Odd-parity rotational band structure in ${}^{48}V^{\dagger}$

L. E. Samuelson,* W. H. Bentley, W. H. Kelly, and K. A. Warner

Cyclotron Laboratory and Department of Physics, Michigan State University, East Lansing, Michigan 48824

F. M. Bernthal and Wm. C. McHarris[‡]

Cyclotron Laboratory, Department of Chemistry, and Department of Physics, Michigan State University, East Lansing, Michigan 48824 (Received 2 December 1974; revised manuscript received 7 September 1976)

A second odd-parity rotational band in the $f_{7/2}$ -shell nucleus ${}^{48}_{23}V_{25}$, based on a 1099.1 keV state with $K^{\pi} = 4^-$, has been identified up to the 8⁻ member. Also, corrections are given for the previously reported 1⁻ band. These bands can be interpreted as the singlet and triplet couplings of the $\Omega^{\pi}[Nn_{Z}\Lambda\Sigma] = 3/2^{+}[202_{4}]$ proton and $5/2^{-}[312_{1}]$ neutron Nilsson orbitals, indicating prolate deformation.

NUCLEAR REACTIONS ⁴⁶Ti(α , pn), ⁴⁸Ti(p, n); measured γ - γ coin, ce, ⁴⁸V deduced levels, J, π , Λ , ICC. Splitting of Nilsson levels.

An odd-parity rotational-like band built on a proposed $J^{\pi} = 1^{-}$, 518.7-keV state in $\frac{48}{23}V_{25}$ has been reported by Haas and Taras.¹ We have outlined arguments in favor of associating the 1099.1-keV state in ^{48}V with a related $K^{\pi} = 4^{-}$ rotational band.² In view of the apparently contradictory data regarding the proposed 4⁻ assignment, however, we undertook to measure α_K , the K-shell internal conversion coefficient, for the 1099.1-keV transition that depopulates this state to the 4⁺ ground state. In this case, such a measurement is definitive with respect to the parity.

Here we report the unambiguous characterization of the 1099.1-keV transition as E1 and the confirmation of the 4⁻ assignment for the 1099.1keV state. To our knowledge this is the first reported in-beam application of the conversioncoefficient technique to such a low-Z nucleus. Moreover, the ⁴⁸V data provide a very clear example of one of the few singlet-triplet coupling doublets to be identified in such a light nucleus, and they give a clear indication of permanent prolate deformation at low energies in a nucleus close to the Z=20, N=28 closed shells. We also show that the 1⁻ band built on the 518.7-keV state is strongly perturbed with a large odd-even shift.

We have performed $\gamma - \gamma$ coincidence experiments and measured γ -ray excitation functions using the ⁴⁶Ti($\alpha, pn\gamma$) and ⁴⁵Sc($\alpha, n\gamma$) reactions to populate highspin ⁴⁸V states. New ⁴⁸V γ rays were identified by their appearance in gates on peaks well known from the $(p, n\gamma)$ work.³ The ⁴⁸Ti (p, ne^{-}) studies reported here were specifically aimed at determining the parity of the 1099.1-keV state. Details of all of these experiments will be published later with the results for both positive and negative parity levels.

A portion of the level scheme of 48 V showing the revised and extended odd-parity band structure is shown in Fig. 1. Important coincidence spectra

FIG. 1. A partial level scheme of 48 V showing oddparity band structures and their decay modes.

15

that help to establish this structure are shown in Fig. 2. The excitation functions of all placed γ transitions except the crossover transitions and the uppermost cascade members (all too weak to measure precisely) are compatible with their assignment to ⁴⁸V. The definite (without parentheses) spin assignments shown are based upon our previously reported ⁴⁸Ti($p, n\gamma$) work,³ while the remaining assignments are suggested by our ⁴⁵Sc($\alpha, n\gamma$) excitation function work. The evidence supporting assignment of odd parity to the 518.7 keV state has been cited by Haas and Taras.¹

The most compelling evidence for the odd-parity assignment for the 1099.1-keV state is the internal conversion coefficient for the transition to the ground state. We measure $\alpha_{K} = (4.0 \pm 0.6) \times 10^{-5}$ for that transition, normalized to the theoretical K-conversion coefficients⁴ of the pure E2 transitions at 983.3 and 1311.7 keV, corresponding to the 2⁺ \rightarrow 0⁺ and 4⁺ \rightarrow 2⁺ transitions in ⁴⁸Ti. The number is clearly in agreement with the theoretical value 4.5 \times 10⁻⁵ for a pure E1 multipole and in disagreement with the values 8.0×10^{-5} and 9.9×10^{-5} expected for M1 and E2 multipoles, respectively. The relevant portion of the ⁴⁸V conversion electron data is shown in Fig. 3.

The ⁴⁸Ti($p, n\gamma$)⁴⁸V angular distribution and excitation function data³ also favor the 4⁻ assignment over a 5⁺ as proposed in Ref. 5. Results from a recent linear polarization experiment by Rickel *et al.*⁶ are consistent with either a 4⁻ or 5⁺ assign-

FIG. 2. Spectra of γ rays in coincidence with the 504.7- and 776.9-keV transitions, showing most of the lines in the 1⁻ and 4⁻ bands, respectively. Although these spectra are uncorrected for chance events, the weak appearance of the 199.3- and 427.9-keV lines, by far the most intense transitions in the γ -ray spectrum, indicates chance events were relatively unimportant.

FIG. 3. A portion of the ${}^{48}\text{Ti}(p,ne^-){}^{48}\text{V}$ conversionelectron spectrum taken with a 3-mm Si(Li) detector and a solenoidal electron guide. The proton energy was 6 MeV. Theoretical K-conversion coefficients for the 983- and 1312-keV E2 transitions in ${}^{48}\text{Ti}$ are 1.14×10^{-4} and 5.87×10^{-5} , respectively.

ment. A number of transfer reaction experiments have yielded inconclusive or conflicting results with regard to the parity of the 1099.1-keV state.^{7,8} Finally, we note that 6.5 ± 0.5 -psec mean life of this state implies a B(E1) value of $(8.5 \pm 0.7) \times 10^{-5}$ W.u. (Weisskopf units),⁹ very similar to the retarded B(E1) values of $(7.6 \pm 0.2) \times 10^{-5}$ and $(1.26 \pm 0.03) \times 10^{-5}$ W.u. we observed for the 97.9- and 210.4-keV γ rays deexciting the 518.7-keV K^{π} = 1⁻ state.¹⁰

Other corrections to the ⁴⁸V level scheme should be pointed out. First, the 776.9-keV coincidence data clearly indicate the 806.6-keV transition suggested by Haas and Taras¹ as depopulating the 7⁻ state of the 1⁻ band in fact belongs to a cascade feeding the 4⁻, 1099.1-keV state. Perhaps the 1523.5-keV transition suggested to arise from this same 7⁻ state is a misplacement of the Doppler broadened 1524.2-keV transition we observe to feed the 9⁺, 2626-keV state in ⁴⁸V.

A plot of $[E_J - E_{J-1}]/2J$ vs $2J^2$ for the 1⁻ and 4⁻ bands is shown in Fig. 4. In a plot such as this, the intercept is the rotational constant $\hbar^2/2g$, the slope is the semiempirical second-order "B term" correction to the rotational energy, and perturbation effects are emphasized. As can be seen, the 4⁻ band appears reasonably normal, with an average rotational constant very similar to that of the 1⁻ band. The B term is negative, i.e., the effective moment of inertia shows the expected slight increase with spin. The 1⁻ band, however, is strongly perturbed, having a very large odd-even shift. Note that our suggested 7⁻ member of the 1⁻ band is consistent with the odd-even shift of

FIG. 4. The rotational band spacing as a function of J^2 for the 1⁻ and 4⁻ bands in ⁴⁸V.

the other members of this band.

If ⁴⁸V is prolate with $\beta \approx 0.2$, the $d_{3/2}^{\frac{3}{2}+}[202\downarrow]$ single-particle orbital approaches the $f_{7/2}^{\frac{3}{2}-}[321\uparrow]$ orbital. When the odd proton is promoted to the low-lying $d_{3/2}^{\frac{3}{2}+}[202\downarrow]$ orbital and the odd neutron remains in the ground-state $f_{7/2}^{\frac{5}{2}-}[312\uparrow]$ orbital, a $K^{\pi} = 1^{-}$ state is obtained for the triplet p-n cou-

- [†]Work supported in part by the U. S. National Science Foundation.
- *Present address: Department of Physics, Purdue University, West Lafayette, Indiana 47907.
- ‡Alfred P. Sloan Fellow, 1972-1976.
- ¹B. Haas and P. Taras, Phys. Rev. Lett. <u>33</u>, 105 (1974).
- ²L. E. Samuelson, F. M. Bernthal, W. H. Kelly, and Wm. C. McHarris, Bull. Am. Phys. Soc. 19, 546 (1974); Michigan State University Cyclotron Laboratory Annual Report, 1973-74 (unpublished), p. 53.
- ³L. E. Samuelson *et al.*, in *Proceedings of the International Conference on Nuclear Physics*, *Munich*, 1973, edited by J. de Boer and H. J. Mang (North-Holland, Amsterdam/American Elsevier, New York, 1973), Vol. 1; Michigan State University Cyclotron Laboratory Annual Report, 1971–72 (unpublished), p. 16; and Michigan State University Cyclotron Laboratory Annual Report, 1972–73 (unpublished), p. 48.
- ⁴H. C. Pauli and U. Raff, Comp. Phys. Comm. 9, 392

pling and is expected to lie lower in energy than the singlet state.¹¹ The low-lying 518.7-keV 1⁻ level in ⁴⁸V can be identified as this triplet state. The $K^{\pi} = 4^{-}$ state at 1099.1 keV then is almost certainly the singlet of this same *p*-*n* configuration. (It is interesting to note that the 4⁺ ground state can also be fitted into this picture as the triplet coupling of an $f_{7/2^{\frac{3}{2}}}$ [3214] proton with an $f_{7/2^{\frac{3}{2}}}$ [3124] neutron.)

The odd-even shift observed in the 1⁻ band is well known in odd-odd deformed nuclei. It arises from components in the residual proton-neutron interaction which in ⁴⁸V caused an odd-even shift in the unseen $\frac{3}{2}$ + $[202 \downarrow]_{\pi^2} [321 \uparrow]_{\nu}$, $K^{\pi} = 0^{-}$ band.¹² This displacement in the 0⁻ band is transmitted to the 1⁻ band as a second-order perturbation by the Coriolis interaction. A quantitative treatment of the n-p residual interaction is difficult here because the perturbing 0⁻ band has not yet been located. Useful data may also be provided by ⁴⁶V, since the 0⁻ band should be the lowest-lying oddparity band if similar deformations exist in that nucleus. The identification of additional tripletsinglet coupling doublets and/or $K^{\pi} = 0^{-}$ bands in nuclei in this region should provide further useful tests of the effective residual interaction in light nuclei.

(1975).

- ⁵P. Taras, B. Haas, and R. Vaillancourt, Nucl. Phys. A232, 99 (1974).
- ⁶D. G. Rickel, N. R. Roberson, C. P. Cameron, R. D. Ledford, S. G. Buccino, and D. R. Tilley, Nucl. Phys. A256, 152 (1976).
- ⁷J. C. Manthuruthil, C. P. Poirier, and L. Meyer-Schützmeister, Phys. Rev. C 11, 1141 (1975).
- ⁸W. E. Dorenbusch, J. A. Belote, J. Rapaport, and K. G. Nair, Nucl. Phys. A112, 385 (1968).
- ⁹B. A. Brown, D. B. Fossan, J. M. McDonald, and K. A. Snover, Phys. Rev. C 11, 1122 (1975).
- ¹⁰L. E. Samuelson, C. B. Morgan, T. L. Khoo, and
- W. H. Kelly, Bull. Am. Phys. Soc. <u>18</u>, 767 (1973).
- ¹¹ C. J. Gallagher and S. A. Moszkowski, Phys. Rev. <u>113</u>, 212 (1959); C. J. Gallagher, Nucl. Phys. <u>16</u>, 215 (1960).
- ¹²N. D. Newby, Jr., Phys. Rev. <u>125</u>, 2063 (1962).