magnetron motion is fully converted into cyclotron mo-

tion, maximizing the radial energy gain of the trapped ions. The resulting line

shape at this point has a full width, ∆νFWHM , ∼ 0.8/Trf . Calculating the

energy gain from the excitation and accounting for the ejection optics and

magnetic field it is possible to calculate the theoretical line shape [12] to be

observed in the time-of-flight measurement. This shape has been used to fit

the experimental data shown in Fig. 3. Due to a nonlinear conversion between

radial energy and time of flight, the full width of the time of flight curve is

0.9/Trf for LEBIT.

3.2 Phase dependence of the quadrupolar excitation

The solution to the equations of motion as derived in [12] contains a phase de-

pendence, the consequence of which has not been previously investigated. The

phase-dependent term appears in Eq. 3 through the k±o term. We algebraically

expand

ρ+(t)ρ+(t)∗ =
4ρ2

+,oω2
B cos2(ωBt)

4ω2
B

+
k2

oρ2
−,o+ρ2

+,o(ωrf−ωc)2

4ω2
B

sin2(ωBt)

−koρ−,oρ+,o(ωrf−ωc) sin(∆φ)

4ω2
B

sin2(ωBt)

−2koρ−,oρ+,oωB cos(∆φ)

4ω2
B

sin(2ωBt).

(6)

The phase dependence of the radial energy change is located in the third and

fourth terms of Eq. 6. Both terms scale with the product of ρ+,o and ρ−,o, which
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means if the ions begin in a state of pure cyclotron or magnetron motion at

the beginning of the excitation the effect will not be present.
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Fig. 6. Simulations of quadrupolar resonances for single 39K+ ions with Trf = 1 s.

The two plots in the top row are contour plots of the resonances as a function of

∆φ and ∆ν. Below are cuts at given values of ∆φ. Both simulations were performed

with ρ−,o = 1 mm and φ−,o = φ−,o = 0◦. An initial cyclotron radius of ρ+,o = 0.1

mm was used on the left and ρ+,o = 0.4 mm was used on the right.

Fig. 6 presents the results of simulations of quadrupolar resonances for single

39K+ ions with Trf = 1 s. Both simulations were performed with ρ−,o = 1

mm and φ+,o = φ−,o = 0◦. An initial cyclotron radius of ρ+,o = 0.1 mm was

used on the left and ρ+,o = 0.4 mm was used on the right. In each case the

value of Urf was adjusted such that in resonance and for φrf = 0◦ the radial

energy was maximized. Looking closely at the contour plot on the left one

can see a distortion of the central peak and a shift in the position of the side

bands as ∆φ changes. Resonance profiles for which ∆φ = 90◦ and 180◦ be-

come asymmetric and the position of the minimum time of flight has shifted

slightly. Increasing the value of ρ+,o to 0.4 mm only exacerbates the situa-

tion. The most obvious implication of these phase-dependent effects involve
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low-statistics measurements where ∆φ is allowed to vary. If the measurement

samples any particular phase range more frequently and the resonance is fit

with a line shape with a symmetric center then the analysis will include an

additional error.
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Fig. 7. Three 39K+ quadrupolar resonances for Trf = 500 ms measured for different

values of φrf . The solid line is the fit of the theoretical line shape.

In order to see the phase dependence in the radial energy change of the

quadrupolar excitation, two conditions must be met. The first is that the

RF voltage must have a defined phase relation to initial ion motion. ∆φ must

not be random which means, according to Eq. 5, that all individual phases

must be well defined. If this is not the case then the final line shape will be an

average over the line shapes of random ∆φ’s. The second condition is that the

ion ensemble cannot begin in a pure state of cyclotron or magnetron motion.
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For the test of this phase dependence 39K+ ions were injected into the Penning

trap, and an initial magnetron motion was introduced with the Lorentz steerer.

The excitation RF was phase locked to the time of ion capture in the trap,

which defines the initial phase of the ion motion. Several resonances with Trf

= 500 ms were taken with varied values of φrf . Fig. 7 illustrates the effect

of varying φrf on the resonance shape. Here we see experimentally how the

sidebands change shape as the value of ∆φ is changed. When ∆φ is allowed to

be a free parameter a good agreement is seen between the experimental data

and the fit. All three fits yield consistent values for ρ−,o = 0.91(2) mm and

ρ+,o = 0.11(1) mm. For each resonance φrf was incremented by 100◦. Within

20% this phase dependence was reproduced in the fit parameter ∆φ.

As discussed earlier, only the third and fourth terms of Eq. 6 contain a ∆φ term

and contain the product of ρ+,o and ρ−,o. While ρ−,o is introduced deliberately,

a finite ρ+,o must be the result of an asymmetric injection of ions into the

magnetic field of the Penning trap which leads to a pickup of cyclotron motion.

If the amount of radial energy gained during the injection process can be

reduced, then ρ+,o will be reduced, thus reducing the phase-dependent effect.

This could be useful in fine-tuning the injection of ions into a Penning trap.

4 Octupolar Excitation

Excitation of ion motion in a Penning trap by application of an octupolar RF

field at frequencies near 2νc have been studied experimentally and in simula-

tion. Single-ion simulations are used to explore the resonant response of ρ2
+

for a variety of initial conditions. Simulations utilizing realistic distributions of

multiple ions are used to predict resonance profiles under realistic conditions.
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Experimental results together with those from simulation are used to make

estimates of the initial ion cloud distribution.

4.1 Equations of motion

Calculating the electric field produced by a time-varying octupolar field pro-

duced by a set of electrodes at a radius a from the trap center yields the

following field components:

Ex =
Urf

a4 sin(ωrf t + φrf )(y
3 − 3x2y)

Ey = −Urf

a4 sin(ωrf t + φrf )(x
3 − 3xy2).

(7)

Writing out the full equations of motion of an ion in a Penning trap subjected

to an octupolar RF field using the transformation given in Eq. 2 yields

V̇ ±
x = −ω±V ±

y − k
(V +

x −V −x )2[(V +
x −V −x )2−3(V +

y −V −y )2]

(ω+−ω−)3

V̇ ±
y = ω±V ±

x + k
(V +

y −V −y )2[(V +
y −V −y )2−3(V +

x −V −x )2]

(ω+−ω−)3

(8)

where

k =
Urf

a4

q

m
sin(ωrf t + φrf ). (9)

Unfortunately, the transformation does not decouple the equations of motion.

The ansatz presented in [12],
−→
V
±

=
−→
A
±
(t)e±i(ω±+φ±), where A± is an ampli-

tude, does not simplify the problem. In the case of the quadrupolar excitation

after the ansatz is inserted the high-frequency components can be neglected

and the solution remains a physical description of the system. Following the
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same procedure in the case of the octupolar excitation yields a non-physical

description of the system. Unless a suitable coordinate transformation is found

an analytical solution may not be possible. Numerical solutions to the equa-

tions of motion have to be used. By calculating the vectors
−→
V
±

and using

Eq. 1 it is possible to extract ρ+ and ρ− as a function of time. Since Er ∝

ρ2
+, the radial energy pickup due to the application of an octupolar RF field

is directly accessible.

4.2 Single-ion octupolar simulations

Octupolar excitation of the motion of a single ion will be used to illustrate the

similarities and differences between the octupolar and quadrupolar excitation

schemes.

4.2.1 Motional beating of single ions with νRF = 2νc
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Fig. 8. ρ2
+ of an ion confined in a Penning trap and subjected to an azimuthal

octupolar RF field at frequency 2νc.

Fig. 8 plots ρ2
+ of an ion as a function of time subjected to an azimuthal

octupolar RF field. The ion is initially in a state of pure magnetron motion. A
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periodic beat pattern is observed. Compared to the quadrupolar case (Fig. 5c)

the beating is no longer harmonic but begins to approach a square wave in

shape.

ρ- = ρo ρ- = √2/2 ρo
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Fig. 9. The left hand plots show ρ2
+ as a function of Trf for an ion with an initial

ρ−,o = ρo and ρ+,o = 0 with applied RF amplitudes of Urf and 2Urf , respectively.

The right hand plots ρ2
+ for an ion with an initial ρ−,o =

√
2

2 ρo and applied RF

amplitudes of 2Urf and 4Urf , respectively.

According to Eq. 4, the beat frequency of an ion induced by a quadrupolar RF

field with νrf = νc is proportional to Urf , and independent of the initial ion

motion. This is not the case with the octupolar excitation. Fig. 9 displays the

ρ2
+ of a single ion, subjected to an octupolar field with νrf = 2νc, for different

initial magnetron radii, ρ−,o, and applied RF amplitudes, Urf . The plots on

the left hand display the beat patterns for an ion with an initial magnetron

radius of ρo. Doubling Urf results in an increase in the beat frequency. The

plots on the right illustrate that doubling Urf and scaling the initial magnetron

radius by
√

2/2 preserves the original beat frequency. In the case of octupolar

excitation the beat frequency depends not only on the excitation amplitude,

but also on the initial motion of the ion in the trap.

Fig. 10 plots the beat frequency as a function of the initial ρ−,o for three
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Fig. 10. Beat frequency between magnetron and cyclotron motions as a function of

ρ−,o for constant Urf and for three initial magnetron phases, φ−,o = 0◦, 22.5◦ and

45◦.

different initial magnetron phases, φ−,o. The figure reveals that the beat fre-

quency depends not only on ρ−,o, but also on φ−,o. The dip in the φ−,o = 0◦

curve is not a numerical artifact, but has been verified by two independent

simulations. By changing the phase one can change the position of this dip,

but quickly moves to a larger value of ρ−,o as one moves away from φ−,o = 0◦.

With φrf = 0◦ the dip occurs at ρ− ∼ 2.1 and νbeat/ν− ∼ 0.26. Fig. 9 might

lead one to believe that νbeat ∝ ρ2
−,o · Urf , yet taking Fig. 10 into account

the relation would need to be amended to νbeat ∝ f(φ−) · ρ2
−,o · Urf . Holding

Urf and φ−,o constant and plotting the beat frequency as a function of φ−,o

yields Fig. 11. The beat frequency seems to sample the octupolar RF field’s

spatial orientation, and is at a minimum at the anti-nodes, and maximum at

the nodes, of the field.

According to Eq. 4 the beat frequency in the case of νrf = νc due to a

quadrupolar excitaton is linear with respect to Urf and is phase indepen-

dent. Again, this is different in the case of octupolar excitation. The beat

frequency is not linear with respect to Urf , and is dependent upon the φ−,o,
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as is illustrated in Fig. 12 which plots the beat frequency as a function of Urf .

As the beat frequency nears ν− the beat frequency begins to lose its periodic

nature. Zooming in to low frequencies and excitation amplitudes the φ−,o = 0◦

and φ−,o = 45◦ curves become indistinguishable, while the φ−,o = 22.5◦ curve

deviates. Again, similar to Fig. 10, a dip is observed in the φ−,o = 0◦ case,

again located at νbeat/ν− ∼ 0.26.
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Fig. 12. Beat frequency as a function of Urf for three initial φ−,o’s. The insert zooms

in to low beating frequencies and amplitudes.

We are now in a position to investigate a possible invariant of the motion.

Fig. 13 shows the beat frequency when changing ρ−,o, while at the same time

keeping the product Urf ·ρ2
−,o constant. It can be seen that the beat frequency

is constant for a given initial phase, φ−,o. This was found to be not only true
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for ions in a state of pure magnetron motion, but for mixed initial motions,

ρo =
√

ρ2
+,o + ρ2

−,o, as well. Therefore, we arrive at a general relationship νbeat ∝

α(ρ±,o, φ±,o, φrf ) ·ρ2
o ·Urf , where α is a scaling factor which depends on all four

of the initial ρ’s and φ’s.
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Fig. 13. Beat frequency due to an octupolar excitation as a function of ρ−,o holding

ρ2
−,o · Urf constant for several values of φ−,o.

4.2.2 Invariant phase relation of the octupolar excitation

According to Eq. 5, ∆φ = φrf − (φ+ + φ−) is a constant of the motion for

a quadrupolar excitation. We investigate if a similar phase relation holds for

the octupolar excitation.

Fig. 14 shows scans of ρ2
+ as a function of φ+,o and time for a given φ−,o with

φrf = 0◦ in all cases. By comparing the patterns it is easy to conclude that

the time dependence of ρ2
+ is the same if φ+,o + φ−,o = const. It was verified

that this also holds true if φrf is changed.

Fig. 15 is similar to Fig. 14, except φ+,o is held constant at 0◦ and the individual

plots are ρ2
+ as a function of φ−,o and time. Here we verified that for φ+,o =

0◦, 1
2
φrf - φ−,o = const. the same time dependence of ρ2

+ is observed. Testing
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Fig. 14. 2D simulations of ρ2
+ as a function of time and φ+,o for a given φ−,o with

φrf = 0◦. The grey scale is proportional to ρ2
+.

this condition for many values of φ+,o yields the same results and leads us to

conclude that the invariant phase in the case of octupolar excitation is ∆φ

= 1
2
φrf - (φ+ + φ−). This differs from the quadrupolar phase relation, Eq. 5,

only in the factor of 1/2 multiplying the φrf term. This appears plausible

as the octupolar field has twice the number of nodes and anti-nodes as the

quadrupolar field. The factor of 1/2 reflects that the ions begin their motion

at the same position with respect to the field orientation.

4.2.3 Single-ion resonance curves

To begin, we will examine octupolar resonances of single ions initially in a

state where ρo = ρ−,o. The general observation is a periodic change of ρ2
+ as a

function of Urf . Along the line νrf = 2νc a resonant effect is observed. Fig. 16
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Fig. 15. 2D simulations of ρ2
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φ+,o = 0◦. The grey scale is proportional to ρ2
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illustrates the dependence of ρ2
+ on frequency detuning, ∆ν = νrf - 2νc, and

Urf for various values of φ−,o. At φ−,o = 13.5◦ a secondary resonant effect

becomes visible which sweeps through the primary resonant structure as the

value of φ−,o is changed. This effect is on a line with an origin at Urf = 0 and

∆ν = 0 which rotates clockwise for increasing values of φ−,o. At φ−,o = 18.0◦

the structure can be seen across all three sections of the primary resonant

structure. At φ−,o = 22.5◦ the secondary structure lies on the ∆ν = 0 line.

Looking closely at the resonances reveals a narrowing of the resonance profiles

at ∆ν = 0 for certain values of Urf . Fig. 17 plots 2D cuts from the φ−,o =

0◦ (left) and φ−,o = 22.5◦ (right) cases shown in Fig. 16. Moving from the

top plots to the bottom steps through the first conversion of magnetron to

cyclotron motion. The φ−,o = 0◦ case exhibits a larger width in the radial
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function of frequency detuning, ∆ν = νrf - 2νc, and Urf for different values of φ−,o.

The grey scale is proportional to ρ2
+.

energy distribution at the lower values of Urf ·Trf as in φ−,o = 22.5◦ case. The

central peak narrows for larger values of Urf ·Trf and at Urf ·Trf = 2.90 V·s

the radial energy gained during the excitation begins to drop. The top three

plots of the φ−,o = 22.5◦ case show a suppression of radial energy at ∆ν ≈

2νc. The bottom three plots no longer exhibit this behavior, but the central

peak continues to narrow. In both cases ∆νFWHM falls below 1/(100·Trf ),

which corresponds to a factor of ∼ 200 increase in resolving power over the

quadrupolar excitation for the same excitation time! It remains to be seen

how well the ions can be prepared to reproduce these results under realistic

conditions.

23



0

0.5

1

1.50 V*s

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

-8 -6 -4 -2 0 2 4 6 8

Δν [1/Trf]

Ra
di

al
 E

ne
rg

y 
[a

rb
. u

ni
ts

] 1.85 V*s

2.20 V*s

2.55 V*s

2.90 V*s

3.25 V*s

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

-8 -6 -4 -2 0 2 4 6 8

Fig. 17. 2D cuts from the φ−,o− = 0◦ and φo,−− = 22.5◦ 3D profiles in Fig. 16 for
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4.2.4 Realistic multi-ion simulations

Simulations involving multiple ions representing a cloud are required to study

the ion behavior in the case of an octupolar excitation under realistic condi-

tions. First we will examine the radial energy gain as a function of Urf , with

νrf = 2νc. Gaussian distributions were used in generating values for the initial

ion cloud. Fig. 18 shows the results of three simulations for three different

values of σρ−,o with ρ−,o = 0.55 mm. ρ+,o = 0.050(5) mm was used, being

a conservative estimate from simulated radial energy gain during injection

into the Penning trap. This value also agrees with those obtained from fits to

quadrupolar resonances obtained under similar conditions. Widths of the φ

distributions seem to have a small effect on the multi-ion response curves, and

φ− = 0(5)◦ and φ+ = 0(50)◦ were used. For the largest value of σρ−,o shown

in Fig. 18 the curve seems to mimic the behavior of a damped oscillator, con-

verging to some average asymptotical value of radial energy. This is the result

of the beat frequency being dependent on ρo, as discussed in Sec. 4.2.1. The

larger the spread in ρo, the larger the range of beat frequencies. The distri-

24



bution of beat frequencies determines how quickly the average beat pattern is

damped.
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Fig. 18. Simulated radial energy gain for three different values of σρ−,o as a function

of Urf for νrf = 2νc and ρ− = 0.55 mm.

Fig. 19 plots the results from two octupolar simulations of 23Na+ with Trf =

50 ms. Both simulations were performed with identical phase and ρ+ distribu-

tions as the simulations shown in Fig. 18. ρ− was also held constant, but the

widths of the distributions were changed. The simulation in the first column

was performed with ρ−,o = 0.8000(325) mm and the the second with ρ−,o =

0.80(13) mm. Instead of ρ2
+ the calculated time of flight was plotted for easier

comparison to experimental results covered in the next chapter. The plots in

the first row show the dependence of the time of flight as a function of Urf

and ∆ν. The grey scale indicates smaller values of time of flight. The plots in

the remaining rows are cuts at different voltages.

Note the resemblance of the top left plot to the single-ion case shown in Fig. 16.

For the larger σρ−,o , shown on the right, only one conversion is seen in the

grey-scale plot before settling down to an average value. This is also reflected

in Fig. 18. The 2D profiles also reveal that there is a greater separation in

time of flight between the baseline and the minimum for the profiles on the
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left. In both cases as one proceeds from smaller to larger values of Urf the

resonance narrows. On the right-hand side the narrow peak begins to develop

on top of a broader resonant structure, while on the left the time of flight

baseline doesn’t change. At Urf = 44.5 V the resonance curve on the left

has achieved a maximum change in time of flight and a minimal width of ∼

0.14/Trf , corresponding to a gain of a factor of 13 in resolving power over the

quadrupolar excitation.
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Fig. 19. (Left): multi-ion simulation of TOF as a function of Urf and ∆ν with three

cuts at different RF voltages. (Right): same as the left only the width of the ρ−,o

distribution has been increased by a factor of 4.

4.3 Experimental procedure and results

Fig. 20 presents a schematic drawing of the electronic setup which was used to

produce an azimuthal octupolar RF field in the LEBIT Penning trap. An arbi-

trary function generator (AFG) prodives a signal to a broadband RF amplifier

with 65 dB gain. The signal from the amplifier is fed into a phase-splitting

coil. The two output signals, Urf,1 and Urf,2, which are 180◦ out of phase, are
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Fig. 20. Schematic drawing of experimental setup used to produce a azimuthal

octupolar RF field in the LEBIT Penning trap.

then fed into the ring electrode segments. The amplitudes of the two phases

agree to within ∼ 15-20 %. From now on, their average will be quoted as the

excitation amplitude, Urf .

In the experiments 23Na+ ions were used. Ion bunches from the cooler/buncher

were injected off-axis, via the Lorentz steerer, mentioned above, and trapped

in the LEBIT high-precision Penning trap.

4.3.1 Experimental octupolar studies in resonance
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Fig. 21. Time of flight as a function of Urf for a octupolar excitation of 23Na+ with

Trf = 50 ms at νrf = 2νc. The solid line shows a simulation.

23Na+ ions were excited with an octupolar excitation with νrf = 2νc for Trf
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= 50 ms and their time of flight was measured as a function of Urf . The

result is shown in Fig. 21 together with a simulated curve. The simulated

curve corresponds to the σρ−,o = 0.13 mm case from Fig. 18. In order to get a

good agreement between experimental data and the simulation results it was

necessary to divide RF voltage values measured at the output of the circuit by

a factor of 0.7. Such a factor makes sense as it accounts for RF attenuation and

partial shielding due to the geometry of the trap. Using experimental data like

that shown in Fig. 21 and comparing to the corresponding simulation results

allows the values of ρ−,o and σρ−,o to be determined. The minimum time-of-

flight value achieved is a function, primarily, of ρ−,o, and the damping of the

curve is determined by the ratio of σρ−,o and ρ−,o.

In the case of quadrupolar excitation, the beat frequency of ρ2
+(t) is propor-

tional to the product Urf ·Trf (see Eq. 4). We will experimentally explore if

this holds true for the octupolar excitation, as well. Fig. 22 plots time of flight

of ions as a function of Urf for five different excitation times. As expected, the

minimum time of flight is reached at a lower value of Urf for longer excitation

times. The value of Urf where the TOF curve reaches its minimum will be

labeled Uo. Fig. 23 displays the product Uo·Trf for the fives cases shown in

Fig. 22, along with simulated data using our best-fit parameters determined

by the comparison shown in Fig. 21. Both the experimental and simulated

data agree and are constant within 5%. This value will not be constant for all

circumstances, and depends on initial conditions.

By adjusting the Lorentz steerer we can control ρ−,o. The displacement of the

ions as a function of the applied voltage is linear. Fig. 24 shows six different

octupolar scans of TOF as function of Urf in the case of νrf = 2νc for six

different voltages,VL, applied to the Lorentz steerer. The first minimum in
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Fig. 22. Octupolar TOF curves of 23Na+ as a function of Urf with νrf = 2νc for

several excitation times.

the curves represent the necessary Urf to, on average, bring the ions to a state

of maximum radial energy.

Fig. 25 plots the beat frequencies observed in Fig. 24 as a function of ρ−,o.

Two of the curves are simulation results and one is experimental data. The

experimental observation does not seem to confirm the nonlinear response

illustrated in Fig. 10. However, the σρ−,o = 0.13 mm curve represents our

best-fit simulation scenario, and matches the data quite well. The third curve

reduces the best-fit value of σρ−,o by a factor of four to 0.0325 mm. Now the

curve begins to recover the nonlinear shape shown in the single ion simulations.

Again the variation of individual beating frequencies of ions in the cloud play

a dominant role in determining the overall response of the system.
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Fig. 23. Product of Uo and Trf , where Trf is the duration of the octupolar excitation

and Uo is the amplitude of applied octupolar RF field at which the TOF curve

reaches its minimum.

4.3.2 Experimental octupolar resonances

Fig. 26 displays several octupolar resonances of 23Na+ produced with Trf = 50

ms for various values of Urf . Included in the figures are simulated resonances

which were produced using the same initial conditions as the simulation in

the right column of Fig. 19. For Urf ≤ 40 V the width of the resonances are

between 1.3/Trf and 0.9/Trf . Proceeding towards larger amplitudes reduces

this width. At Urf = 72.9 V a narrow resonant peak with a width of ∼ 0.2/Trf

forms atop a broader resonant structure.

4.3.3 Mass measurements with octupolar excitation

To verify that octupolar resonances can be used for precision mass measure-

ments, a mass measurement of 41K+, using 39K+ as a reference, was performed.

An excitation time of Trf = 200 ms was used in each individual measurement.

Urf was chosen such that the resonances were Gaussian, resembling the reso-

nance shown in Fig. 4. Fig. 27 shows the results of this mass measurement. As
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Fig. 24. Time of flight as a function of Urf with ∆ν = 0 using 23Na+ with Trf = 50

ms octupolar excitation for six different Lorentz steerer voltages, VL. The greater

the magnitude of applied voltage, the larger the initial average displacement of the

ions from the center of the trap.

there is no theoretical line shape all resonances were fit with a Gaussian pro-

file. What is plotted is the difference of the mean mass value extracted from

the octupolar measurements from the accepted literature values (Atomic Mass

Evaluation [22]). The dashed lines represent the uncertainty in the mean of

the experimental results. The solid lines represent the uncertainty in the AME

values. As can be seen, there is excellent agreement within the uncertainty.

5 Summary and Conclusions

Although an analytical solution to the octupolar excitation has yet to be

found, numerical simulations combined with experimental results have offered
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Fig. 25. Beat frequency as a function of ρ−,o. The experimental curve is extracted

from data shown in Fig. 24. The σρ−,o = 0.13 mm curve is a simulation based on the

parameters extracted from the simulation shown in Fig. 21. The second simulated

curve was generated using identical parameters, except σρ−,o = 0.0325 mm.

significant insight into this complicated problem. The most important obser-

vations can be summarized as:

• The beat frequency of an ion subjected to an octupolar RF excitation

applied at νRF = 2ν+ + 2ν− = 2νc is dependent upon the initial conditions

of the ion motion. This is in contrast to the quadrupolar excitation at νc

where such a dependence does not exist.

• The octupolar resonance profiles have a radically different shape than

their quadrupolar counterparts.

• For certain initial conditions it is possible to reduce the width of octupolar

resonances by a factor of 10 or more beyond what is achievable with a

comparable quadrupolar resonance performed with the same excitation

time.

We have verified a factor 5 gain in resolving power over the standard quadrupo-

lar excitation scheme. We have also shown that the initial conditions of the
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Fig. 26. Several octupolar resonance profiles of 23Na+ with Trf = 50 ms for various

values of Urf (data points) compared with simulated results (solid lines).

ion cloud determines the ultimate resolving power that can be achieved. Sim-

ulations show even higher resolving powers are possible, provided that the

ions can be prepared appropriately. Although more work is required to as-

sess the absolute accuracy of mass measurements performed with octupolar

excitations, a promising first step has been taken towards the implementa-

tion of octupolar resonances in high-precision mass measurements. Motivated

by the phase dependence exhibited by the octupolar excitation, we have also

revisited the quadrupolar excitation and confirmed a phase dependence of
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