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Abstract--An overview is given of different aspects of the Interacting Boson Fermion Model, the 
extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the 
coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction 
between the bosons and the single-particle is derived. The predictions of the model are compared to 
those of the standard geometrical models. As realistic examples calculations of the low-lying positive 
and negative parity states in the odd-mass Europium isotopes and of the spreading width of deeply- 
bound hole states in the odd-mass Palladium isotopes are presented. The concept of dynamical 
super-symmetries is outlined. Also the phenomenology and microscopy of the coupling of two-quasi- 
particles to the bosons is discussed. 
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1. I N T R O D U C T I O N  

In the Interacting Boson Approximation (IBA) model the properties of low-lying col- 
lective states are calculated in terms of a system of interacting s and d bosons. In this form it 
was first formulated by Iachello and Arima31) It differs from most other boson models by 
the explicit introduction of an s ( J~=  0 ÷) boson in addition to the usual quadrupole 
phonon (d~ = 2 +) in such a way that the total number of s- and d-bosons is a conserved and 

finite number. It can be shown that the s-boson (or equivalently the factors ~ in Ref. 
5) account for much of the effect of the Pauli principle acting on the finite number of valence 
nucleons. Another consequence is that the model has a definite group structure which allows 
for the introduction of the concept of dynamical symmetries ~2'3'4) furthermore since the 
model space is finite dimensional exact calculations are possible. This model has proved to 
be very successful in many phenomenological applications ~6) to nuclei ranging from 
spherical ~2) to deformed ~3) to gamma-unstable, ~4) to nuclei varying in mass from as light as ~7) 
A = 18 to as heavy as ~s) A = 238, and for several transitional nuclei in between these 
limits.~9 - 11) 

Shortly after the introduction of the phenomenological IBA model (until then called the 
Interacting Boson Model, IBM) a microscopic foundation was introduced, t12' 13) in which 
the boson was interpreted as a collective fermion pair state. The s-boson is seen as the 
equivalent of a collective J~ = 0 ÷ fermion (S-) pair state while the d-boson is seen as the 
equivalent of a collective fermion pair state with angular momentum J~ = 2 ÷ (D-pair). This 
picture directly links the IBA model to the Generalized Seniority (GS) scheme, tt4) which has 
contributed much to the qualitative understanding of the dependence of the model para- 
meters on particle number, tlS't6) One immediate t12) consequence of this relation between 
fermion pair states and the bosons is that the number of bosons should be taken equal to the 
number of fermion pairs in the valence shells. 

By coupling single particle (s.p.) degrees of freedom to the system of bosons the IBA 
model can be extended to the Interacting Boson Fermion Approximation ~7,~a) (IBFA) 
model in which odd-A nuclei can be described. This extension has two important conse- 
quences; (i) it allows for a relatively simple phenomenological description of the compli- 
cated spectra of odd-mass nuclei and (ii) the coupling of the single particle degrees of 
freedom depends sensitively on the detailed structure of the bosons ~42) which makes the 
odd-mass nuclei the ultimate test-ground for microscopic theories of the IBA model. In this 
paper some examples of the successes and shortcomings of the IBFA model will be 
mentioned. 

The model can be extended one step further by coupling two quasi-particle degrees of 
freedom to the bosons. In this way high spin phenomena such as backbending tg°- 92) and 
even giant resonances can be described, t87-a9) Also in the low-lying part of the spectrum 
non s-d boson degrees of freedom can play an important role. Clear cases are the negative 
parity states which are built on a collective J~ = 3- state and can be calculated in the IBA 
model by coupling af -boson to the system of s- and d-bosons, tg) Other examples are low- 
lying (around 1.5 MeV) K ~ = 3 + bands in deformed nuclei which can be accounted for by 
coupling a J~ = 4 + (g) pair state ~s3 -86) to the IBA bosons. 

The relation between the IBA model and the Generalized Seniority scheme is discussed in 
Section 2 and the microscopic basis is laid for the coupling of the particle degrees of freedom 
to the bosons. The first problem one encounters in coupling the particle degrees of freedom 
to the bosons is a proper definition of the model space which is discussed in the first part of 
Section 3. The dominant part of the interaction between the bosons originates from the 
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neut ron-pro ton  quadrupole-quadrupole  interaction. For  this reason in that section some 
approaches are outlined for constructing the image of the shell-model quadrupole operator 
in IBFA. It will be shown that in the IBFA model the q.uadrupole operator consists of three 
different terms, one that acts only on the odd particle, another one that acts only on the 
bosons and a mixed term. The first two terms contribute to a direct boson-fermion 
quadrupole interaction in the IBFA Hamiltonian while the last term gives rise to the 
exchange force. This force accounts for the fact that the bosons themselves are built up of 
fermions which can occupy some of the same single particle orbits which are coupled 
explicitly. In Section 4 some examples are worked out in which an odd-particle is coupled to 
a spherical, an axially symmetric and a gamma-unstable core. In these limiting cases the 
features of the weak-coupling and the Nilsson model are reproduced. As an illustration the 
model is applied to the odd-mass 6aEu isotopes. In another example the model is used to 
calculate the spreading width of deeply-bound neutron hole states in the 46Pd isotopes. The 
concept of dynamical symmetries for odd-mass nuclei is outlined in Section 5. A microscopic 
treatment of two quasi-particle states in the IBA model together with some examples is 
discussed in Section 6. 

2. MICROSCOPIC F O R M U L A T I O N :  E V E N - E V E N  NUCLEI  

2.1. Generalized seniority 

The fact that the bosons in the IBA model can be regarded as collective fermion pair 
states (12'15) introduces a natural link between the IBA model and the shell model. This link 
can be established most directly through the introduction of the Generalized Seniority (GS) 
scheme. A recent review of this relationship can be found in Ref. 19. For  this reason only the 
most important aspects will be briefly mentioned here. 

In the GS scheme (14) which can be regarded as a generalization of the conventional 
seniority scheme (2°'21) to the case of several non-degenerate orbits, one introduces a pair 
creation operator, 

S '  = E ejS~, SJ t = ½x/~ + 1 (cjt'cst') '°)" (2.1) 

This operator creates a collective J = 0 pair which can be regarded as a nuclear Cooper- 
pair3 TM In the conventional seniority scheme the operator S t, its hermitian conjugate S -  
and their commutator  S O are the generators of a SU(2) lie algebra. This makes the seniority 
scheme easy to apply, since reduction formulas for matrix elements are readily constructed. 
This is no longer true for the generalized seniority scheme and an SU(2) algebra can only be 
constructed in this way for the special case in which ei = 1. The only possibility for 
constructing an SU(2) algebra for the general case is by introducing (22'23) the operator 
S- = ~ e f I S f  and its commutator  with S t. The operator S -  is however no longer the 
hermitian conjugate of S t which is less appealing for practical applications. 

A state with generalized seniority w = 0 and n = 2N particles can be expressed as 

I n, J = 0, w = 0)  = (St) u I 0). (2.2) 

For  spherical and semi-closed shell nuclei the groundstate can be described to a good 
approximation by (2.2) with suitably (2x'24) adjusted values for the coefficients ~. To describe 
an excited 2 + state one introduces the operator 

D* = y" ½~, x / ~  6j j, (cJcJ,)(2) (2.3) 
jj" 
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which creates a collective state with J = 2, w = 2. A GS state with n = 2N particles and 
J = 2 can then be constructed by operating with (2.3) on a state with n = 2N, w = 0, 

I n, d = 2 , w  = 2> = Dr(St) N-110>. (2 .4)  

The structure coefficients =i [eqn. (2.1)] and flu [eqn. (2.3)] of the collective pairs can be 
obtained by diagonalizing the shell model  interaction in the space of all w = 2 states. (21~ 
Since this space is small (a typical dimension is 10) it does not  require much calculational 
effort. Using similar expressions for J > 2 the method can be generalized and used to 
calculate the spectrum of semi-magic nuclei. (24) In Fig. 1 the spectrum for 144~_ 62,,a11182 
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Fig .  1. The spectrum of 144Sm calculated in the Generalized seniority scheme is compared with a shell model 
calculation(2 s) and the experimental spectrum. {26) 

calculated in the GS scheme is compared with a shell-model calculation (2s) and experi- 
ment. (26) The interaction used in the GS calculation is the same as in the shell-model where 
it has been adjusted to reproduce the spectra of the N = 82 isotones325) A typical dimension 
in this shell-model calculation is 2000. This comparison between the two calculations 
indicates that the GS scheme yields a powerful truncation scheme. 

Because of  the lack of  an underlying symmetry group structure the quantum number w 
should be treated with some care. The state D2S •-210> for J = 0, for example, has to be 
orthogonalized for each N explicitly to the state S N 10>, to obtain a state with w = 4. (In the 
conventional  seniority scheme the results of this orthonormalization have a trivial N- 
dependence because of the underlying S U(2) group structure.) In actual calculations this N- 
dependent orthonormalizat ion does not  cause any severe drawbacks since mostly the 
interest is in the lowest seniority states. Some reduction formulas for the matrix elements of 
operators between low GS states are given in Ref. 27. 
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2.2. The OAI method 

In 1978 Otsuka, Arima and Iachello t15) (OAI) introduced a method for relating the 
operators in the IBA model to those of the shell model. It differs from other methods in that 
it is not based upon a formal mapping between boson operators and shell model operators 
but rather emphasizes the equivalence between states in the two models. The states in the 
two spaces can be related most transparently if one works in the GS scheme. An IBA state 
with N-boson and with n d d-bosons corresponds to a shell model state with n = 2N and 
w = 2n a. The shell model state (2.2) corresponds thus to the state (s*) N [ 0) in the IBA model, 
where's t is an s-boson creation operator. In this respect the S-pair operator is the shell 
model counterpart  of the s-boson. The state (2.4) is the IBA model equivalent of the one d- 
boson state d*(s*) u-I  I0).  The D-pair creation operator can thus be regarded as the 
microscopic counterpart  of the d-boson. 

Because of this particular relation between the shell model and the IBA model, operators 
are mapped from one space onto the other by requiring that the matrix elements of the 
operators are equal between equivalent states in the two model spaces. ~15'26) As an example 
of this procedure we consider the matrix elements of the quadrupole operator. For  
simplicity we will work in the conventional seniority scheme instead of the GS scheme, since 
for the present purpose it is not essential. The shell model quadrupole operator can be 
written as 

q~2, = Z Q~,(cJe;,)  ~2) (2.5) 

where Qss' are the single particle matrix elements of the quadrupole operator Qss" = 
(J  [[ r2 Y2(r)[IJ'). The matrix elements of this operator can be calculated using seniority 
reduction formulas (2s) as 

( j 2 N , v  = 0, J = Ollq(2)l]j2N,v = 2, J = 2) 

= x / ~ ( ~ N ) / ( D - 1 ) ( j 2 ,  v = O , J  = O[[q(2)l[jZ, v = 2, J = 2), (2.6) 

where O is the pair degeneracy, f~ = (2j+ 1)/2. In the IBA model the quadrupole operator 
can to lowest order in the d boson operators be written as 

Qa = lc[(s*/7+ d*s") (2) + z(d*t~)(2)]. (2.7) 

The matrix element corresponding to (2.6) in the IBA model is thus 

( s~ II Q. II J - i a >  = x / ~ .  (2.8) 

Equating the matrix elements the left hand sides of eqns. (2.6) and (2.8) yields 

K = x / ( f t  - N ) / ( f ~  - 1) (j2, j = 0 II q(2 ) i l j 2 j  = 2)/x/~" (2.9) 

Following a similar procedure an expression for ;~ can be derived. For  large values of O it 

can be shown (28) that the matrix element (2.6) depends on v as ~ v while (2.8) depends 

on n a as ~ .  Since v = 2n a this shows the important role played by the s-boson in IBA. 
The effect of the finite number of bosons can be studied in schematic models. One such 

exactly solvable schematic model is the O(4) model developed by Piepenbring et  al. (z° 1) This 
model simulates the pairing plus quadrupole force model. It is a single-j model in which 
fermion seniority can be treated exactly. Matsuyanagi (1°2) has used this model to study the 
effects of a finite fermion space on matrix elements as a function of seniority and compared 
the results with the predictions following from the IBA model. His conclusion is that, if the 
number of particles is large ( N _  f~), the IBA model does not provide a satisfactory 
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reproduction of, for example, the transition matrix elements between levels with increasing 
seniority. The quenching of the transitions is less than is expected on the basis of a finite 
boson number. For smaller numbers, the cutoff effects agree much better with the results of 
the schematic 0(4) model. It should be noted, however, that in the 0(4) model angular 
momentum cannot be treated, which makes comparison with the IBA model less direct. 

2.3. Deformed nuclei 

The OAI procedure can be applied not only to spherical nuclei where the GS basis offers 
a valid truncation scheme, but also to deformed nuclei. In deformed nuclei a microscopic 
description of an intrinsic state can be provided by a deformed HFB calculation. Matrix 
elements of operators for this intrinsic state can be equated to those for coherent states in the 
IBA model. (z9 -31) Since the procedure for deformed nuclei has not yet been extended to the 
case of odd-mass nuclei this topic will not be discussed here. 

2.4. The IBA Hamiltonian 

In this section the IBA model will be discussed only briefly as it has been used in 
phenomenological applications to even-even nuclei. 

The version closest to the microscopic picture is the IBA-2 model," a,1 s) where one treats 
neutron and proton degrees of freedom explicitly. The Hamiltonian used with much 
success (6) in phenomenological applications to a wide range of nuclei can be written as 

^ - - K  ,,'~(2) r~(2)± M + V v v + V i i i i + E o ,  (2.10) HII  = 8vn~ a t viiI, Zv " ~ T Vi i  

where 

and 

P 

~ 2 (s,dii _ , ~ i i ,  " ( s , a ,  - ~ J , )  {2)-2 M~ = * *--dt~*~ (2) 
k=1,3  

Vpp E 1 L = ~Cp (2L + I )  [(dptd~) (L) (a~pa~p)(L)] (°) 
L =0,2,4 

which is not the most general IBA-2 Hamiltonian. The first term gives the energy difference 
between the s and d boson. It arises from the fact that in the effective interaction between like 
particles the monopole pairing force is stronger than the quadrupole pairing force which 
gives more binding to the S-pair than the D-pair state. Although in principle the d-boson 
energies ev~ can be different for neutron and proton bosons, they have for simplicity in 
phenomenological applications always been taken as equal. Since the major part of the 
interaction between like particles is already absorbed in the boson energies, the residual 
interaction between like bosons, V, and Viii, is of minor importance. The Q(2). Q~) 
interaction is the boson image of the (strong) neutron-proton quadrupole-quadrupole 
interaction. The Majorana force Mvii has the function to shift up the position of all states 
which are not totally symmetric in the neutron-proton degree of freedom. It can be 
shown (2t) that this term in the effective boson interaction results from a truncation of the 
basis to s- and d-bosons only. 

The simpler version of the model, IBA-1, was introduced first. (1) In this earlier version 
only one kind of s- and d-bosons are present and there is no distinction made between the 
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neutron and proton degrees of freedom in the nucleus. The Hamiltonian can be written in 
several different ways, the simplest of which for the present discussion is in terms of a 
multipole expansion, 

HI = efia + tcQ (2)" Q(2)+ x,Lt l ) .  Ltl) + K,,0(3) . 0(3)_[_ x,,,H(4). Ht,) (2.11) 

where 

Qt2) = (s'aT+ d*s) (2) + z(d*aT) t2) 

L(1) = x/T6(dtd)")  

O~3'= ,~5(a*/b~3~ 
H ¢4) = x/~(dtaT)t4). 

In the multipole form of the Hamiltonian given in cqn. (2.11), the boson pairing force ~9~ has 
not been introduced but instead the parameter  Z has been used in the quadrupole operator. 

For  Z = - ½ x / ~  the quadrupole operator  is the same as is used in the multipole decom- 
position given in Ref. 9. If Z -- 0 it resembles the pairing force of Ref. 9. The present 
formulation is based on the consistent Q formulation of Ref. 100. As is well known there are 
three possible dynamical symmetries in the IBA model. The U(5) symmetry t2) is realized by 

putting x = 0, the U(3) symmetry t3) by putting e = x" = x'" = 0 and Z = ---½~/7 and the 
0(6) symmetry t4) by e = x'" = Z = 0. 

Since no distinction is made between neutron and proton degrees of freedom the model 
space of the IBA-1 model is an order of magnitude smaller than that of the IBA-2 model. For  
this reason it is easier to use in numerical applications and is easier to extend to include 
other degrees of freedom such as the single particle degrees of freedom which are discussed 
in this article. In spite of its very limited model space it appears that the IBA-1 model 
describes the low-lying collective states almost as well as the IBA-2 model t32) with the 
possible exception of the stable triaxial nuclei, t33) 

The relation between the two versions of the model can most readily be discussed through 
the introduction of F spin, t12) which is analogous to isospin for light nuclei. States with 
maximal F spin are fully symmetric in neutron and proton degrees of freedom. Therefore the 
IBA-1 model space corresponds to the subset of basis states in the IBA-2 model that have a 
maximal value o f F  spin. Since the Hamiltonian (2.10) favours states with maximal F spin the 
equivalence between IBA-2 and IBA-1 calculations can be understood. For  a given general 
IBA-2 Hamil tonian an equivalent IBA-1 Hamiltonian can thus bc obtained by projecting 
out the part  that acts only on the maximal F spin subspace. The relation obtained for the 
parameters  of the two versions of the model can be written as t32) 

x = K v , N ~ N J N ( N - -  1) 

z = (zv + z . ) / 2  

x' = (C o - 5C 2 + 54C4)/450 

1¢" = (7C 2 - 2C o + 18x')/84 

~c'" = 7(C 4 - 8x' - x") 

e = ev. + ( 4 -  Z2)x - 6x' - 7x" - 9x'" (2.12) 

PPNP-G* 
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where, to shorten notation, we have, introduced 

C O = PvC ° + P,,C ° - 2B 

C2 = PvC 2 + P,~C 2 + 3B/7 

C 4 = PvC*~ + P,~C2 - 4B/7 

with B = x(X 2 - X~X~) and Pp --- Np(Np - 1 ) /N(N  - 1); p = v,rc. The total number of bosons 
in the IBA-1 model calculation is taken as N = Nv +N~. It  has been shown that for most  
realistic cases the energies calculated with the full IBA-2 Hamil tonian and those with the 
projected Hamil tonian give almost the same results for low-lying states3 TM In some cases 
the agreement can be improved by minor adjustments of x and ~. 

3. M I C R O S C O P I C  F O R M U L A T I O N :  ODD-MASS N U C L E I  

3.1. Definition of the model basis space 

The IBA model can be extended to include the description of odd-mass nuclei by 
introducing explicitly single particle (s.p.) degrees of freedom. In the Interacting Boson 
Fermion Approximation (IBFA) model txT) an odd-nucleon creation operator  aJ is intro- 
duced in addition to the s- and d-boson operators. The states in the IBFA model space can, 
as in the case of the IBA model, be related to a shell-model basis by using the GS scheme. In 
order to construct an orthogonal  basis, the odd-nucleon operator  a~ should not be regarded 
as a nucleon creation operator  in the shell-model sense but rather as a generalized seniority 
raising operator, ~32) 

a~ls N)  - - -[ jsN) , - - , ln  = 2 N +  1,J = j , w  = 1), (3.1) 
and, 

(aJd*)~J)lsN-1) = I(jd)~J)s N - l )  ,-~ In = 2 N +  1, J, w = 3). (3.2) 

In general af operating on an N-boson state with n d d-bosons creates a state which 
corresponds to a shell model state with n = 2N + 1 and w = 2n d + 1. It  should be realized 
that for the construction of the state (3.2) in the shell model space one has to consider the 
component  of D t (S t ) s -  l l J )  or thonormal  to S tN t J) .  This problem is similar to that encoun- 
tered in the construction of w = 4 states for even--even nuclei. Since the odd-particle 
operator aJ is defined as a seniority raising operator,  its matrix elements will in general be 
different from those of a shell-model single-nucleon creation operator  c~. The latter has, in 
general, non-vanishing matrix elements with both a w = 1 and a w = 3 state when operating 
on a w = 2 state, c~ [w = 2) = A I w = 1) + B iw = 3), whereas the odd nucleon operator a~ 
can connect a w = 2 state only to a w = 3 state and the matrix element with the w = 1 state 
(by definition) vanishes, a~ I TM = 2) = I w = 3). This is an important  difference between the 
two operators cJ and aJ and shows one of the complications that are encountered when 
setting up a microscopic theory for a system that includes both bosonic and fermionic 
degrees of freedom. In this section we will limit ourselves to the coupling of a single odd 
particle to the system of bosons. Two quasi-particle systems will be dealt with in Section 4. 

3.2. Construction of the Quadrupole operator 

Since the dominant  interaction in the coupling of the odd-particle to the bosons is the 
neu t ron-pro ton  quadrupole interaction, the first task is to construct the IBFA image of the 
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shell-model quadrupole operator. This problem is more complicated than the similar 
problem in the IBA model for even-even nuclei. This can be seen by writing the most 
general IBFA quadrupole operator that acts on the odd particle, including all terms not 
higher than second order in the d-bosons 

Q~2) _- ~,, Ajj,(a1~j,)(2) q_ ~_, Bk [(dts + stt~)t2)(a~aj,)tk)]t2) q_ ~ c~k,[(dt Ta)(o (ajdi,)tk)]tz," (3.3) 
j j '  j j ' k  j j ' : k  

Whereas in the IBA model the quadrupole operator QB (2.7) contains only two parameters, 
there are up to 25 parameters to be determined in the operator (3.3), even for the simple case 
of a particle in a single-j orbit. The main goal of the microscopic theories presented here is to 
arrive at a simplified expression for the quadrupole operator with a minimum of free 
parameters. 

3.2.1. Direct mapping 
The approach taken by Talmi, in Ref. 34, focuses on the determination of the structure of 

the quadrupole operator in the IBFA space rather than on the N dependence of the 
parameters. The method used is very similar to the one that has been used for even-even 
nuclei, namely matrix elements are equated for lowest seniority states. (In Ref. 34 only a 
three-particle system has been considered but recently the approach has been generalized to 
a many particle system: 35)) 

A general nucleon-pair operator can be defined as 

BJM = ~,fl~j,(c~cJ,)~ ), (3.4) 

which for J = 0 corresponds to the S pair operator and for J = 2 to the D pair creation 
operator. The operators c~ are the shell-model single-nucleon creation operators. The 
matrix elements of the shell-model quadrupole operator q~2) (eqn. 2.5) for a three-particle 
state can be calculated using the fermion commutation rules. For each of the components 
of the operator we can write, 

<OIBs,~,c:,,.,c~,.,c~,..BJ.M~ I0> = <0 [ Bj,M, BJ.M. l O>(~jlj6m,l~/zj,(~m2.u, 
? ? + (OIB:,~c:,c/,,B,,~f, I 0)6:,: 6 . . . .  - < O ] B j I M  ' C~m,C:,o, BJ, M, 10)6j,:6,~,, 

-<OlBj,M:]:j:,BJ:,210>6j.,6~,,,-{OIBj~Mlc~c~:j:,c:~,B3:,~ 10>. (3.5) 

In (3.5) the first term gives rise to a pure single-fermion quadrupole operator while the 
second term contributes only to a pure boson quadrupole operator and neither will be 
considered any further. The last three terms represent the corrections to the quadrupole 
operator coming from the Pauli principle. 

Using the definition (3.4) for the pair operators, the matrix elements of the quadrupole 
operator ~ (C:C/)(xk)Qj/, c a n  be calculated. Keeping only the terms that correspond to the 
contractions implied by the last three terms of eqn. (3.5) we obtain 

-- 4( -- 1)h-~, Qj~j, (_J~a k r f ,  )~ j2 j , ,~J ,  fi, (j2mzj,,m,, lJ2J,,jx M1 ) (j, p~j,,m,, lj~j,,J2M2) 
--4( - "  j k • -- 1) ~ Q~ (_~ ~ ~ )fl~j/,fl1:,(j#j"m" [jj"J~M~)(jlm~j"m" Ij~j"JzMz) 

J' 1 2 • " .t • --4(-- 1)J-"Qa,(_~ k r K)~ j j2 f l : j ,  (jl~J2m 2 [jj2J~M1)(j'l~7~m I Ijj1JzM2) (3.6) 

where a summation over repeated indices is assumed. It should be noted that (3.6) contains 
only the contribution that will map onto a real mixed boson-fermion quadrupole operator. 
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In the IBFA model space an operator can be constructed of the kind (3.3) for which the 
matrix elements between the IBFA states are equal to those for the equivalent shell model 
states (3.6), 

• / ( 2 J l + l ) ( 2 J 2 + l ) ~  j ,  J~ + * . ., 

n M,M= trbt  t~ a tv 'qj  a ,(2) 
--~Zdjzpj ' jpj i j '~k J,I Ja J,] l j= l  

t J' t 'J= -Oyi~)fl~) ' :([8,  aj,] [b,,a ]J)(2):}. (3.7) 

The three terms in (3.7) correspond to the three terms in (3.6) in the same order. 
The symbol (: :) indicates normal ordering, terms arising from commuting the operators 

in this expression should be discarded. The boson operators bJ correspond to s* for J = 0 
and to d* for J = 2 respectively. Similarly the coefficients flJ~, are related to/?j j, as introduced 
in eqn. (2.3) and to e j, defined in eqn. (2.1), depending on the value of J. The operator (3.7) 
represents a special choice of the general quadrupole operator (3.3). In principle the 
coefficients fli~' follow from a microscopic calculation Os'z6,21,aL36-aS) of the structure of 
the fermion pair states. In this case the IBFA image of the quadrupole operator is 
completely determined to lowest order in the d-boson operators. The N dependence of the 
coefficients can be obtained in a similar approach. (3 s) 

3.2.2. N u c l e a r  f i e l d  t h e o r y  

The matrix elements of the quadrupole operator can also be derived in a Nuclear Field 
Theory (NFT) approach3 TM Here the approach taken by Vitturi (4°) will be described. The 
NFT provides diagrammatic rules to calculate perturbative matrix elements between collec- 
tive states. The small parameter in this perturbation series is 1/f~, f~ -- (2j + 1)/2 being the 
pair degeneracy of the shell. Terms which are higher order in l/f~ correspond in general to 
higher order terms in the collective boson degrees of freedom. The leading order terms give 
rise to the one-body terms while the terms of the order l/f1 contribute to a two-boson or a 
boson-fermion operator. 

In Fig. 2 the lowest order additional graphs that contribute to the matrix elements of the 

! ! 
<nsndO(R; I IIQ 2 I lnsnd~ R = I f> 

+ 

(a) (b) 

S - _nSs 

= S ( 1 - 2 n s ) ~ S ( 1 - 2 n s )  
£L ~Z 

(e) 

_2sS 
x'). 

Fig. 2. Diagrams in NFT that contribute to the matrix elements of the quadrupole operator (after Ref. 40). 
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quadrupole operator due to the presence of the odd particle are shown. Graph (a) 
corresponds to the zero order contribution in which the quadrupole field acts on the odd 
particle without any interaction with the bosons. The other two terms give rise to cor- 
rections of the order of 1/f~', where t4°'4a~ f~' = ~ - 2 n  d -  1. The total contribution to order 
1/f~' to the matrix element is given by ~4°) 

Q,,n~ndotR,jJ>= ( 1 - ~ n ,  ~) (nsnn~R;jJll ' '" " ' S 

for the case of a single j shell, where 

t3 ~ ' t  19+R+JJ "z J J tx X 

The IBFA model operator can now be obtained by matching matrix elements between 
equivalent states resulting in 

Qv = ( ~ - ~ N - 1 ) Q j j ( a ~ a j )  ~2) 

where N is the total number of bosons. It is seen that some additional terms in the 
quadrupole operator that appear using the method described in Section 3.2.1 are not 
obtained. The reason is that in the present approach certain exchange diagrams have not 
been considered. 

3.2.3. Quasi particles 
The IBFA image of the shell model quadrupole operator can also be constructed through 

the introduction of pseudo particle ta2) creation operators. The pseudo particle operator c~ 
in the IBFA model is defined as the equivalent of the single-particle operator c~ in the shell 
model space. The two operators are equivalent in the sense that the matrix elements of the 
operators between equivalent states in the two spaces are equal. It should be realized that 
the pseudo particle operator ~ should be distinguished from the odd nucleon operator a~ 
since the latter, as is remarked before, should be regarded as a seniority step operator. In 
order to obtain an expression for the pseudo particle operator in first order in the d boson 
operator, matrix elements have to be calculated in the shell-model space for states with 
generalized seniority w ~< 3, As an example the derivation for the w ~< 1 matrix element will 
be outlined. 

In the so-called number operator approximation (NOA), which is discussed extensively 
by Otsuka ~16) the coefficients ~j which enter in the definition of the S pair operator (2.1) are 
normalized such that the eigenvalue of 

2 t 

j rn j 

for states with N-S  pairs is equal to the number of nucleons, (S N [~IS N) = 2N. To a good 
approximation this operator can be treated as the number operator. In this approximation 
the algebra for the GS operators becomes equal to that of conventional seniority and many 
equations can be simplified. By introducing an effective degeneracy 

~'~e = ~'~, 2 
J 

of the maj or shell the following normalization constants can be derived, ~16) 

e = (oIsNstNIo)  ~ N!F(~e+I)/F(~e__N+I), KN,O 
2 • KNA (J) = ( j  ] sN stN ] j )  ~, K~,0(1 -Nor~/f~e) 
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for the S pair states. For later use it is convenient to introduce the occupation probabilities 
v 2 =_ nj/(2j+ 1). Using 

nj = ( SN I ~j l S N) ~ 2Not2tlJfle (3.8) 

these spherical shell model occupancies can be related to the structure coefficients of the S- 
pair state, e/, as 

v 2 = ~2N/f] e. (3.9) 

2 have a simpler physical inter- Since the spherical shell-model occupation probabilities vj 
pretation than the coefficients e j, in the subsequent formulas all factors ej are replaced by v i 
and u s = (1 - v2 )  1/2. 

The matrix elements of the shell-model creation operator between states with w ~< 1 can 
now be calculated and equated to matrix elements of the IBFA operator, 

(SNj ' II CJ II S N ) = --fu~6j~, = Uj(sNj ' II aJ II sN>, 

and 

( SN II C I II SN-lJ ') = j"vj~jj, = v j<s  N II (s*~j) tj) II sN-lJ')/x/-N. 

Similar expressions can also be obtained for w ~< 3 states, ta2'~2~ In first order in the number 
of d-boson operators, the IBFA image for the shell model single-nucleon creation operator 
can now be written as 

= u 4-E / l O  o ,K 

+ ~u~2]l~O+ l ~yJ(Klj)- '(dtey) O', (3.10) 

where 
K~ = 2flj},. (3.11) 

jj' 

In this expression the coefficients fljj, define the microscopic two particle structure of the 
d-boson [see eqn. (2.3)]. In obtaining the operator (2.7) only matrix elements between states 
with w ~< 3 have been considered and this operator is thus only a lowest order approxi- 
mation to the full image of the shell-model single-nucleon operator. Estimates of higher 
order contributions have not been made but it is assumed that these are small as is the case 
in the mapping for even-even nuclei. <16~ 

The coefficients ~j and fliJ' can, in principle, be obtained from a microscopic calcula- 
tion. { l s ' 16 ,21 ,31 ,36 -3a )  The problem can be simplified by assuming that the D-pair state 
exhausts the full E2 sumrule strength, D f ~ [Q, S t] in which case it can be shown t32'42} that, 

fljj, = (uivy + v~uj,)Q~y, (3.12) 

where Q~j, are the single particle matrix elements of the quadrupole operator. In a somewhat 
more sophisticated approach an energy denominator can be included t43~ in eqn. (3.12) as 
suggested by perturbation theory. In most phenomenological applications of the IBFA 
model the radial matrix elements of the quadrupole operator are taken equal and are 
absorbed in an effective charge, which gives 

Ojj' = (f½J I] y(2)II ~½J'). (3.13) 
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Using the image of the shell-model single nucleon creation and annihilation operator the 
boson image of the quadrupole operator can be constructed. Retaining only terms up to second 
order in the d-boson operators one obtains 

where 

Qt2) Q~2) + Q~2). (3.14) BF 

Q~2) = (s*~+ dis) t2) + z(d*~) t2), 

and 

Q~2) = ~ Q i~,(ujuj ' _ vivj,) (ajaj,)(2)_ 
Jr' 

( IO/N) 1/2 x 
jj'j" 

(3.15) 

Qi~,(uivy + vju~,)~j,,~[(dtdj,,)~i)(sa~,)ti,)]~2)(fKo ) -  1. (3.16) 

The parameter • which appears in eqn. (3.15) and which is important for determining the 
nuclear shape ~44) can be expressed as 

2 " Z = -- 1OK;  3 N ~ / ~  E j~j,,fl~j,j,,Qjj,{2 J' 2,,} (1)jlyj,- ujuj,). (3.17) 
.~,j- 

The operator (3.14) can subsequently be used to construct the interaction terms in the 
Hamiltonian coming from the shell-model neutron-proton quadrupole interaction. 

To test the accuracy of the approximation (3.16) in Ref. 27 the matrix elements of the 
quadrupole operator are calculated in a generalized seniority basis. In the calculation 
several non-degenerate orbits are considered. An explicit numerical comparison is made for 
all matrix elements between w = 1 states and between w = 1 and w = 3 states for a 13 
particle system with the values obtained from eqn. (3.16). Most matrix elements agree to 
within 10 ~ for this realistic system in which some s.p. orbits are almost filled while others 
are almost empty. This clearly indicates that the simple expression (3.16) gives a good 
approximation of the matrix elements for the lowest seniority states. 

3.3. The IBFA Hamiltonian 

In general the IBFA Hamiltonian can be written as the sum of three terms, ta7'18) 

H = HB +HF + VBF, (3.18) 

where HB is the IBA Hamiltonian describing the s - d  boson system and HF is the pure odd- 
particle part of the Hamiltonian. Since only a single odd-nucleon, which can occupy 
different shell model orbits j, is coupled to the system of bosons, Hr contains only one-body 
terms, 

HF = E eJa~,,a~m, (3.19) 
jrn 

where ej are the IBFA single particle energies. 
In a microscopic treatment the boson-fermion interaction VBv can originate from both 

the interaction between like particles and from the neutron-proton quadrupole-quadru- 
pole interaction. The resulting structure of the boson-fermion interaction turns out to be 
identical for the two cases, but here only the latter will be considered. The interaction can be 
constructed using eqns. (3.14-16). The product of the two purely bosonic terms will of 
course give rise to a boson-boson interaction that contributes only to HB, while the product 
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of Q8 and Qr contributes to VBF. Furthermore in the IBFA-1 model neutron and proton 
boson degrees of freedom are not distinguished• The boson-fermion interaction obtained in 
the way described above should, therefore, be mapped from a neutron-proton basis onto a 
one-kind of boson basis. The two model bases can be related by introducing F-spin, as was 
discussed in Section 2.4. Since in QBe only terms up to second order in the d-boson 
operators have been considered, no terms higher than second order in these operators will 
be included in VBF. The interaction can now be written as, (17'32'42) 

"-~ 1 
• "', ~da + ~(j")~(o) . _  (3.20) v.~ = ~ A / ~ , ~ j + F I ' j j , ( Q ~  ~ (a~dy)(2))+ ~ AJj,:((dtd~) t/'') x ,  , ,o • ,,. 

j j~" j~,j,, J J 

The first term is the monopole interaction, which has the effect of changing the d-boson 
energy. In most phenomenological applications the strength of the monopole force has been 
taken as constant, Aj = A 0 and is such that it hardly affects the structure of the spectrum. 
The product of the boson quadrupole operator with the pure fermion part of (3.14) gives rise 
to the second term in (3.20), the boson-fermion quadrupole interaction. The mixed term in 
(3.14) which arises from the fact that the bosons are built up from fermions occupying the 
same orbits as the odd fermion gives rise to the third term in (3•20). It arises from the action 
of the Pauli principle between the bosons and the odd fermion and is therefore referred to as 
the exchange interaction. We note that a similar form for the exchange force can also be 
derived assuming a quadrupole pairing interaction between like bosons. 

The above microscopic arguments also dictate a certain j-dependence of the parameters F 
and A, 

F j j ,  : F o ( U j u  j, - v j v j , ) Q j j , ,  (3•22) 

mjj', -'- - 2N//'5mofijj,,[~j,j,, (3 .23)  

where uj, vj, and fljj, are defined in eqns. (3.9 and 3•12)• The projection from a neutron- 
proton basis to a maximal F-spin basis introduces an explicit N-dependence in the 
parameters (for a proton odd fermion) 

F 0 = t~NJ(N, ,  + N,,), (3.24) 

A o = ~ ~ N ~ l x / ' ~ . / ( N  ~ + N . ) ,  (3.25) 

~: = - ¢cKa/ 2q/~,. (3.26) 

The constant Ka is defined in eqn. (3.11), ~ is related to the basic shell-model neutron- 
proton interaction and x is the strength of the quadrupole force in the IBA-2 model. 

3.4. Relation to other quasi-particle-core coupling models 

Odd-mass nuclei have been extensively described in terms of quasi-particle-core coupling 
models. (45) The coupling of the q.p. to the core is conventionally described by a quadrupole- 
quadrupole force, which is similar in nature to the quadrupole term in the boson-fermion 
interaction. The dependence of the strength on the occupancies of the orbits involved has 
also been derived in a BCS framework and the results are identical to that which has been 
derived for the IBFA model• 

Only much after the development of the quasi-particle core coupling models was it 
realized that the pure quadrupole coupling did not describe the complete picture. In 1966 
Kisslinger Ca6) showed the importance of including three quasi-particle states in the q.p.-core 
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coupling basis in order to be able to explain the so-called J = j -  1 anomaly. It was shown 
that the diagonal matrix elements of the quadrupole interaction for the anti-symmetrized 
three q.p. states were given by 

l/j~ = 2xQj~(u~v~)2tl-lO w(2jj2;jJ)] (3.27) 

where x is the strength of the quadrupole-quadrupole interaction and W is the Wigner 6-j 
symbol. Also in an extension of the quasi-particle random phase approximation one obtains 
a similar expression only as a result of the inclusion of three q.p. states in the basis. (47) This 
expression is identical to eqn. (4.4) which gives the energy splitting of the one d boson 
quintuplet in IBFA under the influence of the exchange force. In the IBFA model one 
therefore does not have to introduce additional q.p. degrees of freedom. The splitting arises 
naturally from the action of the Pauli principle between the odd fermion and the fermions 
that form the bosons in a microscopic treatment of the IBFA model. The origin of the 
exchange force can also be understood from a pure shell model formulation as the result of 
the interaction between like particles. The matrix elements of a rank 2 tensor interaction 
(quadrupole pairing for example) can be calculated analytically (28) for a j", v = 3 state, and 
one obtains an expression for the energies which is similar to eqn. (4.4). 

In an approach based on RPA Drnau  and Hagemann (aS) have also introduced a 
formulation for the boson-fermion interaction. Even though their philosophy differs from 
that of the IBA model, the interaction obtained is for all practical purposes identical to that 
of the IBFA model. 

From the similarities between the different models in the formulation of the particle core 
interaction it is evident that in applications to spherical nuclei all these models will give 
similar results. It is, however, not possible to extend the q.p. core coupling models, with the 
exception of the model of Refs 48 and 49, to the case of deformed nuclei. As is shown in the 
next section, it is possible in the IBFA model to describe both spherical and deformed nuclei 
using a single formulation of the boson-fermion interaction. 

4. P H E N O M E N O L O G Y  

4.1. Geometrical limits 

The geometrical limits of the IBFA model can best be discussed in terms of schematic 
calculations in the various limits of the IBA-core Hamiltonian. Using the simplified case in 
which the odd particle occupies a single j-orbit it will be shown that in the SU(5) limit the 
particle vibration coupling scheme is reproduced, in the SU(3) limit the Nilsson scheme, 
while in the 0(6) limit that of a particle coupled to a classical gamma unstable rotor. These 
examples correspond to realistic cases in which a unique parity orbit is coupled to the 
bosons. In this special case of a single-j orbit the general boson-fermion interaction (3.20) 
can be simplified to 

t -  (2, j . t u, (dtaj)(J~]<o,: f - ~  Vse=rjjQ[2)'(a~aj) +Aj~.[(2aj) × (4.1) 

where the monopole interaction has been omitted. For the following discussion it is more 
transparent to relate the two parameters in (4.1) directly to the occupancy v 2 of the orbit, 
using eqns. (3.22) and (3.23), 

Fjj = ro(~- v2)Qji 
• 2 2 A~j = - -  8N/SAo/ , / j  v j  Q j j Q j j .  (4.2) 
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For  each of the three limits of the IBA model ~2,3'4) the IBFA results will be presented as a 
function of the occupancy v 2 of the s.p. orbit. 

4.1.1. The SU(5) limit 
The SU(5) limit is obtained in the IBA Hamiltonian by taking e, the d-boson energy, 

much larger than the strength x of the boson quadupole interaction. Since the strength of 
the boson-boson and the boson-fermion interactions are related, in this case also e will be 
large compared to the boson-fermion interaction. The weak coupling scheme should thus 
provide the appropriate coupling scheme for the wave functions, 

I~,L,j ,J)  = {I ~,L)x l j )}  (s). (4.3) 

The quantum numbers necessary to uniquely label the core state are ~ = {N, nn, v, n~}. The 
Jz quantum number has been suppressed. 

In the basis (4.3) the matrix elements of the boson-fermion interaction (4.1) can be 
calculated analytically, taz) The result obtained for the quintuplet of states with na = 1 can be 
expressed as 

= 2 2}+Ajj{2 j j}. (4.4) (n a 1 ,L= 2,j, JIV~Flnn= I , L =  2 , j , J ) =  5Fjj(-1)J-J{ 2 j 

In Fig. 3 the calculated spectra, using the computer code 'ODDA',  ts°) are shown as a 
function of v ] for the case that j = 9/2. The parameters e = 0.7, F o = 0.567 and A 0 = 1.83 
have been given realistic values. The parameter Z has been given the SU(3) value, Z = 

-½x/~.  Recent investigations (~°°) suggest that half this value is more realistic, but for the 
present purpose this difference is irrelevant. For  the cases where v 2 = 0 or v 2 = 1 the odd 
particle is coupled to the core by a pure quadrupole force with opposite sign for the two 
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Fig. 3. Ca lcu la ted  low- ly ing  s ta tes  for the sys tem of a j  = 9/2 par t ic le  coupled  to  S U(5) (N = 5, ~ = 0.7 in (2.111/as a 

funct ion ofv~ us ing eqns. (4.1) and  (4.2) wi th  F o = 0.567 MeV, A o = 1.83 MeV, Z = - 1/2~/7.  
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c o u p l e d  to  toO44Rus6 v ia  a p u r e  e x c h a n g e  force ,  v] = 0.5, A o = 2.32 M e V .  T h e  c o r e  p a r a m e t e r s  t2~ w e r e  t a k e n  f r o m  

a bes t  fit, e = 0 .733 M e V ,  CL = -- 0.415,  -- 0.283,  --  0 .024 M e V ,  v 2 = 1.75 M e V ,  v o = - 0.32 M e V .  t2) 

cases. Due to the fact that the quadrupole coupling also gives rise to mixing of multiplets 
with different values of na, the splitting of the levels in the quintuplet are not exactly opposite 
to each other for the two limits. In the case that v 2 = 0.5 the ordering of the levels is 
completely different. The fact that in this case the state with J = j -  1 is by far the lowest 
member of the quintuplet follows directly from eqn. (4.4) if the values for the six-j symbols 
are substituted. This 3 = j - 1 anomaly is known to occur in the shell model as a result of the 
Pauli principle. In the IBFA model it is due to the exchange force which, as is clear from the 
microscopic derivation, takes into account the effects of the Pauli principle between the odd 
particle and the bosons. 

As an example of the J = j -  1 anomaly in Fig. 4 the spectrum of l°~Rh (Z = 45) is shown. 
This nucleus has been calculated (32) by coupling a particle in the 09/2 shell to a l°°Ru core. 
For  Z = 45 one expects the 99/2 orbit to be half filled, v 2 = 0.5 and in the calculation 
therefore, only the exchange force has been considered in Vsr. 

4.1.2. The SU(3) limit 
For the case of a particle coupled to a SU(3) core the weak coupling basis is no longer 

applicable, but instead a strong coupling basis has to be introduced, (32) 

IN,(2,t.t),K~;jKj;KJM> -- ~ x / ( i  +6KI, o).R(k,±~_~)(IN(2,p)KcR)×Ij>}~. (4.5) 

The core states are labeled by N, the total number of bosons, by (2, p)K¢ which label the 
SU(3 ) representation and R, the spin of the core state. In a geometrical description the 
K-quantum number corresponds to the projection of the angular momentum on the 
symmetry axis. Only in the limit of large N the states (4.5) are eigenstates of the Hamil- 
tonian. Since in realistic cases the SU(3) limit only occurs if N is large this is not causing any 
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severe restrictions. The asymptotic wave functions (4.5) will prove to be sufficiently accurate 
to discuss the features of the IBFA Hamiltonian. 

In the limit of large N the matrix elements of the interaction can be calculated in the basis 
(4.6) using (~2) 

lim ( N, (2, #)KcR LI (d*cT) (L) Jl N, (2', if), K'c, R')/2 
2 ~ o 0  

R - K  ^ ^ ~ t  g R" a ~  = ( - 1 )  "I/3LRR(r_K ~)(~ ~ L c o o )5,wbuu'br,,r;, (4.7) 

and 

lira (N,  (2, #)KcR II (s*cT+ dts) TM II N,  (A', ~'), K'~R)/2 
2~ot~ 

o)6a, auu, fr,r,  ~. (4.8) 
3 

Note that in this limit all non-diagonal matrix elements vanish and only even values of L 
contribute to (4.7). The matrix elements of the interaction now follow trivially. In the case 
j = j '  = j" they read 

lim (N,  (2, #), K~;jK ~; K [ VBv IN, (2, #)Kc; jKj; K)  /). 
).-~ oo 
).::~ # 

= - I ' ~ j x / ~ R ~ ( K j ) -  AijR2(Kj)/3 (4.9) 

where 

Rj(K) = [3K 2 - j ( j +  1)]/V/(2j - 1)j(2j + 1 ) ( j+  1)(2j+ 3). (4.10) 

In this example the S U(3) quadrupole operator [eqn. (2.11)] has been taken with ~ = -½x//7. 
It is important to notice that the two terms in the interaction (4.1) give rise to a different 
K-dependence. In the presence of only the quadrupole force the energies of the bandheads 
depend linearly on/(2.  Depending on whether the shell is filled or not one expects the bands 
to be ordered according to increasing or decreasing values of Kj. F o r  an empty orbit, v 2 = 0, 
coupled to a prolate deformation the K s = 1/2 forms the ground state band while for v 2 = 1 
this will be the K s = j band. As an example in Fig. 5 a calculated spectrum is shown in the 
latter limit. The spectrum is arranged in several rotational bands in which the energies are 
proportional to J (d  + 1). For  low values of K~, especially K s = 1/2, this level sequence is 
considerably perturbed. In the Nilsson model this is known to be due to the effects of the 
Coriolis force which for a K = 1/2 band is the origin of the well known signature splitting. 
As is the case in the rotational model, the sign of the signature splitting is given by 
( - 1)J- 1/2. In the IBFA model the equivalent of Coriolis mixing comes in part from the finite 
value of the moment of inertia of the core and in part from off-diagonal matrix elements of 
the interaction in the strong coupling basis (4.5) due to a finite value of N. In Fig. 5 
additional bands are predicted at an energy of about I MeV above the bandhead. These 
correspond to the coupling of the particle to the so called fl and y bands of the core. 

In the case where a particle is coupled to the rotor only via the exchange force a different 
picture emerges (see Fig. 6). As can be seen from eqn. (4.2) in this case the shellj is only half 
filled in the spherical limit. In the Nilsson scheme (51) one would expect, therefore, to have all 
deformed orbits up to Kj = j/2 filled while the higher ones are empty and thus have the 
K s = j/2 as a ground state band. The same picture emerges in the IBA model since for the 
case that Fjj = 0 and AS < 0, the groundstate band will have a value of K for which R2(Kj) 
is minimal, i.e. Ks = x/J (J + 1)/3 - j/2. 
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20.8 keV in eqn. (2.11) as a function of v~ using eqns. (6.2)-(6.6) with F 0 = 0.567 MeV, A o = 1.83 MeV and X = 

- 1/2x/7. The bandheads are indicated by a heavy line. 

On  top of each of the bandheads a rotational band is built. Due  to the fact that the 
bandheads are relatively close, the Coriolis mixing is much larger than was the case in Fig. 5. 
Therefore, in order to avoid confusion in Fig. 6, only the positions of the bandheads are 
indicated. 

To show even more clearly the close relation between the Nilsson scheme and the IBFA 
model  for an axially deformed nucleus, the bands related to the (2 , /~)= (2N,0)  SU(3) 
configuration are plotted in Fig. 7 as a function of the occupancy of the spherical s.p. orbit. 
In the Nilsson model  one expects that by increasing the occupancy the K-value of the 
groundstate band increases as a result of  the rising of the Fermi energy. The same picture 
emerges in the IBFA model. For small values of  v 2 the Coriolis force strongly breaks the 

2 band structure of the K = 1/2 and K = 3/2 bands. For vj > 0.3 the groundstate band is well 
developed and for increasing values of,;2 the K value of  the groundstate band varies like it 
does in the Ni lsson model. 

The relation between the SU(3) limit in the IBFA model  and a geometrical rotor is even 
more apparent if some of the more detailed predictions of the two models are compared. 
Recently H a m a m o t o  (52) has brought to attention some remarkable properties of  electro- 
magnetic transitions in the geometrical model  which, as shown by Frauendorf and 
D~inau,(53) can be explained by signature splitting as a result of  the strong perturbative effect 
of  the rotation. Calculations, which for simplicity have been limited to a unique parity orbit 
j = 13/2, were performed (52) in the cranking model  and a particle-rotor model  using BCS 
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Fig. 8. Calculated M1 transition probabilities between Yrast states. The coupling of an i13/2 particle to a deformed 
core is described in a geometrical picture (left) and the IBFA model (right). The parameters used in the IBFA 
particle-core coupling are F 0 = 0.5 MeV and A o = 1.5 MeV, The core is described by N = 8, ~ = + 0.015 MeV and 
x '= -0.004 MeV [see eqn. (2.11)]. In the two geometrical model calculations ~52) the Fermi level is placed on 
the t~ = 5/2 and ~ = 9/2 single particle energies of the intrinsic Hamiltonian.  In the IBFA the corresponding 

spherical shell model occupancies have been chosen. 

one quasi-particle states. Two different values for the Fermi energy were taken, equal to the 
energies of the s.p. states of the intrinsic Hamiltonian with K = 5/2 and 9/2. The calculated 
pattern (52) for the M1 transitions is shown in Fig. 8. The B(M1 ; I ---} I -  1) values for I = 
j + 2n where n is an integer are much larger than those for I = j + 2n + 1. The B(M1 ; I 
1 - 1 )  vanishes for I = j + 2 n + l  when the 1 I - 1 >  and 1 1 - 2 )  levels or the [ I+1 >  and 1I> 
levels are degenerate in energy. Since this situation is reached only for low values of K, the 
effect is stronger for K = 5/2 than for K = 9/2 as is clear from Fig. 8. 

The same effect is also observed in the IBFA model. In Fig. 8 the B(M1) values in the 
groundstate band are also plotted, calculated in the IBFA model for two cases, one in which 
v 2 is chosen such as to have a K = 5/2 groundstate band and one in which the groundstate 
band is K = 9/2. The parameters in the M1 transition operator [Eqns. (4.12-4.14)] are 
taken as 9d =0.0n.m.,  # = 1.0n.m. and 9~ =4.0n.m. but the calculated phenomena are 
essentially independent of the choice of the M1 operator. As is clear, exactly the same 
features are observed, even to the extent that the M1 transitions vanish whenever degener- 
acies occur in the spectrum. The degeneracies suggest a picture in which the two levels of the 
doublet can be characterized by an intrinsic angular momentum L = j -  1/2 +2n to which a 
spin 1/2 is coupled. The selection rule for the M1 transitions is thus automatically explained. 
In the calculation presented in Ref. 52 it is shown that also in the rotational model the B(E2) 
transitions show an enhancement of up to a factor 2 for AJ = 2 transitions relative to AJ = 1 
transitions in a band. This particular feature is also reproduced in the IBFA calculations 
reported above. 

The most important result of this comparison of these two, conceptually completely 
different, models is that not only basic features, such as the dependence of the K-value of the 
groundstate band on the occupancy of the odd particle orbit, but also some of the smaller 
details such as the peculiar influence of the Coriolis force on the M1 transitions are similar. 

4.1.3. The 0 ( 6 )  limit 
For  the general case of a particle coupled to a 0(6) core, it is more difficult to construct 

approximate eigenstates and to construct an approximate expression for the excitation 
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B = 0.225 MeV, C = 0) with a pure 0(6) quadrupole force given by v 2 = 0, F o = 0.023 MoV, A o = 0 and X = 0 in 

eqn, (4.1.2). The lines connecting the levels denote large E2 transitions. 

energies. For  certain specific values o f j  there exists, however, an exact solution that can be 
constructed by using a group theoretical approach. The occurrence of symmetries for odd 
mass nuclei will be discussed in Section 5. 

A typical calculated spectrum is shown in Fig. 9. The groundstate is now no longer the 
bandhead of a well developed rotational band, but rather the lowest level of a complex 
multiplet labeled by To in the figure. The members of this multiplet are connected by strong 
E(2) transitions. At an excitation energy of only about 0.5 MeV one observes other 
multiplets with a similar structure as the T O multiplet. The multiplets T, are built on a level 
with k = j -  n, n = even. The energy of the bandhead is roughly proportional to n. Within 
each multiplet the levels can be classified through the introduction of a quantum number 

= 0, 1, 2 . . . . .  which is analogous to the seniority quantum number introduced in the 0(6) 
dynamical symmetry. The angular momenta contained in each ~ multiplet is given by J = 
k + 2~, k + 2 f - 1  . . . .  , k + f. As in the 0(6) limit the E2 transitions connect only levels with 
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Fig. 10. The experimental spectrum (s4) built on the h9/:z proton configuration in tg tAut  t2- 
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Fig. 11. Calculated low-lying levels for the system of a j = 9/2 particle coupled to 0(6)  core (~) (N = 9, A = 
0.4 MeV, B = 0,450 MeV, C = 0) as a function of v 2 using eqns. (4.1) and (4.2) with F o = 0.567 MeV, A 0 = 1.83 MeV 

and ;( = 0. 

Af = 1. As an example of the occurrence of spectra of this kind in nuclei, Fig. 10 shows the 
spectrum of 19tAu which is built on the h9/2 single-particle orbit. 

In Fig. 11 the calculated levels as a function of the occupation probability v 2 are shown. 
The figure is symmetric around v 2 = 0.5 since, by taking the 0(6) quadrupole operator with 
Z = 0, the quadrupole force does not have any diagonal matrix elements in a weak coupling 
basis. With increasing v 2 the energy of the J = j - 1  level drops rapidly initially but stays 
approximately constant for 0.3 < v 2 < 0.7. A similar behavior has also been observed in the 
?-unstable rotor  plus particle model of Wilets and Jean. t49,55) 

4.2. The Europium isotopes 

The IBFA model can also be applied to transitional nuclei. Several different examples can 
be found in the literature, t56,ST) but only the case of the odd-mass Europium isotopes will be 
discussed here. The Eu isotopes are considered since they contain examples of well 
deformed, spherical as well as transitional spectra. Only the properties that depend strongly 
on the s.p. structure of the levels will be mentioned here, a more complete account of the 
calculation is given in Ref. 57. 

In the phenomenological calculations the Hamiltonian discussed in the previous section 
was used. To describe the Eu isotopes (Z = 63) the odd proton is coupled to a Sm (Z = 62) 
core with the same number of neutrons. The Sm isotopes have been discussed in terms of the 
IBA model in Ref. 32. On the basis of the single-particle energies it is to be expected that the 
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Fig. 12. Experimental (57-62) and calculated (56) excitation energies of negative parity states in the odd-mass Eu 
isotopes. 

negative parity levels are based on the h 11/2 s.p. orbit while the positive parity levels are 
based on the ds/2 and g7/2 orbits. To simplify the calculations it is assumed that the 
occupancies for the positive parity orbits are the same, v 2 = v2/2 = v2/2 . By inspection of 
eqns. (3.22) and (3.23) it is clear that for this special case the interaction only depends on 
~ and 2~ defined as 

= -v~)F0., 

~.,, = u2t,2Ao, ; rt = + , -  (4.11) 

which implies that only two of the three parameters are independent. 
The results of the calculation are compared with experiment in Fig. 12 for negative parity 

states and in Fig. 13 for positive parity. In the lighter isotopes, 147,149 Eu, the lowest states are 
the single-particle levels. At an energy e, the excitation energy of the 2 + state in the core, one 
sees a multiplet of levels as expected in a weak-coupling scheme. In the heavier isotopes a 
completely different picture emerges. The lowest negative parity level is the band head of a 
K = 5/2- rotational band. The fact that this band is the lowest depends in the phenomeno- 
logical calculations on the ratio of the strengths of the exchange and the quadrupole forces. 
In a Nilsson scheme picture this implies that the fermi-surface is near K = 5/2 and thus that 
the spherical h11/2 level is approximately 40% filled, i.e. /32 ~ 0.3 as has been taken in the 
IBFA calculations. For the positive parity levels the change across the transitional region 
may look less dramatic since the 5/2 state is the lowest level for all isotopes. A closer look 
shows that the changes in the spectrum are large indeed. 

The level degeneracies observed in the positive parity spectra of lSl'lSaEu can be 
explained in terms of a pseudo spin symmetry, t6s) Such a symmetry occurs in the IBFA 
Hamiltonian whenever the two s.p. orbits with adjacent spins (j = 5/2 and 7/2) that are 
coupled to the system of bosons have equal quasi-particle energies and equal occupation 
probabilities. In this case the angular momentum of the s.p. orbits can be decomposed into a 
pseudo orbital part coupled to a spin 1/2, j = ~-t- 1/2. This pseudo orbital angular momen- 
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turn (~ = 3 in the present case) is in general not equal to the real s.p. value. Since the 
quadrupole operator acts only on the orbital angular momentum the calculated energies 
are independent of the orientation of the spin. All levels, with the exception of some J = 1/2 
levels, thus occur in doublets with J = L + 1/2. In 151Eu the groundstate is a member of a 
L = 3 doublet while in lS3Eu it has L = 2. This difference accounts for the fact that for 
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XSXEu there is an appreciable s.p. transfer spectroscopic factor to the groundstate while for 
x 53Eu it completely vanishes as will be discussed later. 

Using the wave functions obtained from the energy calculations, transition probabilities 
can be calculated. The lowest order magnetic dipole operator can, in general, be written as a 
sum of two parts, 

T (1) = T~(X)+ T~ (1), (4.12) 

where the first term acts only on the bosons 

(1) ]~30 
TB(x) = gn(dt/~) 4 ~ "  (4.13) 

In the calculation of M1 properties for even-even nuclei higher-order terms in the operator 
have to be considered since in the IBA model space (4.13) is diagonal. In the calculation of 
magnetic moments which we will present here (4.13) gives a good enough approximation 
since they are predominantly determined by the fermion part of the operator, 

Tr(X) = _~gff~/j(j+l)(2j+l) 
• 4~ (a~S/')(x)' (4.14) 

where 

I [(2j-1)g:+gsj/2j I J =j' = : + 1 / 2  

[(2j + 3)0t - gsJ/2(j + 1) j = j' = d - 1/2 
gff 

/ 2d(: + 1) J' :, 
(g:-Os)~/j(j+l)(2j+l)(2d+l) = j - l ; :  = 

where d is the s.p. orbital angular momentum. The d-boson g-factor can be extracted from 
the g-factor of the 2~ in the Sm isotopes, gn = 0.32 n.m. Using the s.p. value for g: = 1.0 n.m. 
and gs = 5.5885 n.m. the magnetic moments are over estimated by about 20 ~.  In the 
calculation shown in Fig. 14, g, = 4.0 n.m. was used, representing a quenching of about a 
factor 0.7. This quenching is similar to what has been used in recent calculations for the 
N = 82 isotones in the shell-model. (69) 

The image of the shell model single nucleon creation operator ~ [eqn. (3.10)] should, in 
principle, be used in the calculation of s.p. transfer amplitudes. The fact, however, that (2.7) 
is only a lowest order estimate to the full operator gives rise to the fact that sum-rules such as 
c~cj+ c~c i = 1 are no longer obeyed. In order to restore these, normalization factors K~ and 
K~ have been introduced. 

A, = [u,a~ ---~ ~ 42j+ l v ' / 1 0  ~ fl,,,(K#)_xs,(~a~,)u)]/K , (4.15, 

describes the stripping of a fermion without changing the number of bosons in the core and 

10 N,  1 t " b B~ 
4 N ,:;-,- , "v ,', j /  

describes the stripping of a fermion on an odd nucleus with N bosons leading to a (N + 1) 
boson even mass nucleus. The normalization factors are determined by 

<odd[AJleven> 2 = (2j+ 1)u] 
odd 

and 

<even l B~ [odd> 2 = (2j+ 1)v~. (4.17) 
odd 
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Fig. 16. Spectroscopic factors (57'66"67) for h 11/2, dsl2 and g7/2 transfer for the first level of each spin. 
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Fig. 17. Deduced values for the parameters F o, A o and 02 as discussed in the text. The curves give the microscopic 
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Calculated spectroscopic factors are compared with experiment in Figs 15 and 16. The 
calculation does not have any adjustable parameters. 

The spectroscopic factors for even to odd for the first levels of each spin show, in general, a 
steady decrease toward the more deformed nuclei. This can easily be explained by the fact 
that the coupling is much stronger for deformed nuclei. A striking feature is that for 153Eu 
and 155Eu the spectroscopic factor for the 5/2~- level is vanishingly small. As was discussed 
above, in 15XEu the 5/2~ and the 7/2~ levels belong to an L = 3 doublet in the pseudo spin 
picture t68) and can be excited in s.p. transfer. The same holds for the 5/2~ and 7/2~ levels in 
l~3Eu and lSSEu. In X~3Eu and lSSEu the 5/2~- level belongs, however, together with the 
3/2~ level, to a L = 2 doublet which has a zero excitation probability since the pseudo 
orbital angular momentum of the coupled s.p. levels is f = 3. 

In order to extract values for A0, and F0, from the fitted parameters 7n and 2~, some 
additional conditions have to be imposed. One of the extra conditions is obviously that 
Zjv~ (2j + 1) _~ n, the number of valence nucleons. The other condition is that the ratio F02 / 
A0~ = R~ is the same for positive and negative parity. This last condition has been imposed 
since the radial integrals, which are not equal for positive and negative parity orbits, appear 
quadratically in A o and only linearly in F o. The extracted values for A o and F o are plotted in 
Fig. 17 where they are compared with the results of a microscopic calculation, eqns. (3.24) 
and (3.25) with ~ = 2 MeV for positive parity and t~ = 3.4 MeV for the negative parity 
parameters. This large difference between the two extracted values for ~ is still an open 
problem. It can partly be attributed to a stronger neut ron-proton  interaction for the h a 1/2 
orbit since this proton orbit belongs to a harmonic oscillator shell with the same quantum 
numbers as the valence neutrons. Using eqn. (3.26) a strength for the boson-boson 
quadrupole interaction can be determined, ~c --- - 1.1 MeV which is much larger than the 
typical values used in the phenomenological calculations, t6) x = 0.1-0.3 MeV. This dis- 
crepancy might be explained in part in terms of an effective interaction since in the IBFA 
model calculations the basis space for the odd particle is very much truncated. Part  of the 
difference might also be the result of the interaction between like particles which has not 
been considered in the microscopic derivation. 

4.3. Spreading width of deeply bound hole states 

A last application of the model involves the calculation of the spreading width of deeply 
bound hole states/TM Single particle pick-up reactions can occur on nucleons in the valence 
shell. This, in general, will lead to the low-lying states in the final nucleus. The reaction can 
also occur on nucleons in core orbits which will lead to highly excited states, typically at an 
excitation energy of around 5 to 10 MeV. At this energy the level density is of such a 
magnitude that individual states can no longer be resolved experimentally. In spite of this 
one can determine the single particle transfer strength distribution as a function of 
excitation energy. As can be seen in Fig. 18 there is a considerable amount  of structure in the 
strength distribution, tT°) 

The strength distribution can be calculated in a kind of doorway model in which the 
single-particle couples most strongly to the low-lying collective states. Since the density of 
collective states is rather small, this coupling will distribute the strength over a few discrete 
states. These collective states couple to the background of non collective states which will 
give rise to an additional spreading. 

The coupling of the deeply bound hole state to the low-lying collective states can be 
described in the IBFA model. Since the orbit under consideration is completely filled 
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(02 = 1) the exchange force vanishes and the fermion couples to the bosons only via the 
quadrupole term. Also the single-particle transfer operator simplifies considerably since the 
second tern in eqn. (4.0) vanishes. In Fig. 18 the calculated spectroscopic factors are given. In 
the Hamiltonian the parameters have been adjusted to give a best overall agreement F 0 = 
2.25MeV, Ao = - 0 . 1 2 6 M e V  independent of mass number. The calculation correctly 
reproduces the structure of the observed g9/2 strength distribution in 101pd and furthermore 
the fact that with increasing mass the spreading of the strength increases dramatically. 

5. B O S O N - F E R M I O N  SYMMETRIES 

A different approach to odd-mass nuclei, more phenomenological in nature, is based 
upon the use of dynamical symmetries. In spirit this is very similar to the introduction of 
dynamical symmetries to describe the spectra of even-mass nuclei in the IBA model32'3'4) In 
the application to odd-mass nuclei a complication arises from the fact that one has to deal 
simultaneously with both bosonic and fermionic operators. This is treated by the intro- 
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duction of supersymmetries. These supersymmetries offer a rich group structure t7 x) which to 
date has only been partly explored. In the following, therefore, only a short outline of the 
concept is given. 

As is well known one can discuss the IBA-1 model for even-even nuclei in terms of 
symmetry groups32'3'4) The symmetry group related to the IBA-1 model is G = U(6). The 
six dimensions are formed by the five components of the d-boson combined with the single 
component of the s-boson. The group is the unitary group since it leaves the norms (total 
number of bosons) invariant. Using the methods of group theory three chains of subgroups 
of the U(6) group can be constructed. If the Hamiltonian can be expressed in terms of 
Casimir invariants of one of these chains only, the energy spectrum can be obtained 
analytically. The spectra appear to be characteristic of three different physical geometries, 
the U(5) chain ~2) gives a vibrational spectrum, the U(3) chain ~3) that of an axially symmetric 
rotor while the 0(6) chain t4) gives rise to a spectrum typical of a 7 unstable rotor. 

For the case of a fermion coupled to the system of bosons a group structure also exists and 
one can construct chains of subgroups and calculate the energy spectrum in closed form. 
These Bose Fermi symmetries can be constructed only for certain values of the spin of the 
odd particle. Several examples of super symmetries have been discussed in the litera- 
ture371 - 80) Only the case of a j  = 3/2 particle coupled to an 0(6) core will be treated here. A 
j = 3/2 particle forms a representation of the U(4) group since it has four different m-states. 
The U(4) group is isomorphic with the 0(6) group and the product of the two groups 
contains a subgroup, referred to as Spin(6), with a Lie algebra similar to that of the 0(6) and 
U(4) groups. Physically, the fact that the product 08(6) ® UF(4) contains Spin(6) as a sub- 
group, implies that the parameters describing the boson system are in a unique relation to 
the parameters describing the boson-fermion and the fermion interaction. The fact that 
symmetries are observed in the spectra of odd-mass nuclei shows that apparently this 
relation is satisfied in nature. The chain of subgroups can be written as 

UB(6) ® UF(4) = 08(6) ® Ur(4) = Spin(6) = Spin(5) ~ Spin(3) = Spin(2) (5.1) 

where the superscripts B or F indicate that the group contains boson or fermion operators. 
If the Hamiltonian is expressed as a sum of Casimir operators for the different sub-groups 
the eigenstates can be labeled by the quantum numbers labeling the different representa- 
tions of the groups. The quantum numbers of the different subgroups are [N-J for UB(6), 
{M} for Ur(4), E for O8(6), (trl, tr2, tr3) for Spin(6), (z 1, z2) for Spin(5), J for Spin(3) and Mj 
for Spin(2). The expression for excitation energies can now be written as 

E~ = - - A  1-o'1(o" 1 +4)+0"2(02 + 2)+0] ]  + B [TI('/71 + 3)+ ~C2(V2 + 1)]+CJ(J+ 1)+ DE(Z +4) 

(5.2) 

The coefficients A, B, C, D multiply the Casimir operators in the Hamiltonian. It is seen that 
this simple formula can describe the excitation energies observed in ~ 92 Pt and a 9 ~ Ir (Figs 19, 
20) quite well. Also, electromagnetic and single-particle transition rates and selection rules 
calculated in the symmetry scheme agree ~78- 8o) with the experimental observations. Boson 
fermion symmetries are thus very useful to introduce an ordering for the levels in the 
otherwise very complicated spectrum of an odd-mass nucleus. 

We note that the spectra of both the odd- and even-mass nuclei (Fig. 19), can be described 
by eqn. (5.2) with the same set of parameters. This indicates the validity of a super symmetry 
scheme in which the even- and odd-mass nuclei are described simultaneously in terms of the 

PPl~P-H 
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subgroups of a single super symmetry group. For the case discussed here the super- 
group <78-8°) is U(6/4) which contains UB(6) x Ue(4) as a subgroup. 

Other groups that are of much current interest are °7> U(6/2) and (7.-76> U(6/12). The 
latter describes the case in which j = 1/2, 3/2 and 5/2 orbits are coupled to the system of 
bosons. This group, like U(6/4) contains an 0(6)  subgroup which can be reached in two 
different group reductions. 

I. U(6/12) ~ UB(6)® Ur(6)@ uF(2) ~ SOn(6)® S O t ( 6 ) ®  Ur(2) ~ SOBe(6)@ UF(2) 
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o r  

II. U(6/12) ~ U8(6) ® UF(6) ® Ur(2) ~ UBF(6) ® UF(2) ~ SOSF(6) ® UF(2)... 

The group reduction chain I is discussed in Ref. 71 while II is discussed in Refs 72 and 73. 
The two group reduction schemes allow for a different form of the Hamiltonian and give rise 
to different expressions for the excitation energies which are given in the original references. 
Applications of the two dynamical symmetries to the spectrum of 19spt indicate that chain 
II allows for a better agreement with the data. By introducing terms in the Hamiltonian that 
are quadratic in the Casimir operators the dynamical symmetry remains unbroken but a 
significantly better agreement t74) can be obtained with the data. Introduction of terms in the 
Hamiltonian that are quadratic in the Casimir operators imply the presence of three-body 
terms in the Hamiltonian. In a microscopic derivation of the boson-fermion interaction one 
indeed obtains terms of this order as a result of the action of the Pauli principle between the 
bosons and the odd fermion. In the interaction used in the IBFA model, however, only terms 
second order in the boson operators are retained. 

6. TWO QUASI-PARTICLE DEGREES OF FREEDOM 

The approach that has been presented in the previous sections for coupling one quasi- 
particle (q.p.) degree of freedom can be extended to include the description of two quasi- 
particle degrees of freedom in the nucleus. In the cases in which these modes exhibit a certain 
degree of collectivity they can be treated as a collective mode, different from the s- and 
d-bosons. Examples of these collective 2 q.p. modes are the 9-boson ~s3 - s6) and thef-boson ~9) 
that have been coupled to the IBA bosons to explain low-lying K = 3 ÷ bands in deformed 
nuclei and low-lying negative parity states. Another example is formed by the low-lying 0 ÷ 
state in the Ge and Se isotopes. This state is also based upon a collective L = 0, 2 q.p. 
excitation. Since this collective L = 0 degree of freedom is different from the s-boson in the 
IBA model, it is denoted by s'. The giant dipole resonance is an example of a high-lying 
collective 2 q.p. excitation and has been calculated in the IBA model by coupling a P-boson 
with an energy of about 15 MeV to the system of s- and d-bosons. ~s7 -89)  In some cases as, 
for example, in explaining back bending phenomena this procedure of bosonization of the 2 
q.p. mode cannot be applied and the 2 q.p. states have to be treated explicitly. ~9°-92) In Ref. 
92 these two quasi-particle degrees of freedom have been treated in a phenomenological 
approach. In Ref. 91 however the 2 q.p. states are described on the basis of a semimicro- 
scopic theory, similar to that which was used to describe odd-mass nuclei in the IBFA 
model. 

6.1. Microscopic treatment 

The outline of the microscopic treatment of two quasi-particle states in the IBA model 
given here closely follows the approach taken by Morrison et al. in Ref. 91 to which 
reference should be made for the finer details. 

The microscopic basis for the coupling of the 2 q.p. model is discussed most readily in a 
basis where neutron and proton degrees of freedom are treated explicitly. The approach 
followed is very similar to that used in deriving the boson-fermion interaction for the IBFA 
model, discussed in Section 3. The main difference is that while in the IBFA model only basis 
states with a single odd-particle are considered, here a mixture of pure N -  boson states and 
states with ( N -  1) bosons coupled to two quasi-particles is considered. In principle these 
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states are not completely orthogonal, but the overlap vanishes in the limit of a very 
collective boson. Assuming that the neutrons are well described in terms of a system of 
bosons and that two quasi-particle excitations only have to be considered explicitly for the 
protons, the Hamiltonian for the full system can be written as 

H = Hs. +Hr .  + V~ (6.1) 

where HB, is the boson Hamiltonian describing the neutron excitations. The part of the 
Hamiltonian describing the protons can be written in general, without the introduction of 
collective degrees of freedom as 

HF = E e jean, c j .  + ~'; V~eaAtb(JM)Aed(JM). (6.2) 
jm J ,M 

abed 

In the following, this part of the full Hamiltonian will be considered more closely and boson 
and 2 q.p. degrees of freedom will be introduced simultaneously. In eqn. (6.2) and the 
following equations the prime indicates that the summation over single particle orbits 
should be restricted to a <~ b and c ~< d. The two particle creation operator is defined 
according to 

At.~(JM) = (1 + Vary "g ~- l/2r,.t,~tq(a)L,.a,.bj~ • (6.3) 

The operators cJ are the real shell model single nucleon creation operators. As in Section 2 
the neutron-proton interaction is taken to be a pure quadrupole interaction, 

Vv" ~(2). q~2) 
Kvx$~f, B 

where qr and Q8 are defined in eqns. (2.5) and (2.7). 
The interaction between like particles can be rewritten in terms of boson and odd nucleon 

operators by replacing the shell model operators cJ and cj by their image ~ and ?j in the 
boson fermion space as given in eqn. (3.10). The Hamiltonian can now be contracted into 
three parts; (a) one that contains only boson operators. This part gives rise to the usual IBA 
Hamiltonian as is discussed in Section 2; (b) A part that contains only odd particle 
operators. This part can be written as ¢91) 

8 2 = y" ~iaJ,.a~m + ~ '  (UaUbU, U a + vaV~VeVa)VJ.beaA'~(JM)A'ea(JM) 
j,m JM 

abed 

+ 2 '  - s  ' t  ' UaVbUcVaVobeaA.a(JM)Abc(JM ) (6.4) 
JM 
abed 

where the two quasi-particle operator is defined in terms of the odd particle operators as 

A ~ ( J M )  = (1 + (~ab)- x/2[ataat](M). (6.5) 

The particle hole interaction strength is given by 

VJadbe = ~, Vgbed(--1 ) (2J (6.6) 
42, s' b+~+s' , S',F(l+<Saa)(l+Sbe)-] 112 

in terms of the particle-particle interaction. The third part (c) contains terms that change 
the number of bosons. For J = 0 in eqn. (6.2) these terms correspond to the Ho2 -t- H2o two 
quasi-particle changing terms in BCS. In a generalized seniority scheme these terms 
correspond to Aw = 2 terms in the Hamiltonian. The s bosons can be defined such that these 
terms vanish exactly. (2x) A similar approach is taken in the BCS theory. For J = 2 this is not 
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possible and a term 

H2F = X//~ E' V~ca( - 1)c-d(UaUbUcUd + VaVbVcVa)flac (1 + ¢$cd)- 1/2(A'-~(2) "aT+ h.c.) (6.7) 
abcd 

has to be included in the interaction. The coefficient fl is defined in eqn. (2.3). Even though 
this interaction does not conserve the number of bosons, it does conserve the total number 
of particles which is one of the basic fundamentals of the IBA model. The boson operator 
appearing in eqn. (6.7) is, of course, of the same kind as the 2 q.p. operator, proton-like in the 
present example. 

The neutron-proton interaction can be treated in a similar manner. As in the case of the 
like particle interaction it has three distinct parts, a boson-boson interaction which is the 
same as in the IBA model, a boson-fermion interaction that conserves the number of bosons 
and is the same as the IBFA interaction and a boson non-conserving interaction, This latter 
interaction can be simplified when projected ~32) on the maximal F spin sub-space. Retaining 
only the terms of lowest (first) order in the boson operators this interaction can he written 
as O1) 

H2F = E q°{ st "A)(O)+ h.c.} + Z qfJ'{a~" A)~ '(2) + h.c.} (6.8) 
j jj" 

where 

and 

• .,1 
qO = + 2a/~Kv~2 (uj,uj_vj,vj)flij, (_  l y - j  _fqj,j X/~_ j, 

(6.9) 

q~, = (1 +6jj,)- 1/2Kv,,fljj, N,, (6.10) 

the total Hamiltonian for the coupled system can now be written as 

Hzqp = Hma + VBr + H2 + H~F + H~e (6.11) 

where HIBA is the usual IBA model Hamiltonian and VBr the boson conserving interaction 
used in the IBFA model. The two body quasi-particle interaction H z is defined by eqn. (6.4). 
The boson and two q.p. degrees of freedom are admixed as a result of the quadrupole pairing 
interaction between like particles, H~F and as a result of the neutron-proton quadrupole 
force, H2r. 

6 . 2 .  S o m e  a p p l i c a t i o n s  

Two quasi-particle modes in even-even nuclei have been calculated in the above micro- 
scopic approach t91) and in some more phenomenological approaches. ~83-86'93) Some 
examples of both will be given here. 

6.2.1. Low spin states 
The first type of intruder states that have been considered in the IBA model is a collective 

3 - state, an.f-boson, tg) in order to be able to calculate negative parity states. Some of the first 
calculations of two quasi-particle states in the IBA model to explain low-lying positive 
parity intruder states are reported in Refs 83-86 and 93. In these calculations a more 
phenomenological approach has been taken. 

In many medium-heavy and heavy nuclei relatively low-lying 0 ÷ states can be found 
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which are not explained in the normal IBA model. Examples of this are 0 + and 2 + states 
around 1.4MeV in 112.114c,,t (Ref. 85); an additional K = 0 ÷ rotational band in ls6c,.,~ 4 8 " - ' '  6 4  ' ' ~  

(Refs 84, 86) and a K = 0 + band at E x - 0.5 MeV in ls4,1S6so,~_.~ (Ref. 93). The fact that all 
these nuclei are in the vicinity of a (sub)sheU closure, (Z = 50 for Cd, Z = 64 for Gd and 
Z = 82 for Hg) suggest that these intruder states have a strong 2p-2h nature. Since we are 
dealing here with some very low-lying states it can be assumed that the two particle 
excitation across the (sub)shell closure is collective. In the approaches taken in Refs 83-86 
and 93 this mode is therefore taken into account as an excitation mode similar to that of the 
s boson, to distinguish the two it is denoted by s'. In Refs 85 and 93 this mode has been 
treated explicitly in the neutron proton formalism. In the present discussion I will limit 
myself to the work of Ref. 86. 

The two quasi-particle states do not have to be limited to only s' modes but the formalism 
can easily be extended to include J = 2 (d') and J = 4 (g) modes. The phenomenological 
Hamiltonian for this coupled system can be written as 

H = H~d + ~,,n,, + ~d,n~, + % %  - ~:,Q,(2). Q(2) _ xo[Q(2)(gtg)(2)3(o) 

+ ~'[(dtdt)(°)ss'  + h.c.] ( ° ) -  ~gl-(dtdt)(2)(a~) (2) + h.c.] (°) (6.12) 

where Q,(2) is the quadrupole operator for the primed bosons. This Hamiltonian is used in 
Ref. 86 to calculate the spectrum of ~S6Gd, the results of which are displayed in Fig. 21. In 
this calculation the second excited 0 ÷ state is predominantly built on excitations involving 
the primed bosons. The low-lying K = 4 + band is built on a g-boson excitation. In Ref. 86 
B(E2) transitions are also calculated and found to agree with the available experimental 
data. 

6.2.2.  High spin states 
Back bending phenomena observed for high spin states can be explained by the crossing 
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of the groundstate band and a two quasi-particle band. Because both the Coriolis anti- 
pairing effect and the rotation alignment effect increase with increasing angular momentum, 
the unique parity intruder orbitals such as h11/2 and i13/2 are most important in a 
description of this crossing. These two quasi-particle modes have been used to explain back 
bending phenomena in Kr in Ref. 90, in the Ba and Ce isotopes in Ref. 92 and in the Hg 
isotopes in Ref. 91. In most cases a satisfactory agreement between calculation and 
experiment is obtained. In the following, the application to the Hg isotopes is discussed in 
some more detail. 

Recent g factor measurements (9s) strongly suggest that in the Hg isotopes the i13/2 
possibly compeung neutron orbit is the origin for the observed back bending and not the .. (96) 

(h~1/2) 2 proton configuration. In the calculations presented in Ref. 91 therefore only 
configurations with up to 2 neutron quasi-particles in the i~ 3/2 are considered. The coupling 
of the twoq.p, states to the boson is described by the Hamiltonian (6.11). The occupancies of 
the valence orbits vj which enter in the definition of the parameters of the Hamiltonian [see 
eqns. (6.9) for example] were obtained from a Nilsson +BCS calculation. (97) In the 0(6) 
limit (a) which is appropriate for these nuclei, the core Hamiltonian [HmA in eqn. (6.11)] can 
be described by (4) A = 0.47 MeV, B -- 0.6 MeV and C = 0. The strength of the particle core 
interaction was obtained from a best fit to the levels based on the i13/2 s.p. state in the odd 
Hg isotopes, (9~ x = 0.05 MeV and xZ = -0 .083 MeV. The interaction that enters in the 
definition of H 2 [eqn. (6.4)] was taken to be a surface delta interaction with strength A 1 --- 
0.15 MeV. In a calculation in which the 0~ state in the core and the band built on top of it 
was omitted (the calculation without P.V. in Fig. 22) the strength of the interaction was 
increased to A = 0.18 MeV, in rough agreement with the BCS pairing strength (97~ G, = 
37/A. The calculated lowest levels of each spin in 198Hg are compared with experiment in 
Fig. 22. Overall agreement is good, both below and above the band crossing at J = 8 +. It 
should be noted that in the calculation even the low lying 0~ level contains an admixture of 
two quasi-particle components of about 50%. This re-emphasizes the importance of 
including two q.p. degrees of freedom for nuclei near shell closures. In Ref. 91 calculations 
for excitation energies in 194Hg and 196Hg, g-factors and B(E2) transitions are also 
compared with experiment. In general a good agreement is obtained. 

6.3. Giant resonances 

The spreading-width of Giant Resonances, specifically the Giant Dipole Resonance 
(GDR), has also been calculated using the IBA model, ts7 -s9) Since states of this kind occur 
at the relatively high excitation energy of about 15 MeV, no discrete sharp states can be 
resolved any more due to the high level density. The situation is thus completely analogous 
to that of deeply bound hole states in odd-mass nuclei (7°) where only a calculated strength 
distribution can be compared with experiment. 

The GDR is built on a collective lhto p-h excitation. It is collective in the sense that it 
exhausts most of the E1 sum rule strength. In the IBA model framework it can be described 
by coupling a P, a J~ = 1-,  boson to the system of s- and d-bosons. A general coupling 
Hamiltonian for this system can be written as 

H = Hsd + ep~p + ao~d~ p + alL~ 1)" (ptp)(~) + a2Qs a . (ptp)(2) (6.13) 

where H~d and Qsd are the usual IBA Hamiltonian and quadrupole operator. 
An interesting result is obtained in this model when the P-boson is coupled to an SU(3) 

boson core. In numerical calculations (aT~ it was observed that in this case the strength is 
distributed over only two states in the ratio 1 : 2, in the limit of a strong coupling. This result 
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is identical to what is expected in a geometrical model. (99) In Ref. 89 it is explained in terms 
of an approximate SU(3) symmetry in the combined system of s, d and P-bosons. A detailed 
comparison(SS) of the model predictions with data for 16SEr shows an excellent agreement, 
not only for the total photon absorption cross section, but also for photon inelastic 
scattering. 

One of the predictions of the model is that in the 0(6) limit for the core Hamiltonian the 
strength is distributed over more than two collective states {s 7,s 9) while in the S U(5 ) limit one 
observes only a single slightly broadened peak (87} in the strength distribution. This implies 
that the spreading width of the GDR state will be considerably different for the three limits. 

7. SUMMARY 

The Hamiltonian of the IBFA model has been derived on the basis of a semi-microscopic 
theory, which is used to obtain a general structure of the boson-fermion interaction but 
where the strengths of the different components in the force are treated as freely adjustable 
parameters. In this way a model is obtained which has enough flexibility to describe a vast 
amount of experimental data using only a few (two or three) parameters. In the following 
only some of the major successes obtained and the major problems encountered in this 
model will be mentioned. 
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In several different microscopic approaches to the IBFA model an essentially similar 
structure for the boson-fermion interaction has been obtained. In phenomenological 
calculations where the strength of the different components in the force is adjusted a good 
agreement with experiment is obtained. The transition from a weak coupling particle- 
vibration spectrum to that of the strong coupling deformed Nilsson scheme is correctly 
reproduced. 

Although microscopic calculations can account for the qualitative features of the IBFA 
model parameters obtained from phenomenological fits, their absolute magnitude is not yet 
understood. This situation is very much like that of the IBA model for even-even nuclei. In 
addition, the phenomenological calculations show some evidence that the structure of the 
operator for calculating single-particle transfer amplitudes is incomplete. Clearly the basic 
microscopic picture behind the IBFA model is qualitatively understood but several open 
problems still exist. 

The boson-fermi symmetries are instrumental in understanding the structure in the 
complex spectra of odd-mass nuclei. They dictate simple analytic formulas for excitation 
energies and transition rates for nuclei which hitherto have been impossible to calculate in 
any model. The boson-fermi symmetries occur only when the boson-boson and boson- 
fermi interactions are in a specific relation to each other. The success of the symmetries in 
reproducing the spectra of odd-mass nuclei is an indication that these symmetries are much 
less broken than might have been expected a priori on the basis of the many restrictive 
conditions. This raises the interesting question, to be answered by a microscopic treatment, 
as to why the symmetry breaking is so small as experiment suggests. This apparently 
indicates that, in the nucleus, the collective and single-particle modes are closely related and 
should not be treated as two independent modes of excitation, as is usually done. 
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