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ABSTRACT

We present methods to compute thermodynamic properties of classical sys-
tems which involve extending the phase space by two degrees of freedom. These
two additional degrees of freedom are used to replicate the coupling of the orig-
inal system to the infinite degrees of freedom of a heat bath. In the extended
phase space, the trajectories are ergodic. This feature enables one to replace
phase space averages by time averages, which are extremely simple to compute.
We examine phase space patterns, thermal distributions, correlations, ergodicity,
Lyapunov exponents, mixing and rate of convergence in au analysis of several

simple systems.
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1. INTRODUCTION

One is often encountered with the need to evaluate finite temperature ex-
pectation values of operators for many body systems. Generally one can resort
to Monte-Catlo simulations, but in some cases such methods are inadequate. In
lattice gauge theories the handling of dynamical fermions provides such an exam-
ple. Alternate schemes include the introduction of Langevin terms, however this
has the disadvantage of requiring many iterations to achieve thermalization. In
dealing with stochastic systems for which the ergodic theorems hold, canonical
averages are simply evaluated from the time averaged operators over the trajec-
tories. However, in most cases we do not have an 4 priori ergodic dynamics.
The methods we study here begin with an arbitrary 2NV dimensional classical
Hamiltonian system H, which can be regular and even completely integrable.
The phase space is extended to 2N + 2 dimensions, in which the classical tra-
jectories become ergodic. The two additional degrees of freedom are introduced
in such a way that they replicate the coupling of the original system H to the
infinite degrees of freedomn of a heat bath at temperature 7. All the properties
of the original system H will then be seen to be preserved on average in the ex-
tended phase space. The central question of ergodicity has only been addressed
tangentially in the past. The usual assumption is that the many body problem
is sufficiently complex that ergodicity is guaranteed. However, we demonstrate
that the models used previously do not lead to ergodic dynamics in the extended
phase space in simple solvable systems, whereas the present generahzed couplings
do produce ergodicity while retaining at the same time simplicity.

Numerical simulations of non-equilibrium systems have been intensely studied
for many years [1] . But it was only a decade ago that molecular dynamics (MD)
methods were introduced to model a system interacting with a constant temper-
ature heat bath [2] . Two years later, Hoover et al introduced a non-equilibrium
MD constant temperature method in which pseudo-friction terms were added to
equations of motion [3] . These terms are referred to as psendo-frictions since
they appear in the equations of motion in the form of velocity dependent forces.
These results were made more precise several years ago when Nosé demonstrated
that the coupling of a 2N dimensional classical system to a constant temperature
heat bath can be emulated by simply adding a single degree of freedom to the
original system [4] . It was shown that in this case the canonical ensemble of
the original system is equivalent to the microcanonical ensemble of the extended
system. However, Nosé’s method relied on the assumption that the dynamics is
ergodic, which does not necessarily follow from the formulation of the problem.
Nosé’s equations of motion were later recast by Hoover [5] to demonstrate the
equivalent interpretation in terms of the addition of a velocity dependent force
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to the equations of motion. The principle behind these methods is that in this
extended 2N+1 dimensional phase space, the trajectories are deterministic and
can also be chaotic for suitable choices of parameters. In the chaotic regime,
canonical ensemble averages are equivalent to time averages over the trajecto-
ries, which can be computed easily by simply following the time evolution of the
system for some time.

- One of the principal difficulties with the Nosé-Hoover formulations is the
unpredictability of non-ergodicity. Indeed, the solvable models that have been
studied in the past have been chaotic at best, but not ergodic. There is strong de-
pendence on initial conditions, parameters and forms of the pseudo-friction term.
As we have stated, Nosé’s method [4] is no longer valid if the chaotic trajectories
are only recurrent and not ergodic. When non-ergodic chaos occurs or the system
is only intermittently chaotic, ouly limited regions of the phase space are reached,
and there is no way to reproduce the canonical ensemble., There are additional
peculiarities, For example, even if a system is chaotic at some temperature T,
it is not necessarily chaotic at other temperatures. A particular problem lies
in the description of systems with harmeonic oscillator potentials at any T. For
low T, this leads to difficulties, as the system will remain close to the minimum
of the potential, which in many cases is harmonic in character. Further, there
has been no general understanding of when such methods produce truly ergodic
dynamics. As we demonstrate below, this limitation is a manifestation of the
form of the coupling of the system to the heat bath. A suitable generalization of
this coupling can produce ergodic behavior, reproducing the canonical ensemble
averages.

A better understanding is clearly required in order to develop methods for
systems with curved phase spaces (such as Lie algebras) where the Nosé method
is not applicable as well as quantum systems. Examples of such systems are
constrained dynamical systems. In a recent letter we proposed methods to extend
the Nosé-Hoover dynamics to classical Lie algebras as well as to quantum systems
[6] . The ambition of our program is {o provide a reliable well defined procedure
that can rival Monte-Carlo methods, in which finite temperature expectation
values can be rapidly constructed via deterministic ergodic time evolution. With
respect to practical applications, it is of particular importance that these methods
converge to the correct results independent of initial conditions chosen. This
work is the first of several detailed articles on this subject. In following papers
we examine the extension of these methods to constrained dynamical systems,
in particular those Hamiltonians which can be written in terms of generators of
Lie algebras [7] . Additionally, we will discuss extensions to quantum mechanical
systems. The outline of this paper is as follows. In Section 2, we introduce
our extended dynamics. In Section 3 we detail explicitly the results for 1 and
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2 dimensional systems. This includes discussion of the properties of a coupling
scheme that results in ergodic dynamics. We conclude in section 4.

2. THEORETICAL CONSIDERATIONS

It is instructive to briefly review Nosé’s dynamics [4] . We begin with a
Hamiltonian H and a 2N dimensional phase space (g1, ..., qn, P1, ..., pN ) governed
by the usual Hamilton equations of motion

N
p.
H= t Vv
dgi _ OH . (1)
dt — 8p;’
dp; _oH
dt = 8¢

In Nosé’s scenario, the fixed temperature canonical ensemble can be simulated
by the addition of a single variable s. In this extended phase space, the external
system (heat bath) is assumed to interact in such a way as to scale the velocities
v = 3¢;. Nosé interpreted the scaled velocity v; as the true velocity resulting from
heat exchange with the external system. An augmented Lagrangian is introduced
in the form

L3 T V{(g) + —3* — (N + 1)Tln 2)

=L V@4 g - T (

Here N is the number of degrees of freedom of the system and T is the temper-
ature. The logarithmic character of the “potential energy” of the heat bath is
introduced to achieve the equivelence of the canonical ensemble for the original
system (1) with the microcanonical ensemble for the augmented system. The
momenta in this extended space are

oc . oL §
p‘z 8—q.‘-=m'.82q‘.’ P":.éFZ ;, (3)

The corresponding Hamiltonian and the equations of motion are easily obtained

N 2 2
B=3 P-is, +V(g)+oE + (N +1)Tns, (4)
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For any solution to (5), H' is conserved exactly. What Nosé demonstrated is that
in this extended phase space, the microcanonical ensemble of H' is precisely the
canonical ensemble of H at temperature T. To prove this, the microcanonical
ensemble partition function is defined by

Z = /dp,daHdp;dqi §(H' — E). (6)
By rescaling P; = p;/s we obtain
7= / dpsds " [] dPdgiS(H + 593 + (N +1)Tlns - E). (7)
i

The H that appears in (7) is the original Hamiltonian of (1), The integral over s
is easily completed using the delta function property 8(f(s)) = 6(s — s0)/|F'(s0)l,
where f(s0) = 0 and f'(sg) # 0: .

/da sNS(H + Spl +(N +1)Tlns — E)

8

= /da aNmﬁ(a - e—(H‘l'?P’.'—E)/((N-I-l)T)) (8)

=Y -lH+$p-E)T
(N ¥ )T

The resulting partition function can be expressed as
Z = const/HdP.'dq,'e"H/T. (9)
i

The constant term represents the p, gaussian integration and the remeining con-

stants. This expression is the partition function for the canonical ensemble for
the initial Hamiltonian H. '



The next step is to impose the quasi-ergodic hypothesis. This asserts that
the time average is equivalent to the microcanonical ensemble average in the
extended phase space, and hence to the canonical ensemble in the original phase
space. If the equations of motion for H' do not lead to truly ergodic motion, this
is clearly incorrect. If it does lead to ergodic motion, the results follow trivially
from classical ergodic theory since the measure on the extended phase space has
the density exp (—H'/T). In summary, Nosé’s dynamics consists of augmenting
an arbitrary Hamiltonian H to produce the extended phase space Hamiltonian
H'. The essential idea is that the infinite dimensional heat bath can be mocked
by a single degree of freedom s. If the Hamiltonian is ergodic, time averages in
the extended system correspond to canonical ensemble averages in the original
system.

In Nosé’s formulation, a ‘true’ time step dt' can be defined by #; = dg;/d',
where the true (scaled) time interval is dt' = dt/s. Since s is & dynamic variable,
the time intervals di’ evolve dynamically in time. An equivalent formulation of
the Nosé equations of motion in terms of scaled time is

9% _ pi

ot mys’

o _ _ OV

at! Og;’ .
Bs (10)
aar - 30Ps,

o'

Op, P?

5 T (N+1T

In Hoover’s reformulation of the Nosé equations of motion (5), the variable s
is removed, and the equations of motion for s and 3 are replaced by a single
equation. The resulting set of equations is much simpler to analyze. We begin
by defining the new thermodynamic pseudo-friction coefficient

1ds
(=g = P (11)

Then by defining ¢; = ¢; and p| = m;dg;/dt' = p;/s, and replacing Nosé’s (N+1)
factor by N, we arrive at Hoover’s equations of motion, which we hereafter refer
to as the Nosé-Hoover equations [5] . It is convenient at this point to drop the
primes in the notation for the variables g, pi, { and t. The Nosé-Hoover equations
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of motion are:

(12)

These equations of motion no longer retain a Hamiltonian structure. In the
extended phase space the variables g;, p; and ( are no longer canonical and
the symplectic structure is lost. One manifestation of this formulation is that the
psendo-Hamiltonian of the extended system (g;, pi, {) assumes a more complicated
form. This quantity is referred to as the pseudo-energy. In terms of (gi,pi, ¢),
the Nosé Hamiltonian is replaced by a pseudo-energy of this systemn

L p' q)+~—+T/c(t' dt', (13)

where £ = 0 is easily verified by direct substitution of the equations of motion.
Finally, on average one has

) (Es) () o

i=1

2.1 ERcGoDICc AND NON-ErGoODIC MOTION

The tremendous literature on chaos in the past ten years has, among other
things, produced a classification of different types of chaotic behavior. For the
reader unfamiliar with some of this terminology, we present relevant definitions
that will be used below. To begin with, for an arbitrary function A(g,p), we
define the phase space average {(A(q,p)) and the time average A(g,p) as

(A(g,p)) = / du A(g,p), A(g,p) = f dt' A(a(f),p(t)).  (15)

Here du is the phase space measure. In this study, our mensure will have a
Boltzmann factor density exp (—H/T'). A system is then defined to be ergodic if
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[8]
(A(g,p)) = A(g,p), (16)

except on a set of measure zero. If the system is ergodic, these averages are
independent of the initial conditions. This is an important requirement for con-
vergence of the algorithm for a general Hamiltonian.

It is not necessary for the condition (16) to be satisfied, even for trajectories
whose phase-space diagrams are dense. A system is recurrent if the trajectories
are chaotic but the integral over the phase space measure does not correspond
to the time average. This definition usually refers to trajectories that are dense
in (possibly disconnected) regions of phase space.

Another often encountered definition is mizing. A system is mizing if corre-
lations vanish on long (possibly infinite) time scales. A system that is mizing is
ergodic, but the converse is not always true. ’

We will use these definitions to distinguish between cases where the thermal
distributions are quite different, although the phase space portraits look identical.
All these types of motion are referred to as chaotic.

2.2 EQUATIONS OF MoOTION

There is no reason we should be limited to the original form of the Nosé-
Hoover equations (12). As we shall see in many examples below, their coupling
is often not ergodic or even chaotic, whereas suitable generalizations will pro-
vide ergodic trajectories. Let us consider & more general formulation, where the
Hamilton equations of motion are coupled to a heat bath as follows

dg; OH ‘
- - (¢=1,..,N) (17)

o __8-; - hz(C)Gi(‘I:P)'

We restrict ourselves to the case were the arbitrary functions A; and h; are only
functions of £ and ¢, which turns out to be sufficiently general. By choosing hy
and hg to be functions of both ¢ and ¢, the equations of motion for ¢ and £ become
more difficult to separate and a self-consistent solution is required (see below).
Looking back at the Nosé-Hoover equations (hy = F = 0,k = (,G; = pi), the
solution for g;(t) is (with m; = 1)

t
a) = a0+ [an(e). (18)
1)

It can be expected in this case that the distributions of momenta can strongly



influence those for coordinates. h; and hj have been introduced in (17) to better
decorrelate ¢; and p;, and ¢ and ¢ do not correspond to canonical variables.

In the next step we introduce the phase space probability flg,p,¢,€) for this
2N +2 dimensional space. Since the variables ¢;, p;, ¢ and ¢ are independent, we
choose the form

Haw 68 = Nexp (- z{H@n) + 0O+ 30®)).  (19)

Here A is & normalization constant, and a and @ are at the moment free param-
eters, although their values are linked to the appearance of chaos. The function
f defines the measure on the phase space:

Jaw )= [ £T] dmdgsdcae () (20)

In f, the functions gy and g; that determine the thermal distribution in ¢ and
§ are arbitrary. The choice of g; and gy as pure quadratic (producing gaussian
distributions) will often be seen to be inadequate. Since the equations (17) are
no longer Hamiltonian, the usual conditions leading to the Liouville equation are
no longer valid. That is, for each 3

aq. Bp, ) :
=1,.. . 2
3‘1: 4 — F #0, (i=1, ,N) (21)

This is easily interpreted as the boundaries of the 2N dimensional (g,p) phase
space evolving in time due to the flow in the ¢ and ¢ directions. This is a
consequence of the fact that the augmented phase space is not endowed with a
symplectic siructure. To obtain conservative time evolution of the probability
distribution f, the more general statement of the Liouville equation must be used

af + Z [a(le 3(.fP¢)] 3(f‘:) 6(f£) — (22)

0 3 35

In order to derive equations of motion for ( and ¢ that reproduce the thermal
distribution postulated in (19}, we simply substitute the equations of motion (17)
and the postulated probability distribution (19) into the Liouville equation (22).
This provides a self consistent set of equations in ¢ and £. However, by requiring
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that
8_. ek_
a¢ - ot

these equations can be easily solved to obtain

: hi (BH BG,-)
= Gi-T—1,
== grae] (575
: ha (3H 8F; )
= F,-T——
¢=f {dyz/ d¢] \ 9qi Bgi
In order to achieve self-consistency with the requirements (23), the terms in
square brackets must be independent of ¢ and £. This places the restrictions that
the thermal distributions g;(() and ga(¢) introduced in (19) must be integrals
of the functions h;1(¢) and h3(£) introduced in (17):

0, (23)

(24)

d.
dicl = C]h;,
(25)
dgz _ cah
d£ 212,

where ¢; and ¢3 are constants. Since these constants can be absorbed into the
definitions of a and # in (19), we will always set ¢; = ¢3 = 1. Thus we have
the self-consistent requirements that the thermal distributions and the pseudo-
friction terms are related by

hy = ‘figg
(26)

hy = dga

e

For this choice it is trivial to check that the thermal averages (h;) = (h3) = 0,
precisely ana.logous to (¢) = 0 for the gaussian thermal distribution in (. When
the system is ergodic, this means that the time average elso vanishes by (16).
The most general equations of motion are henceforth given by

. OH
%= P ha F,
. 6H
pi=—5— -G,
Oq; .
C__a BHG TBG (t=1,..,N) (27)
~ T\ 9p; opi )’
OF;

il Y b

f ﬁ( By 89:)
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For the case hy = F = 0, h; = { and G; = p;, the original Nosé-Hoover equations
of motion are recovered. When these equations are ergodic, the time average of
the non-Hamiltonian contributions to these equations of motion will be zero (i.e.
(h1)} = (h2) = 0). So in the cases of interest, the over all Hamiltonian character
and the energy will be preserved on average.

If the system is ergodic, the initial conditions are irrelevant, unless the start-
ing point is chosen in the set of measure zero for which the time evolution does
not converge to the thermodynamic mean. Unfortunately it is not obvious how
to determine whether the system is ergodic. In practice, the evaluation of distri-
butions over various initial conditions should be sufficient. Aside from the initial
conditions, there are two free parameters a and 3, to be discussed in the next
section. Whatever the functional choice of hq and hj, their thermal distributions
will be given by the exponent of their integrals. These integrals ¢; and g must
provide a normalizable distribution function f as given in (19). A nice feature of
the original Nosé-Hoover equations (12) is that there are no fixed points. How-
ever, since fixed points will be present in more general situations, it is wise to
avoid obvious stable fixed points in the general case (27). For simple functions
F and G this can be done easily.

Analogous to the Nosé-Hoover oscillator, it is easily verified that the system
of equations (27) conserves the pseudo-energy defined by

0G; BF,

t')

€= (q,P)+—91(C)+ yz(£)+T/ [hl(Cit') dt'. (28)
0

By direct substitution of the equations of motion (27} into £ it is easily checked
that £ = 0. The argument of the integral is precisely the divergence of the
equations of motion with an overall negative sign:

> (584 ) -1 [+ men %] o

i=1

For Hamiltonian systems the r.h.s. vanishes identically.
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3. ONE- AND TWO-DIMENSIONAL EXAMPLES

Of main interest in canonical ensemble simulations is the non-equilibrium
many body problem. Applying such methods blindly to complex systems is risky
if we do not understand the limitations of these simulations. This can be achieved
by studying the behavior of simple solvable one and two dimensional problems.
In this section we consider a large class of one and two dimensional examples,
contrasting our model to the predictions from the Nosé-Hoover approach, drawing
special attention to convergence properties and limitations. These examples will
provide insight into the more complex many body problem.

3.1 EQUATIONS OF MOTION

We have investigated our equations of motion (27) with a variety of inter-
actions in one and two coordinate dimensions. In the space (g;,pi,(,£) (where
t =1 or i = 1, 2) the most general equations of motion we consider are

¢i = pi — ha(€)F;,

. v
=g hi(¢)Gi,
(86 (30)
(=a (p'G' Tapi)’
. ov dF;
6=5 (0"~ T5)

Here the Hamiltonians are of the form H = Y, p?/2 + V(q), and the functions
F; = Fi(q,p) and G; = Gi(q,p) are general functions of all coordinates and
momenta. For one dimensional systems, the potential energy V{g) has been
taken as that of a harmonic oscillator, symmetric double well, or antisymmetric
well:

3(d*—1)% ifg2>0;
i(1—-¢%, ifg<o.

V@=3ah  Vie= ;-1 V(q)={ (31)

In Posch et al's detailed study of the Nosé-Hoover equations, a periodic 2-d
potential was investigated {5] . This provided evidence that the method works
for more complicated systems. However, in general, characteristic failures in 1-d
are evidenced in 2-d systems. We have studied the general non-periodic potential

V(g q2) = a1¢* + azq® + a3 3. (32)

For various choices of a; this potential produces a mexican hat, a symmetric
double well or a transition between the two. Esp&ially for low temperatures,
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the harmonic oscillator behavior of the potential near the minimum prevents the

Nosé-Hoover equations form thermalizing and reproducing the canonical ensem-
ble.

For all these Hamiltonians, we have achieved rapid convergence of the canon-
ical ensemble averages, to be described below. A wide variety of forces F. and
G; have been considered:

0
F,‘(q,p), Gila,p) = :;f‘(q’:'pf‘) forn,m =0,1,2,3,4. (33)
exp (g'p[")/2
For the couplings to the thermal bath, we have selected
mo-{5 "7 me={5 "
¢lel, €1¢1,

The number of combinations provides a multitude of equations of motion, for
which we have investigated the convergence and chaotic behavior, dependence
on the initial conditions and the parameters a and 8. There is one caveat: These
functions must be chosen in such a way as to avoid the presence of stable fixed
points in the equations of motion, which can destroy the ergodicity.

3.2 GENERALIZED COUPLINGS AND THE CuUBIC COUPLING SCHEME

In choosing the general thermal bath coupling functions hy, ks, F; and G;, the
equations of motion no longer retain the previous simple ‘physical’ interpretations
provided by Nosé and Hoover. But the fact that we do not follow Nosé’s proof of
the equivalence of the canonical and microcanonical ensembles is not important.
By the construction of the equations of motion and the choice of the phase space
probability distribution f(q,p,(,£), we will naturally reproduce the canonical
distributions providing we have ergodic behavior.

The preferred couplings we shall illustrate mostly throughout these examples
are explicitly

‘ii:Pl'—‘f‘If’

. ov C
P — aq, biy
'=a@-“NTL (35)

£ ﬁ(z _Q; - 3Tq )
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with p? = Z£1 p} and ¢? = Zf\;] ¢?. These equations do not have any stable
fixed points. To see this consider the linearization of these equations. Define the
vector

¢ = (QIi"°7qN,p]1"'1PN,CvE)$ (36)

and denote by ¢; the i — th element of the vector. The equations of motion
(35) can be cast in the form:

4?’ = F(¢): (37)

where F(¢) represents the right hand side of (35). At an arbitrary point ¢
along the flow, the equations can be linearized and the eigenvalues studied. This
establishes a general picture of the divergence of neighboring trajectories and the
presence of chaos. The trace of the stability matrix %{5‘ can be seen to be

3.F _ 2 3
Te 55 = —3¢a’ — N (. (38)
The fixed pdint (F.P.) condition from the equations of motion (35) can be written
as

= €Q3a
v
3—q,- = —("pi,
pZ — NT, (39)
N
oV .
Zpla - 3TEq

The first three equations of (39) can be used and equated to the fourth equation
in (39) to yield the relation

3¢q' = —(°N. (40)
(We have used the fact that ¢ # 0, since clearly there is no fixed point for £ = 0
at any non-zero temperature.) Comparing to the trace (38) we find that the

sum of the eigenvalues ); of %% is identically zero for an arbitrary potential (in
any dimension) in this coupling scheme at the fixed point:

=Y M=0. (41)

Hence there are no stable fized points. This coupling, which will be referred to
as the cubic coupling scheme, provides ergodic behaviour in all the examples we
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have studied. The (unnormalized) thermal distributions in this scheme follow
from (19)

flpi) = e PT, f(() = e /2T,
flaty-an) = e~ V(T F(&) = o8 /4T8

The numerical evidence of ergodicity is based on the independence of initial
conditions on the final thermal distributions, and will be discussed after some
examples are presented.

(42)

3.3 PHASE SPACE EVOLUTION

How does this method actually work? This is easily illustrated by example.
Consider the 2-d double well potential

V(g o) =q¢* + ¢ — 34, (43)

where ¢? = ¢* +¢2 and ¢* = (¢%)?. This well has two minima located along the ¢

_axis at (q1,92) = (£1,0) with a barrier height of 1. Consider the trajectories in
this potential at & temperature ' = 1 in the cubic coupling scheme. A selection
of 2-d projected phase spaces are illustrated in Fig. 1 after plotting 103 points.
The trajectory has been sampled every di = 0.02, which corresponds to a time
t = 20, where { = 1 is the characteristic time of the sysi:em.1 In this specific
example, the initial condition is

¢0 = (QI: Q2’per2,C:£)0 = (0-210-213 -0.3, ‘_0'37v0:0)' (44)

However, the system is ergodic, and thus the particular initial conditions are
irrelevant. There is no apparent regularity in the trajectories at this time. After
5000 points, and a time ¢ = 100, the phase space projections already begin to
appear quite dense, as seen in Fig. 2. The double well structure is quite evident
in the phase space sections that include ¢;. The resulting distributions that
correspond to £ = 100 are shown in Fig. 3 (histograms) and can be seen to agree
quite well with exact thermodynamic averages (solid curves), given in Eq. (42).
Using the specific form of V fromn Eq. (43), we obtain

1 In the numerical simulations, integration of the equations of motion was performed using
the IMSL subroutine DIVPRK, with an error tolerance of 10¢ — 102, The dt referred to
throughout the text is the sample time, which is in general larger than the actuval integration
step, determined by the subroutine. All computations were performed in double precision
on a VAX 3100 workstation.
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q:.43

d;.P4 q:.$ qi.§

FIGURE 1. Projections of a trajectory for the 2-d double well potential (43) using
the initial condition (44) with @ = = T =1 in the cubic coupling scheme. The
trajectory has been sampled every dt = 0.02 for a total duration of ¢ = 20 (1000
points). The limits in the figure are —4 < py,p2,€ < 4 and —2.5 < q1,42,¢ < 2.5.
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FIGURE 2. Same as Fig. 1 but with ¢ = 100 (5000 points).
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f(p,)

f(q,)

£(¢)

f(p2)

f(qz)

£(¢)

FIGURE 3. Thermal distributions corresponding to the trajectory in Fig. 2.
In this and all subsequent figures the numerical results are represented by his-

tograms, and the number of bins in the histogram is 100. The exact distributions
are represented by smooth curves.
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_ —(4g%—20q? —1)/8T (24} +1)?
fla) = ettt 1 g (CEAIN),
2 2
(g +4g3— g —1
fan) = e-abad-0it g gy (W10,

where K4 is the Macdonald function. The histograms are obtained by binning
each point in the time evolution of the classical trajectory in the extended phase
space. The small irregularities in the f(g3) and f(p3) distributions vanish at
longer times, as shown in Fig. 4, which corresponds to ¢ = 2000, This coupling
scheme turns out to converge independently of initial conditions almost every-
where {that is, aside from the obvious point p; = ¢; =0 at ¢ = 0). This can be
shown by taking a random sampling of initial conditions.

(45)

Dense phase space portraits are not sufficient to determine whether or not
the equations will provide canonical ensemble averages. As mentioned before,
recurrent trajectories can also produce a (non-ergodic) dense phase space distri-
bution. Consider the 1-d quartic potential at T = 1 in the Nosé-Hoover scheme
with initial condition (go, po, (o) = (1.3,0,0) and a = 1. Evolving these equations
a long time to ¢ = 10* (corresponding to 5 x 10° time steps of dt = 0.02), the
thermal distributions can be checked to have converged. Again, the characteristic
time of the Hamiltonian is t = 1. The projected 2-d phase spaces appear dense,
as shown in Fig. 5. However, the thermal distributions have converged to the
incorrect results (Fig. 6), indicating recurrent rather than ergodic behavior. The
exact thermal distributions in this case are

f) =P/, fq)=e @I gy = CNT, (40)

In the cubic coupling scheme, the phase space portraits (at the same time) look
identical to those in Fig. 5, but the thermal distributions have converged to
the proper result as indicated in Fig. 7. This corresponds to initial condition
(40,20, G0, é0) = {1.3,0,0,0) and & = 8 = 1. The cubic coupling is evident in the
thermal distribution for { which has the form of exp (—¢*/4T) (see Eq. (42)).
Hence one cannot judge the outcome of an application of this method as being
accurate simply on phase space projections alone.
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FIGURE §. Dense phase space projections for a 1-d quartic potential, with initial
conditions (go,po,Co) = (1.3,0,0) in the Nosé-Hoover model with a = T = 1,
after 5 x 10° steps at dt = 0.02.
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dense phase space in Fig. 5.
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FIGURE 7. Converged thermal distributions for the 1-d quartic potential using
the cubic coupling scheme with a =3 =T =1,
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3.4 TEMPERATURE DEPENDENCE

Chaoticity of the equations of motion can depend strongly on the tem-
perature. Although such problems have not been seen in the cubic coupling
scheme, they are easily found in the Nosé-Hoover scheme. As an example, con-
sider the asymmetric potential of (31), with the initial condition (go,po,(s) =
(0.4,—0.34,0.5) and @ = 1. Fig. 8a shows the good agreement obtained at
T = 1. The phase space (g,p) (not displayed) is densely filled and the thermal
distributions are in excellent agreement with the exact result. By changing the
temperature to T = 0.1, the results are completely different, as indicated in Fig.
8b. The phase space still appears dense, whereas the thermal distributions con-
verge to incorrect functions. At even lower temperatures, the agreement becomes
progressively worse. In the cubic coupling scheme, the convergence to the exact
result has been checked down to temperatures of 104, for which there is excel-
lent agreement, as illustrated in Figs. 9. From our simulations, optimum values
for the coupling strengths seem to be & = 1/T and 8 = 1/T3.

3.5 EXAMPLES IN 2-D

The cubic coupling scheme seems to provide ergodic trajectories in a variety
of cases. The results of a simulation with a mexican hat potential in 2-d is shown
in Fig. 10, where '

Vig,g)=q¢ - & (47)

Here g% = ¢? + g2, and the corresponding exact thermal distribution for gi is

Flai) = e~l4al—4al-1)/8T /|2q3 ~1|K, ((2%28; 1)2) _ (i=1,2) (48)

The simulation was carried out at a temperature T' = 0.1, using 5-10° time steps,
dt = 0.01 resulting in a total time ¢ = 5000. The mexican hat structure is clear
form the thermal distributions of ¢; and g¢3, as well as the exponential quadratic
and quartic distributions for ¢ and {. By breaking the rotational symmetry, we
can study the 2-d double well potential

Vig,o)=¢"+¢* - 34}, (49)

illustrated in Fig. 11 (see also Sec. 3.3). As before T = 0.1, d¢t = 0.01 and
t = 5000. The exact thermal distributions are given in Sec. 3.3. At this low
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FIGURE 8. (a) Thermal distributions for a 1-d asymetric potential using initial
conditions (go, po, (o) = (0.4, —0.34,0.5) and & =1 in the Nosé-Hoover model at
T = 1. (b) Same as (a) but with T = 0.1. In both cases a = 1.

. 25




f(p)

f(q)

f(p)

f(q)

1.0

Jp—r

 T=0.1
er
1t :
0. o | ] L
-1.0 —0.5 0.0 0.5

P

3 ,

' T=0.1

FIGURE 9. (a) Thermal distributions for a 1-d asymetric potential in the cubic
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FIGURE 10. Exact thermal distributions (solid) compared to computed distri-
butions (histograms) in a 2-d mexican hat potential at T = 0.1, dt = 0.01 and
¢ = 5000 in the cubic coupling scheme with & = 10 and B = 100.
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temperature, the ratio of the maximum to the minimum of the f (g1) distribution

is approximately 13400 : 1. Due to the classical tunneling probability, there
is a large oscillation time scale for the trajectories between the two wells. On
time scales that are smaller than this oscillation time, the ergodic trajectories
reproduce the functional shape of the isolated potential well. On the longer
time scale the oscillations will gradually reduce, eventually resulting in the exact
result. The figure of f(gq;) was taken when the trajectory had crossed into the
other minimum and filled that side for a short time. In all these cases, the
agreement is excellent.

3.6 ERGODICITY AND CONVERGENCE

Unfortunately there is no well defined procedure to determine whether or
not the equations of motion, with & particular coupling to the thermal bath, are
ergodic or simply recurrent. In order to determine this for the systems studied
in this article, we have resorted to brute force methods. Ergodicity is checked
for a particular model by discretizing the extended phase space and using each
lattice site as an initial condition. The edges of the phase space are chosen by
the condition that the exact thermal distribution along the edge is 104 of its
maximum value. For each initial condition, the equations are evolved and the
deviation of the computed distributions from the exact thermsl distributions
computed. For some extended phase space variable ¢y = ¢;, pi, ¢, £, we define the
deviation at time ¢ as (in percent)

Ay, t) = 100fd¢k | fezact(Pr) — feate(Pry t)| (%), (50)

where feract(¢r) is the exact normalized thermal distribution of ¢, and Fealc 18
the normalized result obtained from the numerical simulation of the trajectory
in the time interval [0,£]. If the equations are ergodic, the deviation should be
independent of initial conditions (almost everywhere).

The deviations A(¢y,t) were computed for 1-d potentials using 300 initial
conditions in the phase space (g,p,(,¢) and evolving the system with T = 1 and
a = =1. In Fig. 12 (left) the deviations for each initial condition for the 1-d
harmonic oscillator are plotted, where the equations were evolved to ¢+ = 500 and
sampled in time steps of d¢ = 0.01. All initial conditions result in convergence to
within roughly seven percent of the exact thermal distributions within this time.
In Fig. 12 (right) the deviations for the 1-d quartic oscillator are plotted. Again
all deviations fall within roughly seven percent of the exact result, mdxca,tmg
ergodic trajectories produced in the cubic coupling scheme.
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FIGURE 11. Exact thermal distributions (solid) compared to computed distri-
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t = 5000 in the cubic coupling scheme with a = 8 = 20.
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FIGURE 12. Normalized frequency distributions of deviations for 300 different
initial conditions for the 1-d harmonic oscillator (left) and the 1-d quartic po-
tential (right) in the cubic coupling scheme. The deviations are the integrated
absolute difference of the exact and computed thermal distribution functions af-
ter following each trajectory to a time ¢ = 500. In choosing these conditions we
took the symmetry of the equations of motion into account.
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The evolution of A(¢y,t) with time is an indication of the convergence time
of the coupling scheme. Since the non-ergodicity of the harmonic oscillator po-
tential has been the focus of attention in several studies, it is useful to compare
its features with the cubic coupling scheme. This also provides the simplest ex-
ample of one of the shortcomings of the Nosé-Hoover equations. Posch et af (5]
have studied this system in depth and concluded, based on positive Lyapunov
exponents and phase space plots, that there are chaotic regions of initial condi-
tions in phase space. However, it is easily checked that the thermal distributions
generated by choosing initial conditions from these chaotic regions do not con-
verge to the canonical ensemble distributions for g, p or ¢. For the 1-d harmonic
oscillator, the equations of motion are explicitly

Cubic Coupling Nosé — Hoover
. 3 [
g=p—§q g=p
) ) 51
p=—-¢-C p=—q—(p (51)
{=a(p’-T) {=a(p’-T)

£ = Be’(4* — 3T)

In the Nosé-Hoover scheme it is not always simple to determine regions of
chaotic initial conditions. Posch et al [5] have found many sets of initial con-
ditions leading to chaotic trajectories. For the initial conditions (g0, P0, (o) =
(0,5,0), a maximum Lyapunov exponent was found to correspond to a = 3,
An additional set of chaotic initiel conditions for the harmonic oscillator is
(g0, Po, o) = (0,1.75,0) and o = 10 [5} . The time evolution of A{ Py, t) has been
computed for these initial conditions, and is shown in Fig. 13. The relative devia-
tions A(p,t), A(g,t) and A((,t) can be seen to converge rapidly to roughly 20%.
The converged thermal distributions for the best fit ((g0,p0,¢0) = (0,1.75,0),
a = 10) are indicated in Fig. 14 at a time ¢ = 10°. In the cubic coupling scheme
the rate of convergence of the deviations is the solid line in Fig. 13. In the same
figure, the dashed line (drawn by hand) corresponds to Ay, t) x 1712 suggests
that ell remaining discrepancies between the computed and exact results have
in this case only a statistical origin (N.B. the number of points is proportional
to the time). In the cubic coupling scheme the deviations converge to the exact
results as is illustrated in Fig. 15, usinga = 8 = 1 and T = 1. Once again
we stress that while the results of Fig. 14 depend strongly on initial conditions,
those of Fig. 15 are independent of initial conditions.
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FIGURE 13. Time evolution of the relative deviations for the 1-d harmonic

oscillator using chaotic initial conditions (go, po, (o) = (0,5,0), a = 3 (crosses),

(g0, Po, o) = (0,1.75,0), @ = 10 (circles) in the Nosé-Hoover scheme, and in the

cubic coupling scheme (solid line) with @ = # = 1. The dashed line corresponds

to A(¢r,t) = const/t!/2, where the constant has been adjusted by eye. '
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FIGURE 14. Converged thermal distributions f(q), f(p) and £(¢) for the Nosé-
Hoover harmonic oscillator with chaotic initial condition (go, po, (o) = (0,1.75,0)
a =10 and T = 1. The final time is ¢ = 10° with dt = 0.01.

?
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FIGURE 15. Converged thermal distributions f(g), f(p), f(¢) and f(£) for the

cubic coupling scheme harmonic oscillator. The final time is ¢ = 5000 with
dt = 0.01.
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3.7 LYAPUNOV EXPONENTS

The maximum Lyapunov exponent measures the maximum divergence of
neighboring trajectories in phase space. Positive exponents indicate exponential
separation, whereas negative exponents indicate stability. In this way the expo-
nents can indicate whether one should expect chaos or not. These exponents,
however, do not guarantee ergodicity when positive, nor do they distinguish be-
tween ergodic or recurrent trajectories. Hoover computed these exponents for
the 1-d harmonic osciliator in the Nosé-Hoover scheme [5] . Following standard
techniques [9] , we consider two initial conditions in phase space separated by a
distance e. This vector is evolved in time with the linearized stability matrix (see
Eqgs. (36)-(37)):

"’f‘(t)e, (52)

The formal solution is the time ordered product

t
e(t) = Texp / dt' —= (t) «(0). (53)
0

Then the maximum exponent is defined as

n—00 T

AT = lim ——Zlogl (i) (54)
i=1 :

The maximum exponent for the 1-d harmonic oscillator potential at T = 1 is
indicated in Fig. 16 for the Nosé-Hoover (crosses) and cubic coupling (circles)
schemes. In the latter we have taken the additional restriction that o = 3. Al-
though both examples of A™** are positive, the smaller exponents (Nosé-Hoover)
correspond to recurrent equations whereas the larger (cubic coupling) to ergodic
equations. It is not completely clear how these exponents can provide relevant in-
formation to the central questions of ergodicity. However, it seems plausible that
the Lyapunov exponent should be on the same scale or larger than the character-
istic inverse time of the system under investigation in order to obtain ergodicity.
On a similar note, Poincaré sections do not seem to offer any assistance in this
respect.

35



0.6 - 099 g0, o _

0.4 o 7

Anmxox)

0.2 ]

P
. 'I-+"'_'_++++++....|.++++++"‘+"+...++*4,*¢-¢-l-+ i

0.07...|....|...‘l..l.
0 5 10 15 20

a

FIGURE 16. Maximum Lyapunov exponent for the Nosé-Hoover 1-d harmonic
oscillator {crosses) using the initial conditions (go, pg, (o) = (0,5,0) as a function

of the parameter a and for the cubic coupling scheme (circles) with o = 3, both
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3.8 MIxine

The degree of distortion or mixing produced by the cubic coupling scheme
can be illustrated by using a circle as an initial condition and examining its time
evolution. In Fig. 17(a-b), a circle of 1000 equally spaced points is evolved for
the harmonic oscillator, in the cubic scheme (with a = 3 = 1) and in the Nosé-
Hoover scheme (o = 3}, respectively. The characteristic period of the harmonic
oscillator is ¢ = 1. The evolved circle is shown at ¢t = 10 and # = 20. In the
case of the cubic scheme, neighboring points can be seen to diverge very fast. As
one might expect, the length of the circle can be numerically verified to increase
roughly as the exponent of the maximum Lyapunov exponent. For a = 8 = 1
(see Fig. 18), this corresponds to

L(t) ~ L(0)e®%,  xmax 3, (55)

where L(t) is the length of the circle at time ¢. In contrast, large sections of
the Nosé-Hoover circle remain smooth at these times indicating regions of stable
evolution.

3.9 CORRELATIONS FUNCTIONS

The correlation functions should not be considered independent from the
character of the coupling to the heat bath, in contrast to what has been done in
the past. The main observation is that ergodicity is determined by the form of
non-linear couplings to the heat bath. Different couplings can result in different
forms of correlations among the coordinates and momenta in the extended phase
space. In Fig. 18, auto-correlations are shown using the cubic coupling scheme
(left) and the coupling F = q, G = gp, hy = ¢ and hy = ¢ (right), both with
a =3 =1T =1. In both cases the thermal distributions have been reproduced.
As one can see from the figure, the correlations are quite different. Even more
significant differences appear between our scheme and the Nosé-Hoover method.
Obviously, these facts can be understood qualitatively relatively easily. Both
the form and the strength of the coupling to the thermal bath can vary widely
from one case to another and the corresponding auto-correlation functions have
no reason to be the same. This has to be looked upon as an advantage of the
formalism as one can model different physical situations.
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tential in one dimension using the cubic coupling scheme (left) and the scheme
F=¢q,G=gp,h1=C¢and hy =¢ (right) witha=8=T=1,
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4. CONCLUSIONS

It is obviously very important to have available methods for computing ther-
mal properties for a wide variety of physical systems, which are both reliable
and comparatively fast. In almost any area of physics, ranging from molecular
dynamics up to lattice gauge theories, different computational schemes have been
put forward and extensively used. Among the late newcomers are the methods
originating in molecular dynamics calculations, which have found their way into
many applications. The method proposed several years ago by Nosé and later on
simplified by Hoover was especially successful. This method proved to be easy to
implement. However, the studies performed on relatively simple systems pointed
to several limitations of such an approach. Especially hard to describe was the
case of the harmonic oscillator, which failed to reveal an ergodic behaviour after
being coupled to the “thermal bath”. The chaotic character of the trajectories
generated in this wey is an essential element of this approach, since only in this
case one can reproduce a thermal distribution by following the trajectory of the
envisaged system in time. Also, for relatively small temperatures, when the sys-
tem is only slightly excited and spends most of the time around the minimum of
the potential well, practically every physical system can be approximated rather
well with an ensemble of oscillators. Consequently, the correct description of
the harmonic oscillator, besides the methodological interest, has a very straight-
forward practical reason. Moreover, the possibility to produce other types of
algorithms was not evident. Besides, the pure theoretical interest, “Are there
other types of computational schemes possible?”, the more pragmatical question,
“Can one produce more efficient algorithms?” was not answered before. On
the contrary, it was long believed that such types of approaches are to a certain
extent unique.

In the present paper we show how one can easily produce in principle an
infinite sequence of similar algorithms. Both the character and complexity of the
“coupling” to a thermal bath cen be modeled in a wide variety of ways. This
situation is obviously very fortunate, since in principle it allows the modeling of
any physical situation. We did not try to study or classify all possible compu-
“tational schemes. We do not know if this is really possible at the moment. We
have rather concentrated on a “simpler” generalization of the known methods
and “cured” several of their deficiencies, at least those apparent in the analy-
sis of relatively simple systems. We show that the introduction of at least two
pseudo-friction coefficients into the Hamiltonian equations of motions is enough
to drive the envisaged systems into ergodic motion. This was possible even for
the hard to deal with case of the harmonic oscillator. Besides this advantage, the
couplings we have studied, proved to be more efficient as well. The rate of their
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convergence is higher than that of the methods used previously.

Instead of calculating a few averages, we have compared the generated distri-
butions with the theoretical ones. The agreement we have obtained seems to be
limited by the fact that the number of generated phase space points was not in-
finite but finite. We also showed that chaotic behaviour iu the trajectories is not
a sufficient condition for the applicability of such methods, since chaoticity does
not generally imply ergodicity, which it is what is necessary in such cases. The
computational scheme we propose does not only produce a chaotic behaviour,
but it possesses at the same time a high degree of mixing. Points in phase space
which initially are very close diverge very quickly when evolved using the meth-
ods proposed here. In more mathematical terms this can be characterized by
larger positive Lyapunov exponents than in previous approaches. The fact that
a system has positive Lyapunov exponents does not mean that the systemn will
generelly have an ergodic behaviour. From our numerical investigations, it is
plausible that the inverse of the maximum Lyapunov exponent has to be of the
same order as the characteristic intrinsic time of the system in order to have an
ergodic behaviour.

Even though we restricted our presentation to a relatively small sample of
examples, we have studied a relatively large variety of situations. It is possible to
introduce more than one or two pseudo-frictions coefficients into the equations
of motion and in this way to mock the coupling with a thermal bath, which
theoretically is characterized by an infinite number of degrees of freedom. This
approach generates a simple numerical algorithm, which can be implemented
easily and is at the same time stable and numerically efficient.

It is interesting to note that the Hamiltonian structure of the equations of
motion is destroyed and in the extended system the symplectic structure of the
phase space is lost. It seems that this is a general feature of this type of ap-
proaches, which we found necessary to implement in other situations [6,7] , e.g.
when the phase space is compact and previous approaches are inapplicable. In -
such a case the phase space volume is not conserved anymore. However, the
Hamiltonian structure of the equations of motion is preserved on average. The
additional terms appearing in the extended equations of motion average to zero
and the phase space volume is conserved on average.

Support for this research was provided by the National Science Foundation
under Grant Nos, 87-14432, 89-06670 and 89-06116.
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