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Abstract

A technique for precise control of ion injection into a Penning trap is presented,

based on the employment of an ~E× ~B drift motion of the ion in the strong magnetic

field in which the Penning trap is located. An electric dipole field with variable

strength and orientation allows for precise placement of the ion in the radial plane

of the trap. This method allows for fast preparation of an ion’s magnetron motion,

as used, for example, in the time-of-flight cyclotron resonance detection technique.
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1 Introduction

In precision Penning trap mass measurements with ions provided from ex-

ternal sources the transfer of the ions into the trap and the preparation of

their initial motion are critical parameters. This is particularly true for mass

measurements of rare isotopes, an area where Penning trap mass spectrome-

try has gained significant importance. The isotopes are often short-lived and

only produced in minute quantities. A very-high transfer efficiency and a fast,

precise preparation of the initial ion motion therefore is mandatory. During

the injection of the ions into the solenoidal field of the Penning trap care has

to be taken to minimize the pickup of radial (transverse) energy [1]. A well-

defined initial state of the trapped-ion motion is required for the subsequent

excitation with radiofrequency fields, e.g., for the determination of the ion’s

cyclotron frequency from which the ion’s mass can be determined.

In a number of Penning trap mass spectrometers for rare isotopes (ISOLTRAP

[1], CPT [2], JYFLTRAP [3], SHIPTRAP [4], and LEBIT [5]), and also in the

SMILETRAP [6] experiment for highly-charged ions, a cyclotron resonance

detection technique is used in which the ion motion is excited at the ion’s

true cyclotron frequency ωc = q/m · B = ω+ + ω−, using an azimuthal, ra-

diofrequency quadrupolar field [7,8]. Here q/m is the charge-to-mass ratio of

the ion, B is the magnetic field of the Penning trap and ω+ and ω− are the

reduced cyclotron frequency and the magnetron frequency of the ion. Prior to

the excitation the ions need to be prepared such that they initially perform

a magnetron motion. In resonance, i.e. ωrf = ωc, the excitation leads to a

periodic beating between magnetron and cyclotron motion, similar to Rabi

beating in a two-level atomic system. The application of an RF π-pulse, with
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the appropriate product of excitation amplitude Urf and excitation time Trf ,

will fully convert the initial magnetron motion into cyclotron motion. This

resonant effect is detected with a time-of-flight technique [9] and used for the

determination of ωc.

In all these spectrometers, the ions are delivered in a short pulse and captured

in the center of the trap. Classicaly, a dipolar RF field of frequency ω− is

used to drive the ions until they perform a magnetron motion with the desired

radius [7]. This dipolar excitation requires some finite amount of time, typically

on the order of 10 ms. Because of imperfections in the transport of the ions

into the magnetic field due to misalignments, lack of diagnostics, etc., the

ion beam may not be symmetric with respect to the magnetic field axis. The

subsequent capture of this off-axis beam in a Penning trap results in initial

magnetron (-) and cyclotron (+) motions with amplitudes ρ±,o and phases

φ±,o. The result of the subsequent quadrupolar excitation depends on these

initial parameters. In order to ensure that the RF dipolar excitation always

leads to a magnetron motion with the same radius the RF phase needs to be

locked to the time of capture of the ion pulse[10].

For the precision Penning trap mass spectrometer of the recently commissioned

LEBIT facility [5] at the NSCL a new technique has been developed to prepare

the ions into their initial magnetron motion, which is very fast and simpler

than the dipole excitation scheme previously employed. Named the Lorentz

Steerer, the system provides precise control over the transversal position at

which the ions are captured. The basic principle is illustrated in Fig. 1. A

four-fold segmented cylinder is placed into the injection path of the ions on

their way into the Penning trap. With voltages applied such that an electric

dipole field ~E is created perpendicular to the magnetic field ~B an ~E × ~B
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drift is introduced. The segmentation allows for an azimuthal rotation of the

orientation of the applied electric dipole field. Changing the strength and

orientation of the electric field allows the ion trajectory to be offset with

respect to its original direction. The subsequent capture of the ion in a Penning

trap leads to an initial magnetron motion. In this paper we discuss the basic

features of such a Lorentz steerer, its design, operation, and performance.
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Fig. 1. Sketch illustrating a positively-charged ion passing through a region of per-

pendicular electric and magnetic fields, resulting in an off-axis capture in a Penning

trap.

2 Charged particle motion in a region of perpendicular electric and

magnetic fields

To begin we will consider the motion of a particle as it travels through a region

of perpendicular electric and magnetic fields. Let ~B = Bẑ and ~E = Eŷ. The

equations of motion in the radial plane which must be solved are

~̈r =
q

m
(Eŷ + ~̇r ×Bẑ). (1)
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Consider a particle initially at the origin travelling in the ~z direction with no

initial radial energy. The velocity in the radial plane and the radial displace-

ment is then

ṙ(t) =

√
2E

B

√
1− cos(ωct) (2)

r(t) =
E

B2q

√
2m2[1− cos(ωct)] + [Bqt]2 + 2mBqt sin(ωct), (3)

where E is the strength of the electric field, q is the ionic charge, m is the

mass, B is the strength of the magnetic field and ωc = (q/m)B. For large

values of t,

lim
t→∞

r(t) =
E

B
· t = v̄drift · t, (4)

where v̄drift is the average drift velocity of the ions. The displacement after

travelling a distance L is proportional to t = L/vz ∝
√

m.

For example, Fig. 2 plots the radial displacement as a function of time for an

A = 40, singly-charged particle as it travels through a region of perpendicular,

uniform electric, E = 28.6 V/m, and magnetic, B = 9.4 T, fields. This dis-

placement is accompanied by a pickup of cyclotron motion which leads to the

observed non-linearity. Fig. 3 plots the square of the radial velocity, which is

proportional to the radial energy, of a particle as a function of ωct. From Eq. 2

it is shown that the radial velocity as a function of time scales as 1-cos(ωct).

If we consider the particle to enter and exit the electric field suddenly, then

upon exit it would have a radial velocity between 0 and
√

2E/B, depending

upon the time of exit. Having left the electric-field region the ion performs

a cyclotron motion with a radius that depends on the time of exit. For the

example parameters used here the maximum radial velocity is Vr = 4300 m/s,
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Fig. 2. Radial displacement as a function of time for a charged particle passing

through a region of uniform, perpendicular electric and magnetic fields.

which corresponds to a radial energy Kr = 5 eV and a radius of the cyclotron

motion of ρ+,o = 0.17 mm.
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Fig. 3. Square of the radial velocity as a function of ωct of a charged particle after

it has travelled through a region of uniform, perpendicular electric and magnetic

fields.
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Fig. 4. Half-cut design drawing of the Lorentz steerer and nearby optics elements.

The dashed line is the axis. Typical operating voltages are listed.

3 Lorentz steerer design

The design of the Lorentz steerer is remarkably simple, being four segments

of a cylinder quartered in the radial plane. Fig. 4 shows a design drawing,

half-cut, of a section of the injection optics of the LEBIT Penning trap mass

spectrometer which contains the Lorentz steerer. The Lorentz steerer is located

just previous to a field termination plate, and after a series of drift tubes. The

steerer electrode system is 16.5 mm in length and 28 mm in diameter with

3 mm gaps between the four segments. Typical operating voltages are listed.

These voltages were also used in SimIon simulations discussed later.

Fig. 5 shows a simple sketch of the electrode layout of the Lorentz steerer.

Each pair of diametrically opposing electrodes can be used to generate an

electric field with a dominant dipolar component. Changing the values of U1

and U2 such that
√

U2
1 + U2

2 remains constant results in a constant magnitude

of the dipolar field, but changes its orientation in space. This imparts a con-

stant radial displacement with an adjustable angle to ions passing through the
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Fig. 5. Schematic layout of the Lorentz steerer’s electrode configuration. Each pair

of diametrically opposing electrodes can be used to create an electric dipole field.

Both pairs can be used simultaneously to orient the dipole field in space.

steerer.

4 Lorentz steerer simulations

4.1 Calculation of ion beam deflection

The ion deflection in the Lorentz steerer has been calculated both analytically

and numerically. While the magnetic field is assumed to be homogeneous,

the electric field inside the steerer is required. One method is to use SimIon

to numerically solve the Laplace equation in a geometry based on the design

drawing shown in Fig. 4 and to trace the ions through the electric and magnetic

fields. Another method to obtain the electric field is to analytically solve the
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Fig. 6. Contour plots of the potential at the mid-plane of the Lorentz steerer given

by a.) the analytical solution and b.) the SimIon calculation for U1 = 0 V and U2

= 1 V (see Fig. 5). Within a circle of radius of 6 mm the relative difference of the

potentials obtained by both methods is less than 4×10−3.

electric potential for an infinite quartered cylinder. This potential is given by

U(r, φ) = U1

π

[
arctan

(
2Rr sin(φ)

R2−r2

)
− arctan

(
2Rr cos(φ)

R2−r2

)]
+

U2

π

[
arctan

(
2Rr sin(φ)

R2−r2

)
+ arctan

(
2Rr cos(φ)

R2−r2

)]
,

(5)

where R is the radius of the cylinder and U1 and U2 are the applied voltages.

In order to account for the finite length of the Lorentz steerer the analytic

potential given by this equation can be multiplied by a function f(z). From a

comparison with the potential obtained with SimIon a function f(z) = e(−z/α)4

with α = 1×10−2 m was found to fit the potential along the axis well. Fig 6

plots the mid-plane potentials obtained from the SimIon calculation and the

analytical solution for U2 = 1 V and U1 = 0 V. Within a 6 mm radius from

the center of the steerer the potentials agree within <4×10−3.

A series of simulations was performed, using both the analytical and the

Simion potentials, to study the properties of the realized Lorentz steerer. In
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the case of the Simion simulations a geometry and potentials as shown in Fig. 4

was used. The initial ion distribution contained 500 ions and was centered on

the axis of the Lorentz steerer. The width of the distribution in the radial

direction was 0.1 mm. The ions started their flight in Tube 1, shown in Fig. 4,

with an axial energy of 2 keV and no radial energy. After passing through the

Lorentz steerer their radial positions were recorded at the location of the field

plate.
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Fig. 7. Results of SimIon simulation showing mean radial displacement (data points)

as a function of Lorentz steerer voltage (U2) for three different masses. Lines are

linear regressions.

Fig. 7 plots the mean radial displacement as a function of the potential ap-

plied to U2 obtained from the SimIon simulations. As expected, the average

radial displacement is proportional to U2. The slopes of these lines represent

a ”steering strength” which depends on the mass and axial energy of the ion

passing through the Lorentz steerer. Fig. 8 plots steering strength values ob-

tained from the SimIon simulation (like those shown in Fig. 7). The solid line is

the result of a calculation using the analytical solution for the potential of the

quartered cylinder. There is good agreement between the SimIon simulations
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Fig. 8. Steering strength as a function of mass number of a singly-charged ion with

K = 200 eV axial energy determined from SimIon simulations. The solid line is

obtained using the analytical solution for the potential.

and the calculations.

4.2 How to achieve minimum cyclotron motion?

When injecting ions into a Penning trap it is important to introduce as little

radial energy in the process as possible, as non-zero values of the initial cy-

clotron radius, ρ+,o, can introduce asymmetries in the resonance line shape [11]

and reduce the magnitude of the resonance signal. Fig. 9 plots the radial dis-

placement as a function of time of an A = 70, singly-charged ion for two

different of axial energies. The steering voltage was adjusted to result in the

same final radial displacement. The curves were calculated using the analyti-

cal potential. The solid line is for an ion with K = 200 eV of axial energy and

a steerer voltage U2 = 400 V. The dashed line is for an ion with K = 50 eV of

axial energy and a steerer voltage U2 = 200 V. The K = 200 eV ion exits the
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Fig. 9. Calculated radial displacement as a function of time for an A = 70,

singly-charged ion as it travels through, and out of, the Lorentz steerer. The solid

line is for a beam with K = 200 eV axial energy. The dashed line is for a beam with

K = 50 eV axial energy. The steering voltages have been adjusted to result in the

same final radial displacement.

electric field region after ≈ 1.25 µs. The oscillations are due to the induced

cyclotron motion (see Sec. 2), in this case leading to an amplitude ρ+,o ≈ 0.1

mm. The slow ion exits the electric field region after ≈ 2.5 µs and achieves the

same mean radial displacement as the fast ion, but with a cyclotron amplitude

of ρ+,o ≈ 2 µm. Qualitatively this can be understood upon closer inspection

of Eq. 2. Slower ions require more time to pass through the Lorentz steerer

and therefore require a smaller electric field strength E to drive them to the

same final radial displacement as a faster ion. For the system employed in

the LEBIT Penning trap mass spectrometer an axial energy of less than 75

eV reduces the radial energy gain to sub-eV levels for the maximum applied

steering voltages.
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Fig. 10. Top: Time of flight of 39K+ ions ejected from the trap after being subjected

to a quadrupolar RF field with a frequency νc as a function of U1 with U2 = 84

V. Bottom: Initial magnetron amplitude, ρ−,o, as calculated from the time-of-flight

data shown above. U1,2’ are offset-corrected values of U1,2 such that for U1,2’ = (0

V, 0V) the value of ρ−,o is minimized. Lines are to guide the eye and to illustrate

the linearity of steering with applied voltage.

5 Lorentz Steerer Measurements

39K+ ions are created with a plasma ion source and delivered as short pulses

using the LEBIT beam cooler and buncher [12]. After passing through the
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Lorentz steerer the ions are captured in the Penning trap. If the ions enter

the trap off axis then upon being trapped they perform an initial magnetron

motion. Application of a π-pulse with frequency νrf ≈ νc can be used to

completely convert the magnetron motion into cyclotron motions as discussed

above. The accompanied increase in radial energy which can be detected via

measurement of the time-of-flight of the ions [9] from the trap to a detector

located outside of the magnetic field. By taking the radial energy gain and

the known electric and magnetic fields traversed by the ion on its path to the

detector, the value for the initial magnetron amplitude can be determined.

Fig. 10 (top) shows the time of flight of ejected 39K+ ions as a function of

voltage applied to the Lorentz steerer electrodes after capture in the trap and

subsequent quadrupolar excitation for a time Trf = 50 ms. U2 was held at a

constant 84 V for the following reasons. Due to imperfections in the injection

of the ions into the magnetic field of the Penning trap spectrometer steering

voltages of U1 = U2 = 0 do not necessarily correspond to injection on the

trap axis, and an initial steering by the Lorentz steerer may be required. The

values U1,2 = (-24 V, 84 V) correspond to the maximum time of flight (and

minimum initial magnetron amplitude). For ease of discussion we introduce

offset-corrected steering voltages such that U1,2’ = (0 V, 0 V) corresponds to

the maximum time of flight observed for 39K+ ions.

Fig. 10 (bottom) shows the values of the initial magnetron amplitude calcu-

lated from the time-of-flight data in the above plot as a function of U1’. The

solid lines illustrate that the size of the magnetron radius ρ−,o of the captured

ions is proportional to U1’, as expected from the simulation results shown in

Fig. 7.
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Fig. 11. Initial ρ− as a function of U1 for three different ion species. The numbers

in parentheses are the steering strength values in µm/V.

Fig. 11 plots the results for the initial magnetron radius ρ−,o as a function

of the true voltage U1 obtained from measurements with three different ion

species. The solid lines are linear fits to the data. The numbers in parentheses

are the slopes of the lines which correspond to steering strength values (in

µm/V). According to Eq. 4, the displacement respectively steering strength

is proportional to
√

m for ions with the same axial velocity. This is reflected

in the experimental data and the measured steering strength values for 23Na

and 39K also agree with the calculated values shown in Fig. 8.

The Lorentz steerer should allow for precision control not only of the ampli-

tude of the magnetron motion, but of the initial phase, as well. In order to

investigate how well this control works, an experiment was performed accord-

ing to the following procedure. 39K+ ions are placed off axis into the trap using

the Lorentz steerer, resulting in an initial magnetron radius. Next a dipolar

RF field, at frequency ν−, which is phase-locked to the time of ion capture is

applied. Depending on the phase of the RF field the excitation of the mag-

netron motion will result in a larger or smaller final magnetron radius. Using
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Fig. 12. Magnetron amplitude ρ− as a function of φrf of 39K+ ions subjected to a

dipolar RF field at frequency ν− for an excitation time of Trf = 50 ms. The choice of

steering voltages is such that, that the ions should be captured on a circle at angles

90◦ apart. Solid lines are sinusoidal fits to the data. The fit results are summarized

in Table 1.

a π-pulse with νrf = νc and the time-of-flight measurement allows the ampli-

tude of the magnetron motion after the dipolar excitation to be determined.

Fig. 12 presents the results of such a measurement. The magnetron amplitude

ρ− of 39K+ ions is plotted as a function of the initial phase of the dipolar RF

field for four different Lorentz steerer settings. Each setting corresponds to a
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magnetron phase change of 90◦ from the previous setting and should provide

the same steering strength. The data are fit with a sinusoidal function (solid

line), ρ−(φ) = ρ−,o + ∆ρ−·sin(φrf - φ−,o), where ρ−,o is the initial magnetron

amplitude introduced by the Lorentz steered, ∆ρ− is the maximum amplitude

change due to dipolar excitation, φrf is the initial phase of the RF, and φ−,o

is the initial magnetron phase. The fit results, given in Table 1, show that

the initial magnetron amplitudes, ρ−,o, due to the effect of the Lorentz steerer

alone, agree to within a few percent. The phase change of 90◦ from one case

to the next is confirmed to within ±2◦. Both of these results together confirm

that the ions were moved on a circle in the radial plane of the Penning trap

and demonstrate the precision control of the initial ion placement in the trap

available with the Lorentz steerer.

Table 1

Summary of the fit results of a fit of a sinusoidal function to the data presented in

Fig. 12. U1,2’ are the offset-corrected voltages applied to the Lorentz steerer, ρ−,o is

the initial magnetron amplitude given by the fit, φ−,o is the initial magnetron phase

given by the fit, and ∆φ = |φi
−,o − φi+1

−,o | is the phase advance from one setting to

the other.

U1’ [V] U2’ [V] ρ−,o [mm] φ−,o [deg] ∆φ [deg]

1 -100 0 0.94(2) 102(1) 87(2.2)

2 0 +100 0.96(2) 189(2) 93(2.2)

3 +100 0 0.93(2) 282(1) 91(2.2)

4 0 -100 0.96(1) 13(2) 89(2.2)
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6 Summary and Conclusions

A new technique for the precise manipulation of ion injection into a Penning

trap has been developed and tested. It is used routinely in LEBIT’s Penning

trap mass spectrometer. Compared to the alternative method of magnetron

preparation via dipolar excitation, it is less complicated and requires no ad-

ditional preparation time. The Lorentz steerer offers complete control over

the injection process and precise placement of an ion or a small ion cloud in

the radial plane of a Penning trap. We expect that such a Lorentz steerer is

a likely successor to dipolar excitation for magnetron preparation in future

Penning trap systems. It is already foreseen in the TITAN [13] Penning trap

mass spectrometer, presently under construction.
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