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The nuclear response function of 4°Ca is studied at finite temperature using self-consistent RPA. We f'md that the iso- 
vector dipole strength function is quite independent of temperature up to T ~ 6 MeV. In contrast, the quadrupole strength 
function is much affected, showing a softening of the nucleus with increased temperature. 

Finite temperature nuclear dynamics has recently 
been the subject of much study [1-5] ,  stimulated by 
the finding of giant dipole resonances built on states 
above the yrast line [6-8] .  These observations give 
new information about the shape and dynamics of hot 
nuclei. The temperature dependence of collective ex- 
citations also bears on the deep inelastic scattering 
process in heavy ion collisions. 

So far, theoretical studies of collective excitations 
in hot nuclei have been done using the random phase 
approximation (RPA) with schematic interactions and 
wave functions based on the harmonic oscillator or 
Woods-Saxon potential [1-5] .  It is of interest to go 
beyond these simple models to self-consistent Hartree-  
Fock and RPA theory, which has been shown to be 
well-founded and very successful in describing various 
kinds of collective excitations at zero temperature. 
Moreover, the RPA response function can be solved in 
coordinate space avoiding truncation of the particle- 
hole (p -h )  configuration space and gives a proper ac- 
count of the particle continuum effect. 

In this paper, we study the response function at 
finite temperature in self-consistent RPA. We apply 
the Green's function method in coordinate space de- 
veloped by Bertsch and Tsai [9]. The finite tempera- 
ture theory is derived from the grand canonical parti- 
tion function D of the system [ 1,2]. The expectation 
value for any observable of the system is given by aver- 
aging over the partition function. In this way, the den- 
sity p(T) at temperature T is given by 

138 

p(T) = Tr{Dt3(r)} =~.f i (T)(2]i  + 1)4JT(r)g~i(r), (1) 
! 

where ¢i(r) is the single-particle wave function and 
fi(T) is the occupation probability of the single-parti- 
cle state, 

fi(T) = 1/(1 + exp[(ei - ev)/Tl} .  (2) 

The chemical potential eF is determined by subsidiary 
conditions of proton and neutron number conserva- 
tion. The thermal excitation energy E* of the equi- 
librated system in the independent quasiparficle ap- 
proximation is given by 

E*(T)=~. (2ji+ l) 
l 

X [/~(T) el(T) - f i ( T  = 0) ei(T = 0)1. (3) 

To study the response of the system, we add a 
time-dependent external field F(r) to the Hartree-  
Fock hamiltonian, 

H(T, t) = H(T) + F(r) exp(--icot) 

+ F*(r) exp(icot). (4) 

This will induce a perturbation term in the density, 

p(T, t) = po(T) + [6p(T) exp(-ioat) + h.c.] . (5) 

The linearized time-dependent Hartree--Fock hamil- 
tonian is now given by 
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H(T,  t) = H0(T ) (4') 

+ [Sp (5 U/Sp) exp ( - imt )  + F(r) exp(- imt)  + h.c.] , 

where HO(T ) = K + U is the Hartree-Fock hamilto- 
nian at finite temperature. We assume that the Hartree-  
Fock potential U is a function of the local density 
p0(T) which is the case for the Skyrme-type hamilto- 
nian. The TDHF equation 

[11(7", t) - ei(T)] ¢i(T, t) = i~¢i(T, t)/Ot (6) 

can then be solved for the density oscillation 6p by 
the Green's function 

5p(r, T) = aRp A • F ,  (7) 

where GRp A is obtained by solving the RPA equation, 

GRPA(m , 7) = G(O)(og, T) 

+ G(0)(m, T)(~i U/~D) GRp A . (8) 

In eq. (8), G (0) is the bare particle-hole Green's func- 
tion defined by 

a(O)(r, r'; m, T) = ~ fh(T) ~b~(r)[1 - ;p(T)] Cp(r) 
p,h 

X [(m+ it/-- ep+ eh) -1  -- (m+ i~/+ ep -- eh) -1] 

X Cp(r') ~h(r ') .  (9) 

The fp(T) terms in eq, (9) drop out by cancellation of 
the forward and backward amplitude. The strength 
distribution of the RPA response is now obtained by 
the imaginary part of the Green's function, 

S(m,  T) = l r - lT r{F  * Im[GRPA(m , T)]/7} (I0) 

for the one-body operator F(r  I. In this derivation, we 
have assumed that the external field has a frequency 
large compared to the collision rate between quasi-par- 
ticles. 

The main features of the strength function are con- 
veniently discussed in terms of sum rules, We define a 
kth energy moment of the excitation operator in the 
ensemble by 

o o  

= f ST( I din.  (1 1) 
_ o o  

where S T is the strength function given by 

ST(09 ) = ]~ ~ exp [ - ( E  m -- eFNm)/T ] 
L n, m 

X [(nlFlm)126(m - (E n -  Em) ) . 

The value Z represents the partition function of the 
system and N n and En are the number of particles and 
the energy of the state n. For k = 1, the sum (EWSR) 
may be evaluated in an analytic form similar to the 
zero temperature sum rule [2]. For multipolarity X, 
this needs 

ml(T) - ¢ [ e  , [/4, F] 1) 

2m A 47r 

where the mean square radius and the enhancement 
factor are defined as 

~2 Z 2 ;~(2;~ + 112 (r2h_2) T for 1S, 
2m A 47r 

(121 

fi2 N Z  ;k(2;k+ 1) 2 (r2X_2)T( 1 + K) for IV,  

(r2h-2) T = f p 0 ( T )  r 2x-2 dr/A , 

t~ : (2m/h2)[t l (1 + ½Xl) + t2(1 + ½12) ] 

Xl fp~(r) dr. (13) 

In eq. (13), tl, t2 ,Xl ,  X 2 are the usual Skyrme param- 
eters defined in ref. [10]. The RPA sum rules are cal- 
culated from the RPA response as 

mk(T)  = f dm l r - l (F  * Im[GRPA] F)  m k . 
0 

(11') 

The sum rule is exactly satisfied for k = 1, as shown by 
Vautherin and Vinh Mau [5]. 

We calculated the isoscalar (IS) quadrupole and 
isovector (IV) dipole excitations in 40Ca at several 
temperatures. We use the Skyrme interaction SGII for 
the H - F  and RPA calculations [11]. The parameter 
set SGII has been successful for the description of col- 
lective p - h  excitations, while reproducing empirical 
ground-state properties quite well. The space of hole 
states is taken to include all bound single particle 
states up to and including the f - p  shell. The space for 
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Table 1 
RPA results for IS quadrupole states (E2) in 4°Ca as a function of temperature T. The thermal excitation energy E* and the mean 
square radius are defined in eq~ (3) and (13), respectively. The sum rule value m I (a) is calculated from the analytic expression 
(12), while the result ml(b) is obtained by the RPA response shown in fig. 1. The non-energy-weighted and inverse-energy-weighted 
sum rules m0 and m_ 1 are also obtained by the RPA results. 

T E* (r2)T ml(fm 4 MeV) mo m-1 E1 = mo 
(MeV) (MeV) (fro 2 ) (fm 4 ) (fro4 MeV -1 ) ( m l / m _ l )  112 (Ex< 10 MeV ) 

case (a) case (b) 

0.0 0 11.26 9.28×103 8.99×103 526.1 31.11 17.00 0.0 
1.5 10.49 11.39 9.39x103 9.42×103 593.9 47.09 14.14 61.0 
3.0 37.67 11.74 9.68×103 9.50×103 676.8 74.37 11.30 167.5 
6.0 99.54 12.47 1.03 x 104 9.93 x 103 714.0 107.4 9.62 167.9 

the part icle states includes the discrete states as well 

as the u n b o u n d  con t inuum,  which we treat  exact ly  

using the single-particle Green 's  funct ion.  The H - F  

wave funct ions  and energies are taken to be T-inde- 

penden t  since H - F  proper t ies  have only a small T-de- 

pendence  [5]. Since our effect ive in teract ion has a 

density dependent  term, the p - h  interact ion shows 

T-dependence through the equi l ibr ium density p0(T).  

The results o f  isoscalar E2 exci ta t ions are shown in 

table 1 and fig. 1. The RPA result  at T = 0 MeV gives 

a collect ive resonance at Ex = 16.7 MeV with  the 
width at ha l f -maximum I" = 400  keV exhaust ing 70% 

o f  EWSR. Empirical  evidence has been repor ted  at 

a r o u n d E  x = 17 MeV having ~ o f  the EWSR value [12]. 

There is no transi t ion strength b e l o w E x  = 10 MeV in 

the result  at T = 0 MeV. However ,  at finite tempera- 

ture, the Fermi  surface is mel ted  and the 0hco p - p  

and h - h  exci ta t ions become possible together  with 

the 2h60 p - h  exci ta t ion  which is only al lowed in the 

T = 0 MeV case. The p - p  and h - h  conf igurat ions  
change mainly  the strength dis t r ibut ion at the low- 

energy side a t / ?x  = 4 MeV. The sum of  the strength 
b e l o w E  x = 10 MeV is going up to 20% o f  file total  
strength at the tempera ture  T =  3 MeV. On the con- 
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Fig. 1. RPA strength distributions of the IS quadrupole operator F(r) =-~ :~i(1 - (rzi)) r 2 Y2m(fi) in 4°Ca at finite temperatures. 
The dotted curve shows the result of T = 0 MeV, while the solid curves at LHS and RHS show the results of T = 3 MeV and T = 6 
MeV, respectively. 
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Fig, 2. RPA strength distributions of the IV dipole operator F(r) = (N[A) ~;prp Ylm(Fp) - (Z/A)  F, nr  n Ylm(Fn) in 4°Ca at finite 
ternperature~ The dotted curve shows the result of T = 0 MeV, while the solid curves at LHS and RHS correspond to those of T = 
3 MeV and T = 6 MeV, respectively. 

trary, the giant resonance has less transition strength 
at higher temperature and the excitation energy itself 
is slightly shifted to the higher energy side. This is as 
we expect: at finite temperature, the giant is less col- 
lective and has an energy close to the part icle-hole 
energies of the shells involved. The width F of the 
giant resonance is increasing at higher temperature, 
i.e., varying from 0.4 MeV at T = 0 MeV to 1.2 MeV 
at T = 6 MeV. A more important increase in the width 
would come from collisional damping which is not  cal- 
culable within the RPA theory. 

The energy moments ml ,  m0, and rn_ 1 are tabu- 
lated in table 1. The accuracy of the numerical calcu- 
lation may be checked by comparing with the analytic 

expression (12), since the Thouless theorem ensures 

the agreement of two quantities in the self-consistent 
calculation even at finite temperature [2,5]. The nu- 
merical result of the ml-moment  agrees with the ana- 
lytic value eq. (12) within an error of a few percent in 
each case. While the EWSR value ml  is slightly in- 
creasing at higher temperature, the values m0 and m - 1  
are changed very much due to the low-energy excita- 
tions induced by finite temperature. Especially, the 
m_ 1 moment  increases rapidly and the value at T = 3 
MeV reaches more than twice the zero temperature 
value. This is quite different to the result of the Tho- 
mas -Fe rmi  approximation where the shell stmcture 
of the strength distribution is not  taken into account 
explicitly [13]. 

The behavior of the isovector E1 strength function 

Table 2 
RPA results for IV dipole states (El) in 4°Ca at finite temperatures. The enhancement r is defined by eq. (13). For details, see the 
caption to table 1. 

T E* K m 1 (fm 2 MeV) m 0 m_ 1 E1 = mo mo 
(MeV) (MeV) (fm 2) (frn 2 MeV -1) ( m l / m -  1) 1/2 (Ex< 10 MeV) (Ex< 15 MeV) 

case (a) case (b) 

0 0 0.330 1 9 7 . 4  195,9 10.68 0.596 18.13 0.0 0.916 
3 37.67 0.313 195.0 200.4 1 1 . 3 7  0.691 17.03 0.412 1.41 
6 99.54 0.293 192.0 1 9 5 . 5  1 1 . 9 5  0.841 15.25 1.28 2,92 
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is shown in fig. 2 and table 2. The isovector E1 strength 
at T =  0 MeV in fig. 2 is spread out in a broad energy 
region E x = 1 3 - 2 0  MeV with the main peak at Ex = 
18 MeV. The experimental data [14] also show a 
broad resonance at around E x = 20 MeV. The EWSR 
value has the temperature dependence only through 
the enhancement factor K and decreases at most  by a 
few percent until T =  6 MeV. The EWSR m l ( b  ) esti- 
mated from the RPA calculation in table 2 shows a 
good agreement with the value m l ( a )  obtained by the 
analytic formula (12) at each temperature. 

While some transition strength is seen in the low 
energy region below Ex = 10 MeV of fig. 2, i.e., 8% of 
the total strength at T = 3 MeV, the strength distribu- 
tion of  IV dipole states shows much less temperature 
dependence than the IS strength. The sensitivity of  
the quadrupole strength function may be understood 
in part  in terms of  the softness of  the nucleus, which 
in turn depends on the momentum distribution func- 
tion of  the particles. With a relatively sharp Fermi sur- 
face of  a closed shell nucleus, a quadrupole deforma- 
tion requires a corresponding deformation of  the mo- 
mentum distribution, giving a large restoring force [15]. 
In an open shell nucleus, corresponding to our finite 
temperature situation, deformation can occur by tran- 
sitions within a major shell and the strength function 
has peaks at low excitation. On the other hand, the di- 
pole mode is caused by the displacement of  neutrons 
against protons in coordinate space without  any change 
in momentum space. Thus, the melting of  the Fermi 
surface is no t  crucial for the excitat ion energy and the 
strength distribution of  the IV dipole state. 
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