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A new nucroscopm model is proposed to describe the expansmn and vaportzatlon of a hot nucleus The model incorporates 
the dynarmcs of the expansion process into flmte-temperature Har t ree-Fock theory Testing the method on 4o Ca, we fred that 
most of the nucleus remains m the hqmd phase ff the temperature ~s below 8 MeV, and for tugher temperatures most of it ~s 
turned to vapor m the mmal  expansmn 

The theory of nuclear disassembly at high excita- 
tion energy is currently a topic of considerable in- 
terest [1-12].  Both statistical and dynamic models 
have been employed to describe the process. The ini- 
tial expansion requires a calculation of dynamics such 
as given by mean field theory [7,8] or classical equa- 
tions of motion [ 11 ]. In the final state, the clustering 
may well be described by an appropriate statistical 
theory [1-3] .  We propose to solve a hybrid model 
that uses the dynamic equations of constrained mean 
field theory at finite temperature. We know that 
mean field theory works very well at nuclear matter 
density, and the finite-temperature generalization 
should be equally valid for the single-particle density 
matrix. Of course at low density, Hartree-Fock 
theory breaks down as clustering becomes important. 
However, we do expect our model to describe the 
separation of the system into a vapor and a liquid ~:t 
Our aim will be simply to calculate the fraction of 

~1 The  presence of  phase transi t ion m nuclear mat ter  be tween 
vapor and liquid phases may  be taken for granted [ 13] 
Whether or not  it shows observable critical point  behavaor 
has been a subject of  controversy [ 9 - 1 2 , 1 4 ]  
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nucleons that are left in the residual nucleus after 
the expansion phase, a quantity that might be experi- 
mentally accessible. That was also a goal of the cal- 
culations in ref. [6]. That work used a completely 
macroscopic model, whereas our method is micro- 
scopic. 

A basic assumption of our model is that the sys- 
tem maintains global thermal equilibrium during the 
expansion. Thus it should be required that the therm- 
al equilibration time scale be short compared to the 
expansion time scale. It is worth exploring that limit 
because the only other microscopic calculations that 
are presently possible demand the opposite limit 
[7,8]. Realistically the situation is in between, with 
the two time scales comparable. 

In Hartree-Fock theory, systems can be studied 
away from dynamic equilibrium by adding constrain- 
ing fields to the single-particle hamiltonian. To study 
the system as a function of density, fields of the form 
hr 2 and Xp might be employed [15]. The Lagrange 
multiplier h is chosen to give a minimum at the de- 
sired density. For our study, the basic physics left out 
the equilibrium description is the collective expansion 
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of the hot system. This expansion takes energy from 
the thermal energy, and will affect the properties of 
the final state [4]. The collective energy of expansion 
can be included by constraining the system with a 
field proportional to the radial momentum, which we 
def'me by the operator ½(p • r + r • p). It is convenient 
to use the operator r 2 to constrain the size of the sys- 
tem, because as will be seen below the operator rela- 
tionship with p • r simplifies the calculations. In sum- 
mary our model is based on the constrained Hartree- 
Fock theory with a hamiltonian 

h" =hHv[p]  - X  l r  2 - x  2 } C o ' r + r ' p ) ,  (1) 

where X 1 and X 2 are independent Lagrange multi- 
pliers. The Hartree-Fock equations 

h"q~ i = ei~, ,  p = ~. (2/i  + 1)fz(T)~*~b i (2) 
l 

may be derived from the hamiltonian by the variation- 
al principle for the thermodynamic potential of the 
grand canonical ensemble [16]. There is also a sub- 
sidiary condition to determine the particle number, 

N =  ~. (2Ji + l ) f / (T)  
1 

(2] i + 1) 5-'. (3) 
1 + exp [(e i - u ) /T]  " 

If the temperature is not too high, the Hartree-  
Fock equations have two sets of solutions depending 
on the starting conditions of the iteration process 
[14]. One set of wave functions is obtained by using 
the usual Woods-Saxon potential as an initial guess, 
while another set is obtained starting from zero poten- 
tial. This latter is the vapor phase, while the former 
has a mixture of  vapor and liquid. 

Due to the radial momentum constraint, the hamil- 
tonian h" is complex (although of course hermitean) 
and will have complex eigenfunctions. We represent 
the hamiltonian by a tridiagonal matrix on a radial 
coordinate space mesh. The matrix is converted to a 
real symmetric matrix by applying a gauge transfor- 
mation, and then the usual bisection method is used 
to find the eigenvalues and wave functions. For 
hamiltonians based on Skyrme-type interactions, this 
method appears to be somewhat faster than the com- 
monly used Numerov algorithm [17]. 

To derive the dynamic equations of  motion we 

study the expectation values of the operators for the 
constraining fields. The equations of motion for these 
operators are given by 

id ( r2) /d  t = (Jr 2, hHF] }, (4) 

id(p"  r) /d t  = ([p • r, hHF ] ), (5) 

where the expectation value implies averaging over 
the grand canonical ensemble 

(O) = .~f/(T)(¢ilOl~t), (6) 
t 

Eqs. (4) and (5) can be simplified if we express hHF 
in terms of the constrained hamiltonian h" and make 
use of the fact that h" is diagonal. Then the commu- 
tators in eqs. (4), (5) only receive contributions from 
the constraining fields and we arrive at the following 
expressions 

d(r2)/dt = 2X2(r2), (7) 

d(p • r ) /d t  = -2X 1 @2), (8) 

Before proceeding with a numerical study of these 
equations, let us see how they describe the dynamics 
of small amplitude motion. For small amplitudes we 
can assume that X 1 and X 2 depend linearly on the 
constrained expectation values, 

~k 1 ~ o~(r 2 ) -  (r2}O), X 2 -~/3(p. r), (9) 

and the two equations may be combined to yield 

d2((r 2 ) _ (r2>o)/dt 2 

-4alS((r2 } - (r2>o) (r2)02. (10) 

This equation shows that the system will oscillate 
with a frequency co = 2(a •/3) 1/2 (r2)0 . This describes 
the giant monopole vibration at t'mite temperature, in 
the first sound limit. From the calculation below for 
40Ca we extract values of o~,/3 which yield monopole 
frequencies of  22 MeV at T = 2 MeV, 9 MeV at T = 4 
MeV and 6 MeV at T = 6 MeV. Thus for low tempera- 
ture the first-sound monopole vibration has a frequen- 
cy close to the zero temperature giant monopole. 
Hotter nuclei are softer with a lower monopole fre- 
quency. Similar conclusions were made in ref. [6] 
based on a macroscopic model of  the finite tempera- 
ture dynamics. 

We now apply the constrained dynamac model to 
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the evolution of  t he  nucleus 4°Ca for a range o f  tem- 
peratures. The Har t ree-Fock  calculations are based 
on the Skyrme hamiltonian SGII [18]. This hamilton- 
Jan has a density-dependent interaction proportional 
to pl/6, giving a nuclear compressibility ofK¢. = 218 
MeV and an effective mass m*/m ~ 0.7. The satura- 
tion properties and collective excitations of  many nu- 
clei are well described by this hamiltonian. We solve 
the Har t ree-Fock equations in a spherical box of  
radius R = 12 fm, taking 50 single-particle states both 
for neutrons and protons. The chemical potential is 
determmed to keep the number of  particles fixed at 
40. This is somewhat different than ref. [ 14], in 
which the number of  nucleons in the liquid phase is 
fixed. The imtial temperature is arbitrary but then it 
must be allowed to vary to keep the excitation energy 
fixed during the expansion. Before studying the dy- 
namic equations, we first give some results of  the 
doubly constrained Har t ree-Fock calculations. The 
dependence of  the field expectations on the Lagrange 
multipliers is shown in fig. 1. We see that the radial 
momentum is very nearly linearly dependent on X2, 
with a coefficient that increases with h 1 . To under- 
stand this behavior, we note that the solution to the 
Har t ree-Fock equations at f'mite X2 may be expressed 
in terms of  the solution for )`2 = 0. It is a straightfor- 
ward algebraic exercise to show that the following re- 
lation holds for the wave functions 

~bi()`l, )`2) = exp(i)`2~mr2)qji()`l + ~_)̀2m , 1  2 0), ( l l )  

The expectation value o f p  • r may then be evaluated 
a s  

(p • r) = )`2m(r2), (12) 
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Fig. 1. The radial momentum (p ° r) at T = 10 MeV and the 
RMS radius r m at T = 4, 6, 8, and 10 MeV with respect to the 
Lagrange multipliers h I (MeV fm -2) and h2 (MeV ~-1 ). 
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Fig. 2. The excitation energies E* of 4°Ca at various temper- 
atures as a function of the radial momentum (p • r) for a 
fixed RMS radius r m = 5 fm. 

w~aere (r 2) is the expectation value in the state with 
t 1 2 ;k~ = 0, )`1 = ~kl + ~-X2 m- Since the term quadratic in 

~'2 is small for values o f  physical interest, (p • r) has 
a nearly linear dependence on )`2. In contrast, the 
RMS radius does not vary linearly with )`1. For low 
temperatures, the RMS radius increases slowly with 
)`1 when the field is compressive, but increases rapidly 
for strong dilational fields. Pulling apart a nucleus that 
would be otherwise bound is a nonlinear process! No- 
tice also that the RMS radius is almost independent of  
)'2. As noted above, that parameter changes primarily 
the phase of  the wave function, keeping the density 
about the same. Some graphs of  the excitation ener- 
gy as a function o f  the constraining fields are shown 
in fig. 2. The energy is calculated as a function of  )`1 
and )k 2 and then expressed in terms of  the correspond- 
ing physical expectation values. The energy is a mini- 
mum at zero radial momentum and varies quadratical- 
ly with that variable. In fig. 3 we show the entropy 
calculated from the grand canonical formula 

S = -  ~ .  (2/i+ 1 ) [ f i l n f / + ( 1  - f / ) l n ( 1  - f i ) ] .  (13) 
1 

We first compare the computed entropy with the 
Fermi gas model. For simplicity, let us assume that 
the Fermi gas occupies a sphere with the same RMS 
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Fig. 3. The entropy S as a function of the radius r m. The 
dashed curve shows the result of Fermi gas model calculation 
at T = 6 MeV performing numerically the derivative of the 
thermodynamic potentml with respect to the temperature. 
Thus, higher order terms than eq. (14) are also included in 
the result. 

radius as the calculated system. The entropy at low 
temperatures would then be given by 

S "~N½7r2T/eF = zr4/3(s)2/3Sr2mmTN1/3. (14) 

The Fermi gas entropy for T = 6 MeV is shown as the 
dashed line in fig. 3. It has about the right magnitude 
for moderately expanded nuclei. The deviation at 

large r m is due to the limitation of the configuration 
space in the H - F  calculation, while no limit to the 

available phase space in the Fermi gas model. How- 

ever, the calculated entropy for r m = 8 fm only in- 
creases by 10% when the configuration space is 
doubled. Thus, the limitation of the configuration 
space does not have much effect on Har t ree-Fock 
results, even at a high temperature such as T = 12 MeV 
Note that the entropy is almost independent of the 
collective momentum (p • r). 

Our remaining initial conditions are to assume zero 
radial momentum, and that the mean square radius of 
the system corresponds to a nucleus near normal 

density. Whether this is realistic or not depends on the 

details of  the process used to create the hot nucleus. 
For the calculation the initial conditions are imposed 
by starting the system with a negative ?~1 coefficient 
and ~k 2 = 0. The time evolution of the hot system is 
determined from eqs. (7) and (8) using the results of 
the constrained Har t ree-Fock calculations presented 
in figs. 1 -3 .  

The results are shown in table 1 for two different 
values of the initial temperature, T 1 = 6 MeV and 12 
MeV. The first point to note is that the entropy re- 

mains nearly constant during the expansion, although 
this was not imposed from the outset. Evidently our 

assumption, that the thermal equilibration time is 
small compared to the expansion time, insures that 
the motion is adiabatic in the thermodynamic sense. 
Of course it is essential that the model include the 
collective kinetic energy of expansion for the adiabatic 
behavior to occur. As noted in refs. [6] and [11], the 

Table 1 
Time evolution of the hot nucleus 4°Ca. 

E* t h I h 2 r m {p • r} T S N L N V 
(MeV) (fm/c) (MeV/fm 2) (MeV/~) (fro) (h) (MeV) (%) (%) 

197 0 -0  10 0.0 3.90 0.0 6.0 57 92.0 8.0 
20 -0 03 0.78 4 07 0 31 5.5 58 89.0 11 0 
40 0.04 0.96 4 46 0.45 4.6 58 86 0 14.0 
60 0.09 0.52 4.84 0.29 4.0 59 82.0 18.0 
80 0 10 -0.24 4.93 -0.14 3 8 59 81.0 19.0 

100 0.06 -1 36 4.57 -0.62 4 2 59 84.0 16.0 

597 0 -0.20 0.0 5.21 0.0 12.0 116 44.0 56.0 
20 -0.11 1.44 5.65 1 10 10.4 117 45.0 55.0 
40 0.01 1.7 6.80 1.85 7.3 117 38.0 62.0 
60 0.076 1 2 8.12 1.75 6.1 120 15.0 85.0 
80 0.11 0.37 8.90 0.7 5.9 121 3.0 97.0 
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entropy will increase when the system enters the re- 
gion of phase instability, but this cannot be calculat- 
ed without a detailed description of the clustering. 
Note also that the temperature decreases rapidly 
with time during the expansion process. Thus the 
physics of isothermal processes is not relevant to nu- 
clear vaporization. 

Another question of interest is how much of the 
system is left in a residual nucleus after the initial ex- 
pansion has stopped. In macroscopic terms, there is a 
separation between a low and high density phase, the 
vapor and liquid. The two cases presented in table 1 
show quite different behavior in this respect. For the 
case of T I = 6 MeV, the attractwe forces eventually 
stop the expansion, leaving a residual nucleus. This is 
seen by the decrease in r m after a time t = 80 fm/c. 
In contrast, at T I = 12 MeV the system is hot enough 
to expand indefinitely. These results are in accord 
with the conclusions of ref. [6], where the change 
from bound to unbound expansions was found to oc- 
cur in the vicinity of T! = 8 MeV. 

The volume in which we allow the nucleons to 
move is too small to see a physical separation of the 
vapor and liquid phases, but we can determine the 
proportion of each by comparing with the density 
pro£fle of the pure vapor solution of the Hartree- 
Fock equations at the same values of the Lagrange 
multipliers. Fig. 4 compares the physical density to 
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Fig. 4 The density distributions o f  4°Ca at the initial and 
final stage of  the expansion wi th  the starting temperatures 
T I = 6 and 12 MeV, respectively. The solid curves correspond 
to the total density with bo th  liqtud and vapor phases while 
the dashed curves show only the vapor phase. 

S/A  
0 . 3 0 ~  1,4 2.0 2.5 2,9 

I 0 0  

C~ 

0 
J 

50  

I 0 0 ~  
0 2 

.~ ., . . . .  ] 0  
4 6 8 I0 12 14 

T I (MeV) 

Fig. 5. The ratio of the mass number of the vapor phase to 
that of the liqmd phase. The temperature T I is that of the be- 
ginning of the expansion. 

pure vapor solution and shows that there is enough of 
a difference to extract the vapor fraction. The propor- 
tion of nucleons in each phase is given in the last 
column of table 1. Thus we see that there is only 
about 20% vaporization at T! = 6 MeV, but complete 
vaporization at T I = 12 MeV. The vapor fraction is 
plotted as a function of temperature in fig. 5. The 
transition region is rather broad, of the order of 6 
MeV as determined by the inverse slope of the curve 
in fig. 5. 

We now turn to the measurable consequences of 
the disassembly behavior. To apply our results to 
physical observables, the results should be expressed 
in terms of the excitation energy rather than the tem- 
perature. Table 1 gives the excitation energy for the 
two cases we examined in detail, E* = 197 MeV and 
E* = 605 MeV. The first case might be achieved for 
example by a head-on collision of  20Ne on 2°Ne at 
25 MeV/n in the lab. An obvious consequence of the 
model is that there should be an evaporation residue 
left at rest in the CM frame for the lower energy col- 
lisions. The residue will of course be much smaller 
than the liquid portion we find at the end of the ex- 
pansion, because of subsequent evaporation. But even 
at T = 6 MeV, the excitation energy of the evapora- 
tion residue is low enough so that most of the nu- 
cleons will remain in the final nucleus. The evapora- 
tion process needs to be studied more carefully with 
statistical cascade models to make quantitative predic- 
tions of the size of the final nucleus. 

The theory predicts that there is a limiting temper- 
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ature in the formation of  compound nuclei, as is dis- 
cussed for example in ref. [19]. This might be observ- 
able in the energy spectra of  light particles emerging 
from the collision. There may be found two compo- 
nents to the energy distribution, a high temperature 
component  to be associated with the immediate 
vaporization and a lower temperature component  
from compound nucleus evaporation. There is some 
evidence [20] for a limiting temperature in heavy 
nuclei as high as 5 MeV; our calculations on a much 
smaller system would give a lower value. A compound 
nucleus is only formed at temperatures of  8 MeV and 
lower, and, as may be seen from table 1, there is con- 
siderable cooling in the initial expansion phase while 
the compound nucleus is forming. 
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