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ABSTRACT

An alternative to Langevin description of Brownian motion is presented. The
equations of motion are deterministic and time-reversal invariant. The friction
and random forces appearing in the Langevin equation are replaced by pseudo-
friction terms, which emulate the energy and momentum exchange between the

Brownian particle and the medium.



The starting point in the study of Brownian motion is almost always the

celebrated Langevin equation

o(t) = —you(t) + F(¢), (1)

where v(t) is the velocity of the Brownian particle, ¥ > 0 the friction coefficient
and f(t} is an ideal random force. This random force is described by a stationary

Gaussian process
(F()) =0, (f()f(£)) = €8(¢ —1"), (2)

where the brackets stand for an ensemble average. The friction coefficient and the
magunitude of the correlations of the random forces satisfy the Einstein relation

(or fluctuation-dissipation theorem)

£ = 2T, (3)

where T is the temperature (in energetic units). From the above relations, one
can derive the Fokker-Plank equation (or vice-versa), which describes statistically
the diffusion process. Langevin description is purely phenomenological. The
form of the terms on the right hand side of Eq. (1) are by no means unique.
For example, friction at relatively high velocities depends on .higher powers of
the velocity and one can assume that the random force can have properties other
than that of a simple stationary Gaussian process. However, the spirit of economy
of thought and simplicity makes the Langevin equa;tion one of the most beloved
objects of theoretical study. To a certain extent, the fact that one needs two

different types of forces in order to describe Brownian motion is unsatisfactory.
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The random force describes the resultant force arising from the collision between
the Brownian particle and the surrounding molecules. One might think that such
a term would be sufficient, since it can lead to both acceleration and deceleration
of the Brownian particle, and the introduction of the additional friction term
would serve at least part of the same purpose as the random force. But with
only one of these terms, one cannot obtain s satisfactory description of Brownian

motion.

The irreversible character of the Langevin description is due to the presence
of both dissipative and random forces. On the other side, the “true” equations
of motion for the Brownian particle and the medium are time-reversible. In the
literature one can find an almost equal number of arguments in favor and against
such a description, however we shall not rally ourselves with one or the other of
the contending factions. Instead we shall introduce an alternative phenomenolog-
ical approach to Brownian motion, which is both deterministic and time-reversal
invariant. At least from the very narrow point of view of an individual who wants
to produce a real numerical simulation of e diffusion process, the present approach
seems to have definite practical advantages; it is far more stable numerically and
the equations of motion can be integrated with higher precision and likely faster.
I one intends to apply the present approach to different physical phenomene, the
assumption that the motion is overdamped could be dropped. Further, there is
much more freedom in choosing the form of coupling between the Brownian par-
ticle and the medium. The assumption that the mofion is overdamped physically
corresponds to restricting the description to time scales which are significantly

larger than the characteristic collision times. There are many situations however,
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where one would like to have a phenomenological approach valid at time intervals

comparable with the collision times (e.g. heavy-ion reactions in nuclear physics).

We will follow the ideology of the molecular dynamics simulations [i-4] , which
we briefly review. For a classicel system, described by the canonical variables
(q1,-+y NP1, .-, PN) 8nd a Hamiltonian H(g,p) in contact with s thermal bath

at a temperature T, we are interested in computing the ensemble average of an

arbitrary observable 4(q,p) = A(q1,..-,¢N,P1, -, PN)

(4) = % f dgdpA(g,p)exp (—%) : (4)

Here Z is a normalization constant and [ dgdp stands for the integration over
the entire phase space. This formula is strictly valid if one can neglect the terms
responsible for the interaction between the system and the thermal bath in the
total Hamiltonian. In order to develop a feasible computational method for
such averages, one can introduce an extended classical space, described by the
variables (g1, ...,gN, P1, -, PN, §,{), and & distribution function f(q,p,€,¢,t) and

require that this distribution satisfies the following generalized Liouville equation

af + Z [a(f‘h a(fp:) 3(f£) a(f()

=0, b
96 T on o (8)

where the dot represents the partial time derivative. We shall assume that the
time evolution of the canonical variables (g,p) are governed by the following

equations of motion

g = ?%qgjl - hz({)ﬂ(q,jﬂ), pi = —Q'H':é('i"“g')' - hl(C)Gi(%P)r (6)

where Fi(g,p) and Gi(q,p) are some yet undetermined functions. Imposing the
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constraint that 8¢/9¢ = 8€/8¢ = 0 and requiring that the canonical distribution

f(g,p,€,() = exp (—— [H(q,p) 428, ((f)]) , (7)

is a stationary solution of Eq.(5) one can show that the time dependence of the

pseudo-friction coefficients ¢ and £ is governed by [1-4]

=a|—G; - T
i Ip;

| ‘o [8H BG;] "

=0 {50750

Here a and § are arbitrary constants (sum over repeated indices implied) and

the constraint imposed above implies that [4]

ha(¢) = dyl(C) ha(€) = dg;éc‘). (9)

The number of pseudo-friction coeflicients one can consider is arbitrary. It can

be shown that Eqgs. (6) and (8) conserve the pseudo-energy

¢
€=H(gp)+ 9—‘-;25-)- + Qg—) +T b[ dt [?9_(;:"'1(0 + ‘;ﬁ;‘hz(s) - (10)

In the case when the equations of motion (6) and (8) describe ergodic motion,
one can replace the ensemble average (4) by a much simpler to compute time

average
) =7 [ @A), (¢ o) (11)

The net result of this exercise is a very simple method for modeling the coupling

of a classical system to a thermal bath, which is mocked by some pseudo-friction
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coefficients. The emerging equations of motion are both deterministic and even
time-reversible (the time-reversible properties of the pseudo-friction coefficients,
which purportedly describe the thermostat, depend on the explicit form of the
couplings) and at the same time the trajectories are ergodic [4]. Both the time
and ensemble average of the friction terms in Eqgs. (6) are vanishing (as one
would expect on physical grounds). The pseudo-friction terms induce fluctuations
around the mean trajectory in such a way as to imitate the (supposedly weak)

coupling to the thermostat at the given temperature.

One might hope to describe pure Brownian motion as well, using this kind of
approach, if H(g,p) = p?/2m. However, as one will readily observe, neither the
original proposed scheme [1,2] (which relied on only one pseudo-friction coefhi-
cient), nor our improved method [3,4] (which included at least two pseudo-friction
coeflicients {,£), is able to produce an ergodic trajectory for the case of a free
perticle in contact with a thermal bath, i.e. the case of a Brownian particle
in particular. In our opinion, the case of a Brownian particle should receive a
satisfactory solution in the framework of molecular dynamics simulations, if one
is going to compute transport/nonequilibrinm properties. We have found that
a relatively minor modification of the above described scheme can lead to such
a result. We shall describe a Brownian particle {for the sake of simplicity in
one-dimension only, higher dimensions can be treated in a similar way) by the

following set of equations (unit mass m = 1)

d =D (12)
p=—al’p — fE(p* — a) — vep?, (13)
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C. = P2 -T, : (140')
¢ = p(p® - a) — 2T, (14b)

é = p* — 3Tp?, (14¢)

where, as before I' is the absolute temperature in energetic units and a,a,8,v
are some arbitrary constants, to be specified later. These equations display a

time-reversal invariance if the phase space coordinates change as

2,p,¢,€,e = ¢,—p,—(, ¢, (15)

whent — —i.

The physical meaning of Eq. (12) is obvious, whereas Egs. (13)-(14) deserve
some discussion. Since we are dealing with a free particle in a medium, there is
no conservative force. The influence of the medium is described in the present
case by three pseudo-friction terms. The reason why we introduce three such
terms, and not one or two as before, is simple: for one or two pseudo-friction
terms we were not able to produce an ergodic trajectory. We suspect that a
(relatively simple)} counterexample to this assertion is probably hard to find. For
the person who closely followed our derivation of the Eqs. (5)-(10) it will be
obvious that Eqs. (13)-(14) will generate the following stationary distribution

for the momentum and the pseudo-friction coefficients (ergodicity implied)

2 4 2 2
f(p, (€ ¢) = exp (—;’—T - zf_T _'ng — ;—T) : (16)

Consequently, the distribution for the momentum is exactly the one expected.

The distribution for the pseudo-friction coefficients and the particular types of
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coupling used by us in Eq. (13) are rather arbitrary, as was the case with Eqs. (5)-
(10}, and were generated (by our educated guess) in such a manner as to produce
ergodic trajectories and obtain thermalization. One can introduce a distribution

function f(g,p,(,§,¢,t), which satisfies the generalized Liouville equation

af  &(fd) , 8(fp) , A(FE) , B(FE) | B(fE)
ot g TTop TToE "o T o

=0, (17)

and show that a pseudo-energy similar to the one introduced in relation (10)
can be defined and is conserved. Since the distribution (16) is stationary, the
coordinate distribution alone satisfies, in a certain sense, a much simpler equation

(if the phase space variable g,p,(,¢,¢ are statistically independent)

9f(q,t) + 3f(‘1:t)p(t) =0,

ot ¢ (18)

where the time evolution of the momentum is determined by Eqs. {13)-(14). This
reduced form of the Liouville equation implies an ensemble average of f(q,t) over
momentum distribution. (We hope that our use of the same notation for total

and different partial distribution functions is not confusing the reader.)

In Fig. 1 the distributions for p,(,£,e obtained by evolving in time Eqs.
(13)-(14) are shown. The fact that these equations can accurately describe the
thermalization process is evident. The characteristic time evolution of a tra-
jectory, q(¢), p(t), ¢(¢), &(t), (t), as well as the time evolution of the three
pseudo-friction terms present in Eq. (13) are shoﬁn in Fig. 2. As one can see,
the trajectory is rather irregular. Namely, due to this feature of the motion (er-

godicity), the system is able to explore the whole phase space and eventually to
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reproduce the canonical distribution. In Fig. 3 we present the coordinate distri-
butions obtained by evolving in time Eqs. ( 12)-(14) with ¢(0) = 0 and a set of 10*
random initial conditions (10° for small times} for p, ¢, £ and ¢, generated accord-
ing to the thermal distribution (16). Even though we have chosen not to show
the distributions for these variables at different times, we would like to mention
that they are time-independent (within inherent statistical errors, arising from
finite number of points per bin). The reason why we show ensemble averages
for the coordinate distribution is because this distribution is not stationary (as
it was the case of canonical di.stributions mentioned earlier) and the expected
diffusion is going to manifest itself in a predictable way only at the statistical
level. For relatively small times, the spatial distribution is well reproduced by
a Gaussian shape, but with a “wrong” time dependence. The mean spreading
velocity is proportional to time. The explanation is trivial. For small times the
momenta practically do not change and the space distribution is simply linked
to the momentum distribution (since for each particular momentum q(t) o~ p(O)t’
for sufficiently small £). For intermediate times the spatial distribution no longer
has a Gaussien shape. These times should be associated with collision times, i.e.
the time it takes to change significantly the momentum of the Brownian particle.
For times much longer than the collision times however, the spatial distribution
acquires an expected Gaussian shape again and the explanation is quite simplé.
For any given trajectory, the particle suffered a significant number of “collisions”
and the corresponding momentum is practically thermalized. At this stage the
mean spreading velocity reached the asymptotic behaviour ~ +/. The actual

value of the diffusion coefficient is determined by the particular type of coupling
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with the thermal bath chosen and especially its strength. For such time scales
one can substitute the exact equation (18) with an approximate Fokker-Plank

equation, after a suitable ensemble average over p,(,¢ and ¢ is performed.
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FIGURE CAPTIONS

Exact thermal distributions (solid) compared to computed distributions
{histogram) obtained by integrating Eqs. (13)-(14) up to time ¢ = 7500 and
sampling the trajectory every At = 0.025. The values T = 1, a = 2.713,

and @ = # = v = 1 were used in all numerical results presented in this
paper.

Characteristic time evolution: (a) p(t) (solid) and q(t) (dashed, multiplied
by 5), (b) {(t) (solid) and its corresponding pseudo-friction force in Eq. (13)
—¢3(t)p(t) (dashed, multiplied by 0.333), (c) &(¢) (solid) and —&(¢)(p?(¢) —
a) (dashed, multiplied by 0.3), (d) () (solid) and —e(t)p*(t) (dashed,
multiplied by 0.2).

Spatial (unnormalized) distributions f(g,t), obtained by integrating Eqs.
(12)-(14) with random initial conditions for the momentum and pseudo-
friction coeflicients, generated according to relation (16) and ¢(0) = 0.
There are 10° initial conditions for ¢ = 0.1 and ¢ = 1, and 10? for ¢ = 4 and

t = 20.

The time dependence of the inverse of the width of the Gaussian distribu-

© tion f(g,t) = \/T(t)/m exp(—T'(t)g?), obtained by fitting the spatial distri-

bution at different times.
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