MICHIGAN STATE UNIVERSITY
CYCLOTRON LABORATORY

MODELS FOR NUCLEAR MATRIX ELEMENTS IN
DOUBLE BETA DECAY
Invited talk given by Alex Brown at the Third International
Spring Seminar on Nuclear Physics: Understanding the Variety

of Nuclear Excitations, Ischia, May 21-25, 1990

B. ALEX BROWN and LIANG ZHAO

. "ir‘"‘ e
JULY 1990

MSUCL-735



MSUCL~=735
July, 1990

Models for Nuclear Matrix Elements in Double Beta Decay

B. Alex Brown and Liang Zhao
Cyclotron Laboratory and Department of Physics and Astronomy
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The two-neutrino double-bets (2vA8} decay matrix eement of ##Ca has
been sudied in a large-bass shell-modd space which explicitly includes ap-
proximately 5000 intermediaie 1+ st ates. The theoretica and experimental
A~ and @* spectra and ther relation to 2»88 are discussed. A new empiri-
cd shel-modd interaction based on a modified-surface one-boson exchange
potentia is found to give excellent agreement to the observed 8- and g+
gpectra with an effective Gamow-Tdller operator which is reduced by a fac-
torof 0. 77 fromitsfree-nucleon vaue. However, the predicted T, ;, value of

1.9x10'® yr differs by a factor of two from the present experimenta upper
limit of T,/ >3.6x10* yr. We have dso invedtigated to what extent the
large-basis results for Gamow-Teller 8 decay in the fp shell can be repro-
duced by the QRPA.

1. Introduction

The nuclear shell modd has been extensvely developed over the past 40 years
L3 In many current gpplications, for dl, or a large subset of the nearly degenerate
vaence configurations, the Hamiltonian can be diagonalized exactly. The spherica
shel-modd meen fidd is used as a bass for evduating the matrix dements of the
resdual two-body interaction between the vaence particles. The wave functions
resulting from such caculaions can be used to evduae various quantities of exper-
imental interes. These quantities range from the energies and J* vdues which result
directly from the Hamiltonian to those which involve expectation values of a few nu-
cleon cregtion and annihilation operators. The shdl-modd wave functions provide a
generd and complete way of reaing a wide vaiety of nuclear data The use of wave
functions which have been successfully tested againgt conventionad observables is im-
portant for astrophysica applications and the andyds of fundamentd interactions
in nucle such as those involved in isospin  nonconsarvation, parity nonconservation
and double-beta decay.

In this paper we will discuss recent calculations for the double-beta decay of
8Ca in the context of an improved interaction and model space for this region. After
a few generd remarks in this section, we discuss the large-basis cdculations for 4#Ca
in section 2. In section 3 we discuss some comparisons between large-basis shell-
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model results for Gamow-Teller beta decay and those obtained within the QRPA
approximation.

' For light nuclei (A<50), one is now able to exactly incorporate most of the
configurations within the valence oscillator shells. For these cases the improvements
in the wave functions are due to the increase in the number of basis states which can
be considered and in the development of better effective Hamiltonians. I will discuss
results from these type of calculations. For heavy nuclei, the basis truncation is the
main problem and there are many competing models. Intermediate mass nuclei such
as those in the A=50-80 region provide a place to compare the more exact approach
used for light nuclei with the approximations used in heavier nuclei.

The computational aspects have been improved by the introduction of more
powerful and more general computer codes  as well as by the increase in the speed
and disk storage capacity of computers. About 15 years ago the full 1s0d-shell ma-
trix for ?*Si which has a dimension of about 6,700 in the J-scheme and 94,000 in the
M-scheme was considered “state-of-the-art.” Within the last few years one can find
in the literature calculations which are almost an order of magnitude larger, e.g.
about 62,000 in the J-scheme 4, ard 320,000 in the M-scheme ®. With the contin-
ued improvement in codes and computers these dimensions will certainly increase
further. Overall, however, most of the advance is made possible by the subsequent
ability to carry out faster calculations for the smaller dimensions.

Effective interactions continue to be improved. Wildenthal’s USD two-body
matrix elements for the 1s0d-shell are perhaps the best cxample of what can be
achieved ®. Analysis of these matrix elements shows 7 that they are qualitatively
(about 80%) what is expected from the microscopic G-matrix approach starting
from nucleon-nucleon scattering data. However, fine tuning the remaining 20% is
essential to obtain good wave functions for all 1s0d-shell nuclei. The reason for this
20% adjustment is not clear, but there are probably many contributing factors. At
the level of the G matrix calculation one should make an interpolation of the G
matrix elements between %0 and *°Ca. Also one should use radial wave functions
which are more realistic than the harmonic oscillator. (This last point opens up the
possibility that one should be using single-particle and two-body matrix elements
which are much more mass and state dependent than the smooth dependence usually
assumed.) In addition, there may be problems beyond the G-matrix level related to
modifications of the nucleon properties in the nuclear medium.

Phenomenologically, the eflective interaction appears to be well modeled by
the effective two-body matrix element form as used by Wildenthal, or the density-
dependent potential form used in Hartree-Fock ® and shell-model 7 applications.
The parameters in these forms should be physicaily reasonable, and the number of
free parameters must be carefully chosen. If the number of parameters is too small,
the known data may not be well described. If the number of parameters is too large,
the extrapolation is more likely to be incorrect. My current favorite compromise
is the “modified surface one-boson exchange potential” (MSOBEP). For the 1s0d-
shell, matrix elements obtained from this potential are very similar to Wildenthal’s
USD matrix elements but has only 17 parameters 7 (compared to Wildenthal’s 47).
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The **Ca double-beta decay calculations are based on a successful application of the
MSOBEP to the 1p0f shell ?.

2. Large-Basis Shell-Model Calculation for 2v43

The study of double-beta decay in nuclei is an area where nuclear physics can
add to the understanding of fundamental particles and interactions. Standard two-
neutrino double-beta (2v343) decay is a process which should proceed as expected
from the second-order weak interaction process. The first laboratory observation of
2vf3P has recently been reported !°. Nonstandard zero-neutrino double-beta (0v30)
decay is allowed only if the neutrino has a mass; it also depends on the form of
the weak interaction currents !!2, As of now there are only experimental limits on
0v30 decay.

It turns out that the nuclear matrix elements for 53 are very hindered relative
to the single-particle estimates and are thus sensitive to nuclear structure consider-
ations. In fact most of the nuclei of interest are in the A=76-100 mass range ‘ere
the type of large-scale shell-model calculations I have been discussing are very dif-
ficult. The most reliable results to date for these nuclei are thought to be obtained
from QRPA calculations %1435, When these QRPA calculations are compared to
the experimental limits which exist on 0v33 decay, the upper limits on the neutrino
mass are in a range of less 2-10 eV . Further improvements in the experimental
limits may be able to push this limit down to the range of a few tenth of keV. This is
also consistent with the 27 eV upper limit obtained in the Los Alamos tritium decay
experiment '®, although inconsistent with the Russian result 7. Even though there
is only an outside chance that the neutrino mass is in the range of 0.1 to 10 keV, it
is important to continue to improve the experimental and theoretical analysis.

Here we discuss some new calculations for the 43 decay of *Ca 18, Although
®Ca has the largest 53 Q-value I, it has not been as well studied as some of the
heavier nuclei. Experimentally this is because the **Ca source is not easy to obtain
or handle. Theoretically the 58 matrix elements are thought to be particularly
hindered. However, **Ca is interesting because it can be calculated in a much more
complete basis than is possible for the heavier nuclei.

We have calculated the 2033 decay in much larger model space than previ-
ously used and with a new interaction which we test by comparing with the 3+ and
B~ spectra obtained from recent **Ti(n,p) and 8Ca(p,n) experiments. In previous
calculations where the intermediate 1+ states have been considered explicitly, the
1p0f shell model space was highly truncated 12921 and in other cases where the
truncation was not so severe, the closure approximation was used *??. Most re-
cently, Horie and Ogawa carried out the 2038 in the full 1p0f model space but with
a new method that does not require an explicit spectrum of intermediate 1+ states
4

Our calculatians were carried out in the truncation defined by Of,';/‘;(lpafz,
0fs/2, 1p1/2)" where r<4 for the 0+ ground states of **Ca and **Ti and <5 for the
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1+ states in **Sc. In this truncation there are 5599 1*, T=3 states in 18Sc. The
2v33 matrix element obtained in this truncation is within a few percent of the one
obtained by Horie and Ogawa * in the full 1p0f model space (r<8) with the same
interaction. Additional comparisons of truncated and full space calculations for the
2v38 matrix element for **Ca and 1s0d-shell nuclei, lead us to conclude that our
truncation gives results for the **Ca 33 decay which are essentially the same as
those that would be obtained in the full 1p0f model space.

We have compared the results obtained with two interactions. One (which we
label by MH) was used by Tsuboi, Muto and Horie in a very truncated calculation
(r<2) '® and then by Horie and Ogawa in the full space calcuiation *. The MH
interaction has a long history. McGrory et al. ?* started with the renormalized
Kuo-Brown interaction and changed several T=1 two-body matrix elements which
involved the 0f;;; and/or lps; orbits. Later McGrory et al. ** added 50 keV
to the 0f7/;-0f5/; diagonal T=1 matrix elements and introduced new single-particle
energies. Based on Ref 23, Muto and Horie ** shifted the monopole part of the inter-
shell T=0 matrix elements <0fy,2,)|V|0fy/2,i> (j=1P3/2,1P1/3,05/3) by —0.3 MeV.

Our new interaction labeled MSOBEP is based on the modified surface one-
boson exchange potential 7. Parameters of this potential have been determined by
a fit to 61 energy level and binding energy data for nuclei in the lower part (A<48)
of the 1p0f shell ?. The parameters varied were six strengths associated with the
central part of the potential and the four single-particle energies. The parameters
associated with the spin-orbit and tensor parts of the potential were kept fixed at
the values obtained in the 1s0d shell 7. The rms deviation between experiment and
theory was 176 keV.

The effects of higher-order configuration mixing outside the 1p0f shell and
mesonic exchange currents (including A-isobar nucleon-hole configurations) were
taken into account by using the effective Gamow-Teller operator given by ot~ (eff)
= 0.77¢t~. This renormalized form of the eflective operator is empirically well
established from beta decay data in the 1s0d sheil ?® and 1pOf shell 2728, Also, the
contributions of these effects to the interaction are presumably taken into account
by the adjustments of the potential parameters to fit experimental binding energies.
The direct contribution of the A-isobar nucleon-hole configurations on the 53 decay
is negligible because of the large energy denominator and because of canceilations
between 3% and /- ?33?. We believe that the direct contribution of the higher-
order configuration mixing on the 38 matrix element is small, but should be further
investigated. '

We write the 2v33 matrix element as

Mer(Em) = Bnzy <0f || ot=(efi)ilL} > <1 || ot~ (efiN|0f > / (Em+Eo)

where E, = (T,/2)+AM, T, is the 33 Q-value (4.27 MeV), AM is the mass difference
between *®Sc and **Ca (—0.277 MeV), and E,, is the excitation energy of the 1}, state
in 48Sc. The total 2v38 matrix element is given by M2 =Mgr(Em=00). The Fermi
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contribution vanishes when isospin is conserved and an estimate of its contribution
with isospin-mixed wave functions indicates that it can be neglected 2. The half-life
is given by ‘

(1/Tys) = G Mg [?

where G is related to the fundamental constants and phase space integrals which
depend somewhat on the intermediate state strength distribution 1, We use a value
of G=1.10x10"17 yr= (MeV)? deduced from the first row in Table 1 of Ref 19.

The individual matrix in the expression for Mer{Em) can be studied with
in the **Ti(n,p) and **Ca(p,n) reactions. In Fig. 1 I show the B(GT") = |<1} ||
ot=(eff} ||0f >|? values for the #*Ca — 8Sc transitions as a function of excitation
energy. Since there are several hundred 1* states calculated to be in the region
between 5 and 15 MeV excitation, the B(GT) values have been smoothed by folding
with a Gaussian function. The bottom curve is the GT distribution extracted {rom
the peaks above the background in the experimental cross section at 0° . The
middle spectra show the calculations for the GT distribution for the MH (dotted
curve) and MSOBEP (solid curve) interactions with a 400 keV full width at half
maximum (FWHM) smoothing chosen to match the experimental resolution. (The
top curve shows the MSOBEP results with 100 keV FWHM to show what the
ideal experiment might look like.) The results with the MSOBEP interaction are
in best agreement with experiment. The apparent overestimation of strength in
the region around 10 MeV in excitation energy is resolved by including the extra
strength extracted from the background spectrum. It is interesting to note that the
lowest 1* state obtained with the MH interaction does not have the predominant
(v0fz/3)~*(70fy/3)! structure expected from experiment. Rather, -this interaction
pulls down another configuration which appears to have a °Ca + deuteron cluster
structure as its dominant configuration. Thus the “particle-particle” part of the MH
interaction appears to be slightly too strong. ‘

In Fig. 2 I show the B(GT+)=|<0} || ot=(efl) ||1% >|? values for the **Tj
— %S¢ transitions as a function of excitation energy. In this case each B(GT) value
is shown by an isolated peak. The bottom curve shows the values deduced by a fit
of the experimental (n,p) spectrum ® to peaks centered at the known location of
1* states. Comparison with the calculations again shows that the MSOBEP results
(middle spectrum) are in better agreement with experiment than the MH results
(top spectrum).

These comparisons show the importance of being able to explicitly calculate
the spectra of the intermediate 1+ states and the importance of having experimental
data for both the - and A+ directions. The individual B+ and 8~ matrix elements
can now be combined to form the 2v89 matrix element. In Fig. 3 I show Mgr(En)
as a function of E,, for the MH (dotted line) and MSOBEP (solid line) interactions.
The general feature of these curves is similar to what has been found in an earlier
more truncated calculation 1%, namely, a quick rise from the first few states, followed
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Figure 1: B(GT~) values for ¥ Ca — %S¢ as a function of E,,. The bot-
tom curve is the GT distribution extracted from the peaks above the back-
ground in the experimental (p,n) cross section at 0° 37, The shaded area
indicates the region where the Fermi transition to the 0+ state has been sub-
tracted. The theoretical curves are obtained by averaging the B(GT) values
for individual states over a Gaussian distribution. The middle spectra for
the MH (dashed line) and MSOBEP (solid line) interactions were obtained
with FWHM=400keV. The top spectrum for the MSOBEP interaction was
obtained with FWHM=100keV.
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Figure 3: The 2v30 matrix element Mgr(Enm) as a function of E,,. The solid
line corresponds to the results with the MSOBEP interaction and the dashed
line corresponds to those for the MH interaction.

by a more gradual rise from the states up to about 6 MeV in excitation, followed by
a fall off (cancellation) from the remaining states up to about 10 MeV in excitation.
The qualitative nuclear structure reasons for this pattern is discussed in 38, It
is remarkable that the total matrix element in the MSOBEP calculation (0.070) is
very close to the contribution from the first state alone (0.061).

The value of M37=0.070 (MeV)~! obtained with the MSOBEP interaction
translates into a 2038 T/, value of 1.9x10'°yr compared to the experimental lower
. limit of >3.6x10'%yr ®!. This disagreement between theory and experiment is a
puzzle. It turns out that the MH interaction gives a result of 3.0x10'°yr which is
in better agreement with experiment. However, we have shown above that the MH
interaction does not reproduce the - and §* spectra. It may be that the 2vBs
matrix element is sensitive to further refinements in the interaction and to the direct
effects of the higher-order configuration mixing which do not show up in the - and
B* comparisons made above. In particular, we note that there is a large uncertainty
in the Gamow-Teller strength extracted from the (n,p) spectrum above 5 MeV in
excitation energy . In any case, it is remarkable that the best calculations and
the experimental limit agree with each other within a factor of two out of many
possible orders of magnitude, and we hope to encourage further experimental efforts
on the **Ca decay. Calculations for the 0v36 matrix elements are in progress. An
estimate from previous calculations * compared to the experimental lower limit of
T1/2(0v38)>200x10"yr 3! gives an upper limit of about 20 eV for the neutrino mass.



The 0v38 matrix element for **Ca turns out to be less sensitive to the truncation
that the 2088 matrix element 2°.

3. Comparison with the QRPA Approximation

Most of the interesting cases for 53 decay ("°Ge, *Se, 1Mo, etc.) are
in the “transitional” regions between spherical and deformed shapes and are thus
particularly difficult to describe theoretically. Shell-model calculations of the type
discussed above for *Ca must be highly truncated, and those that have been carried
out !* can be criticized for omitting some configurations involving the strong mixing
between spin-orbit partners. The QRPA has been the most widely used method for
calculating the 58 matrix elements in these heavier nuclej 131415, 4 is important
to test the approximations which go into the QRPA by comparing the results with
more exact calculations where possible. Here we use the 4*Ti — 4*Sc G+ transitions
for such a comparison.

The type of comparisons presented here follow along the lines of Lauritzen for
B* matrix elements in the 1s0d shell 3 and Liang and Brown for 8+ and B8 matrix
elements in the 1s0d shell 3. These studies have focused mainly on the inadequacies
of the BCS input to the QRPA equations. One can criticize the generality of the
conclusions drawn from the 1s0d-shell comparisons because the validity of the BCS
approximation depends on having a large identical-particle level degeneracy. This
degeneracy is relatively small in the 150d shell compared with the situations in
heavier nuclei. Qur 1p0f-shell comparisons may be more appropriate in this regard,
although there is still some problem with the relative isolation of the 0fz/2 orbital
from the other 1pOf orbitals. From these and other comparisons of this type, the
1p0f shell can serve as a bridge for testing the approximations used-in heavy nuclei.

We give the basic equations of QRPA in order to emphasis their dependence
on the basic shell-model inputs. The A and B amplitudes in the QRPA matrix are
given by 3

A(J!Pnap’n') = Bph W(J,pn,p’n’) (up Vn Upr Vi + Vp Up Vpr Upy)
+ 8 V(I,p0,p'') (W Un Uyt U + ¥, Vi vy V) + (Ep+En)éppSuns (1)

B(J,pn,p'n') = Ben W(J,pn,p'n’) (v, uy, Upt Vit + Up Vi Vpr Upy)

— g V({J,pn,p'n’) (up Un Vo Vo + Vp Vp Uy p) (2)

The subscripts p and n are the labels for the proton and neutron orbitals, respec-
tively. The v? are the quasi-particle occupation probabilities, and E are the quasi-
particle energies. V are the MSOBEP two-body matrix elements discussed in the last
section expressed in the proton-neutron basis, and W are the particle-hole Pandya



transform of these:

W(J,pn,p'n') - _(_1)Jp+1'n+.f,a+.1',,: EJ:(ZJ’+1) R(jpjnjn’jp’;!]!]')
x V(J',pn,p'n’) (3)

where R(;) is the Racah coefficient. The multiplicative factors g, (particle-hole) and
gy (particle-particle) are conventionally introduced in order to discuss the results as
a function of the strength associated with each part of the interaction. The matrix
elements discussed here are more sensitive to g, than to gys, and in the following
will set gon = 1 and discuss the dependence on gpp. -

The occupation factors u and v and quasi-particle energies E can be obtained
from the from the BSC equations

Ep = {(ep-Ax)* + A2 (4)
2v3 =1 — (ep- A}/ [(epAe)? + AT |13 (5)
vitul=1 | ( 8)
28y = ~(2p+1)72 Bpr (2jpr+1)Y/2 V(I=0,pp,p'p") upr v (7

where, again, the subscript p is the label for the proton orbital. The e, are the
effective single-particle energies. Given e, and the two-body matrix elements, these
equations can be solved under the constraint for the total number of protons N,:

Nx = I, (2jp+1) v2 (8)

which determines the constant A,. A similar set of equations can be solved for the
neutrons. The eflective single-particle energies e, are related to the bare single-
particle energies ¢, at ‘*Ca by the addition of the rearrangement term T,:

=6+ (9)

where

Ly = (2jp+1)-1 Ly (1+6p.p') V:' Ls (23‘“) V(J,PPJaPP')
+ (2jp+1)7! T, v3, Ty (2J+1) V(J,pn’,pn’) (10)

The rearrangement term for e, has the same form but with the p/n indices inter-
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Figure 4: Running sum of the B(GT+) values for **Ti — *8S¢ as a function of
E;. The large-basis shell-model result (solid line) is compared to the QRPA
results obtained with various values of g, {(gpn=1).

changes. The BCS equations plus the rearrangement terms can easily be solved
iteratively.

Thus we have defined the precise ingredients of a QRPA calculation in which
the input is exactly the same as a shell-model calculation, namely, the bare single-
particle energies ¢; and the two-body matrix elements V(J Jij,kl). In practice, when
the QRPA equations are used in heavier nuclei, u, v and E are often not obtained
in this way but are based on some empirical value for the pairing gap A (often one
which is orbit independent) and on some interpolated values for the the effective
single-particle energies.

We will now compare the QRPA results for the **Ti — *Sc B(GT*) spectrum
with those discussed in section 2 based on the large-basis shell-model calculation. We
show in Fig. 4, the running sum of the B(GT*) values as a function of excitation
energy E; in *Sc. The shell-model results are shown by the solid line. This is
compared with the QRPA results obtained with three different values of Bep (Bpa=1).
The results obtained from the nominal value of gpp=1 (dashed line) look reasonable
up to 5 MeV and then overshoot the shell-model by about 50%. If we adjust g, to
get agreement with the total B(GT*) strength (a procedure which is often used in
the application of QRPA to heavy nuclei) then the strength distribution is in very
poor agreement with the shell-model.

We are investigating various ways to understand and then improve the dis-
agreement between QRPA and the shell-model 5. Here we will just show one inter-
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Figure §: Running sum of the B(GT*) values for 4*Ti — %*Sc as a function of
E,. The large-basis shell-model result (solid line) is compared to the QRPA
calculation with the u,v and E factors taken from the shell-model calculations
as described in the text.

esting result. We can replace the BCS occupation factors in the QRPA equations
with those obtained from the shell-model ground-state wave function of *3Ti and
replace the BCS quasi-particle energies with those obtained by the shell-model cal-
culations for the Ca isotopes. As shown in Fig. 5, the results from this modified
QRPA calculations is now in better agreement with the full shell-model calculation.
Thus, it may be possible to put together “hybrid” models of this type that are more
reliable than the conventional QRPA. It is difficult to extend this comparison to
the ‘*Ca A3 matrix element because of the semi-closed shell nature of *Ca and
the problem of matching the QRPA spectra from two different ground states, More
work remains to be done to arrive at some definitive conclusions concerning the
adequacy of the QRPA approach to #3 matrix elements.
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