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Abstract, Quasi-elastic proton scattering at 290, 400 and 500 MeV bombarding energy is
calculated with two simplifed models, the surface response model and the Thomas-Fermi model,
and compared with data. Both models describe the data quite well, even though the physicel
assumptions are somewhat different. The agreement is in fact rather better than previously

reported.



1. Introduction

Recently two simplified models of the nuclear response have been put forward, the surface
response model of Esbensen and Bertsch [1] and the semiclassical model of Schuck et al.[2].
These models are based on rather different assumptions, and in this paper we wish to compare
their predictions. Both models are approximations to the quantal mean field theory (RPA),
but they lack the shell structures characteristic of finite potential fields. However, no sheil
effects are visible in the empirical nuclear response beyond about 20 MeV excitation. Thus

these models are attractive since they have no more detail than the data.

In this paper we also examine the comparison with the inelastic scattering data of ref. [3]
and [4]. The models have been applied to the data before, but because of flaws in previous
comparisons the quantitative validity of the models was not properly assessed. In the case of the
Thomas-Fermi model, the normalization was incorrect in ref. [2] due to an error in transforming
from center-of-mass to faboratory system. The application of the surface response model in

ref. [3,4] omitted the residual interaction, which plays a significant role,

The main features of the models are as follows. The surface response modei ignores spherical
geometry, but treats the non-locality of the response in detail. The Thomas-Fermi approxima-
tion ignores the non-locality of the response and quantum effects associated with thé surface,
It has been shown, however, in ref. [5] that the neglect of these features introduces only small
errors.  On the other hand, also the neglect of sphericity in the surface response model is
of minor importance. Thus it is not astonishing that both models give quite similar results,
the differences may be mostly due to the use of different effective forces. The Thomas-Fermi
model is numerically simpler than the surface response model. Qualitatively, both models have
an enhanced isoscalar response in the surface region. This is due to two effects: a strong
attraction of the residual force at low densities and the transiational degeneracy of the surface

position (Goldstone mode).

2. Thomas-Fermi approach.



The Thomas-Fermi approximation to the nuclear response has been extensively described in a
recent review article and we refer the reader to that for more details of the formalism [2]. This

model was first used in ref. [6]; it is also discussed in ref. [1].

The differential cross section is expressed in terms of a Thomas-Fermi response functign

ITF-BPA(R g,w) depending on coordiante R, momentum transfer q, and energy transfer

w as follows.
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Here (do/dw) is the free elastic scattering. For this expression, we used the parameterization
of [7] which is based on an analysis of experimental phase shifts. The index i runs over all spin

and isospin channels. Explicitly, S and T can take the values of 0 and 1.

The optical cut-off factor C(R) is derived from the eikonal approximation to the DWBA

{
wave functions for the incoming and outgoing protons, using a classical approximation for the

imaginary part of the optical potential [8]. it reads

C(R) = % j: dz emp(—-a' f°° dz p(+/R?(1 — 2?) + zz)) . (2)

— o0
For o we use here the free nucleon-nucleon cross section of 30 mb.

The polarization operator, II7 7 P4

, is calculated in Thomas-Fermi approximation and in-
cludes the residual interactions at the level of the Random Phase Approximation (RPA). The

detailed expression is given by

H‘.:PF—RPA(R g w) — _ HOTF(R’q’w) .
¢ v 1 — v} (R, q,w)I'TF (R, q,w)
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with

8(kr(R) — p)0(lp + ¢ -~ kr(R))

HOTF R, =4
(Bog,0) (2m)3 ( w = Hptq + Hy +in

_ 8 — kr(R))0(kr(R) — |p+ ql))

. 4
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where H, = H(R,p) = p*/2m+V (R, p) is the Wigner transform of the non-local Hartree-Fock
Hamiltonian. In practice, the mean-field V(R,p) is calculated self-consistently from the Gogny

interaction [9], $o no effective mass approximation is introduced. The local Fermi momentum

is kp(R) = (672 p(R))1/3.

pometimes expressions similar to €q.(3,4) are evaluated with a shift added to w to account for
binding effects. This is incorrect, since eq. (3.4) are the strict & — 0 limits of the corresponding

quantal expression [2].

Let us explain in more detail the fully antisymmetrized effective interaction, v’ 77(g), of equatior,

(3). The direct and exchange contributions are of the same order of magnitude and it is very
important to treat both on the same footing. For finite range forces, to be considered here,
the inclusion of exchange leads to a genuine integral equation for the polarization operator,
even in infinite matter. There is therefore no analytical solution, even in the local density
approximation. For nuclear matter, on the other hand, the polarization propagator can always

formally be written as [11]

e

HUn.m.(kF,q,w) (5)
1-— m(kF: 97W)H0n'm'(kf'a ':'bw)

"™ (kr, q,w) =

Now all the difficulties are contained in the unknown function m(kr,q,w). In the ring approx-
imation it reduces to the direct part vi(g) of the residual interaction. In this approximation,

eq. (5) is the exact solution of the RPA equation for infinite matter. Calculating m(kr, ¢,w)

to first order in the interaction



m(l)(kFast) = Uef.f(kF? %w) (6)
leads to our expression (3). This corresponds to the lowest order continued fraction approxima-
tion of the polarization propagator including exchange. Introducing this expression in eq. (5)
and replacing kr by kp(R) gives us the response function, where the exchange contribution

of the residual interaction is approximately taken into account. More details are given in ref.

[12].

Explicitly, we use for the residual interaction phenomenological nuclear forces, which agree
quite well with Brueckner G-Matrix calculations up to momentum transfers of the order of
the Fermi momentum. For the spin independent channels, we take Gogny's interaction which
has already succesfully been employed in our previous nuclear response calculations [10,11].
It is well-known that this force reproduces quite accurately a number of nuclear quantities in

addition to ground state properties.

For the spin-isospin channel, we use the Nakayama interaction which is based on detailed G-
Matrix calculations [13]. The § = 1,T = 0 force is poorly known, but it is expected to be
small. Furthermore the relative contribution in (p,p’) scattering is also small. For these reasons

we simply approximate this response by the mean-field response, i. ¢. vs—3,17=0 = 0.

One last remark is in order here: it is weli-known that the RPA response can become unstable
at low densities and low energy and momentum transfers, i. ¢. it can develop an imaginary
root. A numerical check showed, however, that this problem occurs only at very low densitieé.
which means at large values of R. Here the free response function II°TF in the numerator i.of
| _

equation (3) becomes very small. In addition, we have to integrate over all values of R, and

so the error due to this instability is never larger than some few per cent.
3. Surface Response Calculation.

The surface response of semi-infinite nuclear matter is described in detail in ref. [1]. Application
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to inelastic scattering with the eikonel approximation for the projectile wave function follows
the treatment of ref. [14]. A survey of quasi-elestic (p.p") scattering over the energy range
300 — 800 MeV was made in ref. [15]. The energy and tatget dependences of the quasi- elastsc

peak are quite accurately described by the model for momentum tranfers > 250 MeV/c.

The basic formula for the differential inelastic scattering cross section is

d N, d
oqp = oL Z( ")WE Si(g,w), (7)

norm

where S; is a strength function for the surface response. The finite nuclear geometry affects the
cross section mainly through the prefactor, N.s¢/Snorm. The strength function is calculated

from the RPA polarization operator as

—— 2“ . ‘ ']
Si(q,w) = ?1/ dé fdzdz'F(z)F"(z')e"’°°'9(z_" )HfR_RPA(z,z',qainB,w), (8)
0

where gcosf is the momentum transfer perpendicular to the surface and ¢sind is parallel to

the surface.

The RPA polarization operator is related to the free one by an equation similar to eq. (3). The

latter is given by

HOSR(Z,Z',QZ,W) =

S bo()a(a)e2 (e Nt t T ()

p € —W—IN € - € +w-in
nh

The ¢,,1 are particle and hole wave functions for seminfinite nuclear matter with the surface

at z = 0. The summation is restricted to states in which the difference in the component

:
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of momentum parallel to the surface is given by g;. The single particle wave functions are
eigenstates of a Woods-Saxon potential, with depth 45 MeV and thickness parameter 0.75
fm. The Fermi energy is taken as 38 MeV, so the separation energy is 7 MeV. The residual

interaction is taken to have the separable form, as described in ref. [1].

The projectile form factor is determined from the eikonal x by the equation

F(z) = V2r(R+ x()eap(—x() /o7 (10)

where po(z) is the nuclear density. For further details see ref. [14]. Besides the nonlocality, eq.
(8) includes the diffractive effects of the projectile absorption on the target. This is essentially

controlled by the rate of change of the profile function, ezp(—x/(z)).

The overall normalization of the cross section is controlled by two factors, Ness and Syorm.
These factors are defined to give the cross section and response in the limit where the target

nucleons scatter completely independently. For the single nucleon scattering cross section we

have

N.ss = fdzbgemp(—x) (11)

The cross section in this formula should be the effective nucleon-nucleon cross section that

Eroduces inelastic_scattering. We use a cross section of 25 mb at 290 MeV, 27 mb at 400

MeV, and 30 mb at 500 MeV. These are slightly below the free NN cross section, for reasons
discussed in ref. [15]. For the case studied below, proton scattering on a 2°*Pb target, N, ;¢

has the value 16.2, 14.6, and 12.6, respectively. The response is normalized with

Snorm :/dzpﬂ(z)Fz(z) | (12)

which is the total energy-integrated response one would obtain by neglecting the Pauli blocking
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_and the effect of RPA correlations.

o

4. Comparison of Models and Data

Let us come now to the applications of the theoretical formalisms and to the comparison of
models and experimental data. As already mentioned above, the main differences between the

two models will reflect the use of different residual interactions.

In ref. [3,4] data are given for 28Pb(p,p’) at energies ranging from 290 to 500 MeV. Compar-
isons to the data at 290 MeV are are shown in Fig. 1. At moderate momentum transfers, q
between 100 — 200 MeV/c, both models describe the data rather well, both in magnitude and
shape. Compared to the independent particle model, the inelastic cross section is enhanced at

low excitation energies and this is reproduced by the RPA treatment.

At the highest momentum transfer, q ~ 400 MeV /c, both models, but particularly the Thomas-
Fermi model, predict more concentration of strength in the quasi-elastic peak than the data

shows.

At the lowest momentum transfer, q ~ 80 MeV/c, both models underpredict the data. The
energy integrated cross section is roughly 2/3 of the measured cross section for the surface
response model, and 1/2 of the cross section for the Thomas-Fermi model. The shape of the
energy distribution is roughly correct for the surface response model but it is too skewed to
low energies for the Thomas-Fermi model. One must, however, remember that at such sm:li

momentum transfers the Thomas-Fermi model is on its edge of validity [2]. Both models miss

the low-lying states and the giant resonances, as expected, since they are finite size effects.

Comparisons to the data at 400 MeV are shown in Fig. 2. At the lowest momentum transfer, q
:u 100 MeV/c, both models underpredict data somewhat. The shapes look reasonable except,
of course, for the giant resonances. At higher momentum transfers the Thomas-Fermi model
gives too large a cross section while the surface response model is too low. Again the shape

looks quite reasonable.



The analysis of the 500 MeV case in Fig. 5 shows that both models do quite welf at the lowest
momentum transfer at 6, = 5 °. Going to higher momentum transfers both models overpredict
the data with the Thomas Fermi results the poorer of the two. The highest momentum transfer
at 01 = 25 ° deserves some comment. We know from experience that the free surface response
élves the quasi-elastic peak position quite accurately at larger momentum transfers[15]. This
is also clearly confirmed by the 290 MeV data (see Fig. 4 of Ref. [4]). In the present case
(25 ° at 500 MeV) the theoretical and experimental peak positions are off by more than 30
percent. This could indicate some difficulties with the experimental data. On the other hand
the residual interaction used in the Thomas Fermi model does not seem to fall off fast enough

as the momentum transfer increases, causing the strong peak in the §; = 25 ° results.
5. Conclusions

In this paper, we confronted the surface response model, the Thomas—Fermi model and tﬁe
;data for quasi-elastic (p,p’) scattering on lead. Both models describe the data within a fact_;r
of two or better in the momentum range 100 — 400 MeV/c and outside the spectroscop!ic
gomain. In the region of low lying collective states, however, the models describe the situation

roughly on the average. On the other hand, there may be some experimental difficulties in the

500 MeV data at the largest measured scattering angle.

At the lowest momentum transfers considered here (100 MeV/c), the surface response mode!
is somewhat superior, both absolute magnitude and in shape. This is to be expected since the
Thomas-Fermi model is more reliable at the higher g values. Otherwise, both models agree
quite well inspite of their somewhat different ingredients. Indeed, whereas the surface response
model uses a separable force of the Bohr-Mottelson type, the Thomas- Fermi model uses the
finite range Gogny force with anti- symmetrization effects included. This is possible in the

Thomas-Fermi model, because it is numerically less involved. .

i
The underprediction of the cross section at the smallest momentum transfers and lowest pro-

jectlle energy may be a result of wave distortion effects from the central potential, which ars

neglected. it might also be due in part to the contribution of two-step reactions, which become
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important at low beam energy and high excitation energy [15].

The fact that the quasi-elastic peak at high momentum transfers is broader than predicted may
show an intrinsic limitation of RPA. Other interactions not included in RPA are expected to

broaden the peaks.
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Figure captions:

Figure 1: The differential cross section of quasi-elastic proton scattering on Pb at 290 MeV
and different scattering angles. The experimental data are taken from ref. [3,4]. The heavy
solid line corresponds to the Thomas Fermi model calculation, the dashed line to the surface

response model resuits and the thin solid line gives the free response result.
Figure 2: Same as fig. 1 but for the energy of 400 MeV.

Figure 3: Same as fig. 1 but for the energy of 500 MeV,
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