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Abstract : Quantum nany-body theory is used to derive transport
equations w th bound-state production and absorption. The
equations are valid in the quasiparticle limt and are used to
describe deuteron production in heavy-ion induced reactions. The
deuterons are produced in 3-nucleon collisions in a process that
Is inverse to deuteron breakup. W also derive rate equations for
pion production by resonance formation and decay. Qur equations
satisfy detail ed balance even in the case of w de resonances,
unlike previous fornulations. The relation widely enployed in the
cascade and Boltzmann equation nodels produces an equilibrium wth
too many pions. W have solved the equations nunerically, finding
for a nunber of cases fair agreement with experinmental data. The
predi cted entropy produced in central No+Nb collisions at 650
MeV/N exceeds by half a unit the entropy deduced from data. The
predicted pion yields in the cascade limt are nuch closer to the
data neasured in central Ar+kCl collisions than was found in

earlier treatnents.



1. Introduction

A full description of heavy-ion-induced reactions needs other
degrees of freedom besides the nucleon single-particle
coordinates. A distinct feature of high energy reactions is the

large number of composites, particularly deuterons, emitted into

wide angles 1). The theory 6f deuteron production by heavy ions

was at first rather crude. Models were based on various

assumptions including: chemical equilibrium 2-5

momentum space 6"8), and coalescence in phase space

), coalescence in

9,10). The

first theory based on dynamics was proposed by Remler 11

12,13

)., and was
applied in refs,. ). Dynamic models relying on nucleon
degrees of freedom and independent nucleon-nucleon

collisions 14-17

) have Dbeen quite successful in describing
single-particle features such as production of protons. Although
the quasiparticle assumption inherent in the models may not be

well satisfied in reactions, see e.g. ref. 18

), these models are
appealing because they incorporate a range of dynamic effects and
are computationally tractable. In the paper we examine the
extension of the models going beyond the approximation that the
equations can be truncated with two-particle collisions and only
nucleon degrees of freedom. We shall incorporate deuteron
production within the existing framework by extending the model to
include three-body collisions.

The pion degrees of freedom are also significant for heavy
ion reactions in the energy domain of hundreds of MeV per nucleon.

19-22

The production of pions received particular attention ) after



data were compared with the predictions of thermodynamic 2’23) and

cascade models 14:24-27

). In the cascade it was assumed that
pions can be treated by adding the delta degree of freedom to the
nucleons. The respective procedure is routinely applied in
16,17,28-34)

An important claim in the literature has been that the simple

dynamic models

cascade predicts too many pions, and indeed, that one can obtain
information about the nuclear equation of state from pion yields.
The discrepancy between cascade and experiment has been directly

used to extract the equation of state 20-22,35-37

). However, our
analysis produces a different formula for the cross sections than
what is commonly assumed in dynamic models. We shall see that
pion yields from the corrected rate equations are much closer to
the data for the simple cascade, and that the sensitivity to the
potential field is weak.

In sect. 2 we derive a transport equation for deuterons with
the deuteron production and absorption terms. We also study
limits in momentum space for the existence of a discrete state in
deuteron channel. Thermodynamic equilibrium corresponds to
the situation when the production and absorption processes
balance. The deuteron formation rate bears a relation to the
expressions in the coalescence models. When an impulse
approximation is used for the matrix element in the rates, the

production becomes similar to that in the approach by Remler



et a.l.Jr [refs. 12,13

})]. We discuss the rates in sect. 3, and use
the data for deuteron breakup in parametrizing the matrix element
that is common for the formation and destruction processes.

In sect. 4 we discuss the production of pions through the
formation and decay of baryon resonances. We show that the
detailed balance relation used in past calculations of pion
production is not valid when the unstable particles have broad
widths. In general, the reabsorption cross section of broad
resonances 1is underestimated in previous treatments. This leads,
in consequence, to an equilibrium with too many pions. We derive
another relation for determining the resonance reabsorption cross
section, expressed in egs. (4.14)-(4.16). In sect. 5 we discuss
the parametrization of single-particle energies in the
calculations.

The numerical method of solving the set of transport
equations is discussed in the appendix. Our method differs from
previous treatments employing pseudoparticles in several respects.
Besides the introduction of three-body «collisions we use
a different method for treating the effects of the Pauli principle
in binary collisions. The results of the calculations are
compared in sect. 6 with a variety of data on particle

1,38

production ). We also examine the production of entropy,

t 12 13

We note that the method of refs. } and ) does not produce
correct thermodynamic equilibrium in the limit of long interaction

times.



which in our treatment is calculated from the quasiparticle
distribution functions. This contrasts with the thermodynamic
treatments of deuteron production, which assume a direct
connection between deuteron yields and entropy. Finally, we study
the sensitivity of the produced entropy, d/p ratio, and pion
multiplicity to the nuclear equation of state. We conclude with

a discussion in sect. 7.

2. Deuteron Transport Equation

We shall describe deuterons with the help of a 2-particle
Green’s function that is defined on a contour in time 18’39’40)

iGg(xl,xz,t,xi,xé,t’)

= <T{w(xy, )e(xy, 009" (x5, 6009 (x], 0 P (2.1)

Here x labels the position as well as the particle spin and
isospin states, x = (r,a,«). The deuteron occupation will be
obtained from the function

iGz'((xl,xz,t,xi,xé.t’)
= <l (xg, 08T (k) e wixg ) wixy, £) >, (2.2)
which is a particular case of (2.1).

The function G2 satisfies an equation which follows from

diagrammatic expansion 41’18) of the expectation value in (2.1),
G, = § + Lgvg (2.3)
2 - 4 2° )

Here v is an antisymmetrized potential, and the operator product

involves a summation over indices, integration over spatial



variables, and integration over a contour in time. The function §
is an irreducible part of G2 which does not c¢ontain two l-particle

lines connected by the potential. We have

g = g° 4+ g°, (2.4)

where ?D in (2.4) is a product of l-particle Green’s functions,

?D(xl,xz,t,xi,xé,t') = 1(G(x1,t,x',t’)G(xz,t,x’,t’)
- G(Xlltlxélt')G(xiltllet'))l (2-5)
with

iG{x,t,x",t’) = <T1w(x,t)¢1(x',t')}>. (2.6)

The function ?c

is an irreducible part with the lines connected in
some way. The lowest-order contribution to ?C is shown in fig. 1.

From (2.3) we obtain

z

+ 1 +
G2 = 5 4 Zﬁ sz ; (2.7)

with the time integration in operator product running now along

ordinary time-axis. The retarded F' and advanced F~ functions are

defined as

FE(t,t7) = 28(2(t - £)) (F~ - FS)(t,t7), (2.8)
with all except the time arguments suppressed. Functions F~

correspond to expectation values with the creation operators on

the right of annihilation operators. This is opposite of the
=
order in eq. (2.2), cf. ref. 18). For the functions G; we get
z 2 1.2 - 1+ 2
G% =5 + z@ VG2 + Zg vG2 . (2.9)

Combining this with (2.7) leads to



1 .+ 2 1 .-
G, = (1 + ZG2V)§ {1 + —vG2), (2.10)

4

|bo Ay

where the operator 1 is

3(t - t’)%(a(xl - xi)a(x2 - xé) - a(xl - xé)a(x2 - xi)).

+

A discrete state corresponds to a pole of G2 and a resonance

> —_
<

peak in G2 + when these functions are Fourier transformed in
relative times. We shall develop our equations for the functions
G2 in a Wigner representation for the c.m. coordinates as well as

the time variables. 1In this representation 41’18), the functions

are
<r|F(P,Q,R,T) |r’> = de'dR' o1 (AT -P-R’)

x F(R+R’/2+x/2,R+R’/2-x/2,T+T'/2,R-R’/2+4x* /2 ,R-R* /2-1' /2, T~T' /2)
(2.11)
When a product of two such operators is Wigner transformed, the

result may be expanded to yield the substitution
fu 5 fu + %[f,u] o ' (2.12)

The Poisson bracket for the transformed functions is

8f &u af au 8f 8u af au
[f.u] = 557 "3 2a "R * ;R 2P - (2.13)

Note that there is an integration over the intermediate internal
variables for the Wigner-transformed functions in (2.12)
and (2.13). When one of the functions has a resonance structure
in energy, the averaging over an energy interval must be applied
to justify dropping of higher-order terms in the expansion (2.12).

We first display the form of the functions in the vicinity of



a resonance, The internal wave function in the residue of &

under an assumption of weak damping, satisfies the equation

[0

Idx'<x|Re(G§)“1(p,E,R,T)|x'><x'|¢(p,n,T)> = 0. (2.14)
Note that x labels now the internal spatial variables r and the
spin and isospin indices. Further E = E(P,R,T} in (2.14) is the
energy of the state, and Re(:) denotes a hermitian part of the
operator,
+,-1
2<x|Re(G2) (P,Q,.R,T)Ix’'>
— - *
= <x1(G}) "1 (2, Q,R,T) x> + <x'1(G5) M (R, Q,R,T) Ix>
= <x1(@E) 7 + @) h@arm x>
+, -1 1
= 2<xX|Re (¥ ) (P,Q,R, T) - Zle’>, (2.15)
see e.g. ref. 18). Following (2.10) we have
> >
+,~-1.< +, -1 1 < 1 .-
(G&) G3 = ((Gg) + Zv)? (1 + Zng). (2.16)
After Wigner transformation, the lowest order terms yield
+y -1 .2
Re(Gg) Gg = 0, (2.17)
z
and the functions G, in the vicinity of resonance become

i<x|G;(P,n,R,T)Ix’>

= <x|¢(P,R,T)><¢(P,R,T)|x'>222(P,R,T)fz(P,R,T)Zua(Q - E(P,R,T)),

(2.

and

i<x|G;(P,Q,R,T) x>

18)

]



= <x|¢(P,R,T)><¢(P,R,T)Ix'>222(P,R,T)

x (1 + fz(P,R,T))ZnG(Q - E(P,R,T)). (2.19)

with fz - an occupation. We use in (2.18) and (2.19) the identity

> < _ ot
Gg - G2 = G3 G, . (2.20)

o

and

-1 _ , 8 +, -1 .
72, (B,R,T) = 2J.dxdx <$(B,R,T) Ix>zexIRe (G5) T (B, 0, R, D) Ix > | o

x <X’ |¢(P,R,T)> . (2.21)

To obtain an equation for the variation of occupation f2 we

apply (2.12) to the sides of eg. (2.16) and retain the zeroth- and
first-order terms in the expansion with respect to spatial and
time derivatives. We get

+, -1 < i +, -1 < 1 .<1 . +
(Gg) G2 + E[Re(Ga) ,Gz] = ng Z-v(—l)ImG2 . (2.22)

and on subtracting from (2.22) a conjugate equation side by side,

and integrating over the internal variables, we find for f

2
afg oE afg - afg_ . R}
W+6_.6T_E.W+ng=x(l+f2_)_xfg' (2.23)
The last term at the 1.h.s of (2.23) is
D f, = [dxdx’ | Zexire(ct) 1(p,E,R,T) x>
.2_ - 6R -2- ’ ' F
il '
X ﬁ(zg(P,R,'I*)<¢(P,1?.,'I') |x><x'1¢(P,R,T)>)
- —2<x|Re(G+)_l(P E,R,T)Ix'>
ap -2— r I ’
a '
« 5(Z, (B.R, T)<$(B,R,T) Ix><x |¢(P,R,T)>)] , (2.24)

and the absorption X~ and production X° rates are
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> ,
K (PR, T) = 2z, (P,R,T)%Idxdx'<¢(P,R,T) 1>

> )
x <x|v§~ (P,E,R,T)v|x’'><x’|¢(P,R,T)> . (2.25)

42

The rates may be expanded diagrammatically ). Upon expansion,

the absorption and production can be brought into a form similar

that in the approach by Remler et al. 11-13

). When expanding in
terms of interacting quasiparticles, an identity which holds for
the l-particle functions,

2 ateRa
G¢* = ag'ge” (2.26)

is used. Equation (2.23) represents the most general form of
kinetic equation for the bound state occupation probability.

In addition to the usual conditions for the validity of the
Boltzmann equation, the derivation of (2.23) requires that
T > 1/(2(<T> - E)) is 1less than the time of characteristic
variations in a system. The energy E is the bound-state energy
.and <T> is the average of the kinetic energy over the bound-state
Wave—function. In the energy representation this becomes
a condition that the resonance is well isolated. For deuterons Te
> 4.5 fm/c, and the condition may only be satisfied late during
the development of a heavy-ion collision.

Beyond the brief analysis that follows, we make no attempt to
solve the deuteron eigenvalue-problem (2.14) in a medium.
Physically, in moderately dense matter a neutron-proton pair is

likely to be in a composite larger than a deuteron. Indeed, the

comparisons of model calculations with data are often done for
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9,12,13,43

d-like nucleon pairs ). In principle one might try to

calculate the depletion of a deuteron pole in G2 due to the
dressing of deuterons with additional nucleons. WELh decreasing
excitation of the medium, heavy composites would need to be
considered of which the interior corresponds to nuclear matter

with nucleons only. When ?D is used for ¥ in the quasiparticle

approximation, eg. (2.14) gives, in momentum representation,

(E(P) - e(B/2 + D) - e(B/2 - D))<DIg> - 2(1 - £(B/2 + p)
dp’

- £(P/2 - p}) JT;_;E <plvip’><p’I¢> = 0 . (2.27)
T

The equation considered before 44746

) accounts for the effects of
antisymmetrization with nucleons in surrounding matter and of the
single-particle spectrum, on the two-body state. The
antisymmetrization removes at 2zero temperature the particle-hole
components from the wave function.

We solve eq. (2.27) at zero temperature in deuteron channel
using angular averaging for the factor (1-f-f), and m* = m. We

report here the results for the separable potential 47

) of Graz
form including tensor interactions, but we have tried a potential
without tensor coupling with very similar results. Figure 2 shows
the region in which there is a discrete pole in the two-body
Green's function as a function of Pp and P. The region, marked
"deuteron" and "Cooper pair", is bordered by a solid line. At low
dehsities the state exists for all values of P, but at higher

3 -3

fm o EVBO) there are two branches. The

density (p > 5:10

higher momentum states can be identified with deuterons separated
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in phase space from the nuclear matter, but perturbed by the
antisymmetrization. The lower branch represents Cocoper pairs with
energies E = ZuF. The E = ZuF boundary is shown as a dashed line.
Finally at low densities the matter is unstable against complete

45

deuteronization }). The E = 0 boundary of the region is shown as

a dotted line.

The Cooper pairing is a many-body effect unrelated to the
formation of physical deuterons. In our calculation of deuteron
production, we only want to include the Green’s function pole in
the "deuteron® region. This can be achieved by imposing a simple
condition that a deuteron quasiparticle can only be created when
the average nucleon occupation over the phase-space volume
corresponding to free-space deuteron wave-function, is less than

a cutecff value
c
<f>d < £7 = 0.20 . {2.28)

The boundary of a region where the condition is satisfied is shown
as the dot-dashed 1line in fig. 2. The cutoff wvalue (2.28)
corresponds to a 40% removal of the free-space wave-function due
to antisymmetrization.

Derivation of the transport equation for deuterons, with the
Eransition matrix elements in the rates in the Born form and
without the effects of statistics, was discussed by Répke and

Schulz 48), see also refs. 49'50).
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3. Production and Absorption Rates

The lowest-order contributions to deuteron production and
absorption rates, illustrated in fig. 3{(a), correspond to the
formation and dissolution of deuterons in the interaction of
proton and neutron quasiparticles. This is just the mechanism of

low-energy (p,d) nuclear reactions 51

) where the proton
quasiparticle is the‘distorted projectile wave function and the
neutron quasiparticle is a shell-model orbital. This process
requires momentum and energy matching between the deuteron and

nucleon quasiparticles, which becomes difficult to fulfill 51

) as
the incident energy is increased. In infinite matter, when
quasiparticles have definite momenta and energies, the binary
contributions to the rates would be identically =zero, unless
energy éhifts were such that the deuteron entered two-nucleon
continuum. Close to the threshold the phase space for the
procesées would be low.

A less restrictive mechanism for the production and
destruction of deuterons is via the three-nucleon interactions.
The respective lowest-order contributions, from the insertion of
(2.26) into §D, are 1illustrated in fig. 3(b). Further
contributions of the same order in two-body scattering matrix,
required by antisymmetrization, come from §c. The preduction
process illustrated in fig. 3(b) is such that a nucleon is
off-shell after a binary collision, and is capable of forming

a deuteron with another nucleon. We shall assume that the

3-nucleon collisions are responsible for the deuteron formation in
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the energetic heavy-ion collisions.

On isgolating specific contributions in the quasiparticle

42,52

expansion of production and absorption rates ) averaged over

spin directions, we find for deuterons

K<(P) _ 5 md dPl m.d dap’ md dPi m4 1[;-———77
d - YE(P) E(P 5 (2 ) E(P7) iP'i 2 ' "dd-»dd

x (2u)38(P + By - P’ - P;)2n8(E(P) + E(P,)

E(B') - E(P{)) (1 + £4(Ry)) £ (") £ (P])

dp My ap’ M3 dp’ My
J(Zn)3 e(p) J(zu{j E(P"] [(2n)3 e(p’)

-+

Ty
2ETPT L

N=n,p

x 'ﬂdNelez(z")35(P +p-P -p’)

2n3(E(P) + e(p) - E(P') - e(p’)} (1 - E(@)IE4(R) E(P)

My ) o my [dp] my J dpy; My
(2u)3 e(p) (2“)3 e(DiT’ (2")3 e(pé)

X

® my
I(zn)B e(p’) zlﬂpnN_)le (2n) S(P + P - pl - pz_ ) o B

X

28 (E(P) + e(p) - e(p;) - e(pj)- e(p’)) (1 - fN(p))

x £ (] E (B Ey(D) + ..., (3.1)
and
K(B) = ...+ 28 ) J D I e S f 3. I
d E4(PY Nen,o (2m)°> €@ (23 €] [ (543 €®I)

dp’  my L2
X J(ZH)S e(pr) 2EMdN-)pnN (2") 6(P + P - pl - p2_ p’)
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x 2n3(E(P) + e(p) - e(pi) - e(pé) - e(p'))fN(p)
x (1 - fp(pi))(l - e - fg®@) + ..o (3.2)

These equations look rather imposing, but in fact are nothing more
than Fermi’s Golden Rule with matrix elements and phase space
integrals cast into a Lorentz-covariant form. The three terms at
the r.h.s. of (3.1) represent the dd and AN scattering, and the
deuteron production in 3-nucleon collisions. These processes are
shown schematically in fig. 4. In (3.2) we indicate only a term
corresponding to the deuteron breakup in interactions with
nucleons. All functions in (3.1) and (3.2) refer to a time T and
location R. The energies e are nucleon l-particle energies. We
have introduced in (3.1) and (3.2) factors m/E appropriate in the

53-55

relativistic case ), in wvacuum or in the model discussed

later, otherwise putting Z = 1. The factors [ITZ stand for matrix
elements squared summed over the final and averaged over the
initial spin directions. The numeric factors in front of each of
the terms at the r.h.s. of egs. (3.1) and (3.2) arise from the
process of summation and averaging over the spin indices. The
process of deuteron formation in 3-nucleon colligions is inverse

to the deuteron breakup, and we have

e 2 _ 3. .2

More generally, matrix elements are related by

——— 9 —
I#; g =q“‘f.>i' . (3.4)

where g is the spin degeneracy factor in one of the channels. In
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the context of (p,pd) reactions, the relation between deuteron
56
).

Terms corresponding to those in eqs; (3.1) and (3.2)

formation and breakup has been discussed by Lovas

involving nucleons, appear in the nucleon absorption and

production rates 18). Thus, with the neutron transport equation
being
af de af de af
n n . .
Tt wEm T ma@ - il - £y - inf (3.5)

the neutron absorption rate has a term corresponding to the third
Lerm at the r.h.s. of (3.1), in addition e.g. to one associated

with NN scattering,

is7(p) = ... + 2 "N I 1, ™ J @’ my J dpi  my
n e®) | om 3 €Py) (2m)3 €@ [(3m3 &)

X T nnl 22038 ® + ) - B - pI)2es(e(®) + e(py)

- e(@’) - e E () (1 - £.(07)) (L - £ (p]))

my [dpy  my dp, my dp’  my dp’
Y T epo) T ep.T J T e 3
(2n) P17 ) 2m) P2} ) 2m) P (2n)

m
d 2,3 D
* B Mnnpsng!” (2M 7@ + By o+ - 07 - P

x 2nd(e(p) + e(pl) + e(pz) - e(p’) - E{(P"))
X fn(pl)fp(pz)(l -, @A+ fd(P’)). (3.6)

Collision processes in (3.1), (3.2), and (3.6), 1lead to the
equilibrium distributions, in local rest-frame,

_ 1
- exp(plelp) -~ ) + 17

fN(p) (3.7)
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_ 1
- Exp(BIE(PY - pg)) - 1 ' (3.8)

£5(P)

with pug = p, + & , and B - the inverse temperature.

P

It may be useful to have some visualization for the 3-body
collision processes. When there are two bodies in the initial
state of a collision, and we integrate in the rate over final

states, dropping the statistical factors for these states, we get

Ide I:_i 1:_2 1M12+f|2 (20 5(p,, - By) 273(Eq, - Bg) = ovy, . (3.9)
On the l.h.s., de stands for the integration over final momenta
with appropriate m/(2n)3e and symmetry factors, and P and E are
total momentum and energy in the initial and final state. The
result of the integration over the transition element squared has
a dimension of the area times velocity; with Viy - relative
velocity, eq. (3.9) defines the interaction cross section o¢. One
can imagine that a transition occurs once the particles find
themselves within the relative distance r such that ur2 = o.
In the three-body case the result of an analogous integration has

a dimension of volume times area times velocity,

m, Im .
172 73 2 3 -

(3.10)
If one takes the velocity v as relative velocity of 1 and 2, e.g.
in the overall center of mass, then one can imagine that
transition occurs once 1 and 2 find themselves within the distance
corresponding to ¥ from one another, if 3 is within the volume V

from the geometric or mass center of 1 and 2, see fig. 5. The
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radii of ¥ and v may be taken similar. The analysis is easily
extended to processes involving more bodies. An n-body collision
rate may be represented as Vn_zyv, and the transition may be
considered to occur if the (n - 2) bodies are within ¥ from the
center of 1 and 2.

For nucleon-nucleon scattering in the rates, the most

straightforward procedure is to use the free-space cross-sections

4
do, ., .
™ M 2 o ONNTaNNY (3.11)
2 %2 NN’ >NN *
lén“e dq
*
where e 1is c.m. nucleon energy. Matrix  element for deuteron

production and breakup might, in principle, be also taken from

data,

1 4 * % de
mymg Py ———  “'pdoppn
* x

| M 1© = —FF 3 - {(3.12)
64n” p (e + E*) e;*e; pd-ppn dnl d p;

The quantities with superscript ‘*’ in (3.12) are in the overall
center of mass, and those with '**’ are in the center of mass of
particles 1 and 2 in the final state. Because of ’the
dimensionality of the space of final states in the breakup, the
differential cross sections are known only for a limited range of
states. We shall therefore use a simple impulse model covering
the entire kinematic region.

The lowest-order contributions to the deuteron production and
absorption rates illustrated in fig. 3(b), result from using

(2.26) and the T-matrix approximation 41,18

) to £. When effects
of antisymmetrization with particles in the medium are ignored,

the product of Green’s function, interaction potential, and wave
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function in the deuteron frame (cf. (2.25)), produces the wave

function 47), and we get

e 2 ~ 2. 2 ~ 2., 2
'Mpdappner & I<p1|¢>l Iﬂpnépnl + I<p2I¢>I fﬂpnipnl
~ 2 2
+ |<p3|¢>i Iﬂpp»ppl . (3.13)

This is just the impulse approximation, fig. 6, with direct terms

only. We use tilde to indicate vectors in the deuteron center of

mass in (3.13). The wave function is normalized so that
dp 2
— [<pl¢=>1" =1 . (3.14)
(2n) :

The impulse approximation is typically expected to work well at
high energies.

The 2-nucleon matrix elements in (3.13) may be related to NN
cross section using (3.11), with energy in the 2-nucleon system
such as that of the pair in the final state. An expression for

deuteron breakup cross-section then becomes

*max
1 2 Pa * kk kk ‘
LIA _ ! J ap? P3Py & o ‘- )
- * * x
pdwppn 52 K2 ¥ L ! 3 e: Pp-pp = pn-spn
51:';16.}( _
~ Py 2
x J' dby > I<Byle>1° . (3.15)
~min €3
b3

Nucleon 3 in (3.15) is the spectator. In fig. 7 we show the ratio
F of the measured Nd inelastic cross to the cross section in the
impulse approximation (3.15) using the total NN cross sections.

The ratio tends to 1 for high energies and falls below 1/20 close
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to threshold. We take the values of experimental Nd cross

57-61 61-63

sections from refs. ). NN cross sections from refs.

and deuteron momentum distribution such as in ref. le7).

),

We correct for the failure of the impulse model at low

energies by multiplying IMI%A by the factor F,

e 12 e 2
I“Ndaanl =F IJ“N(:"L—aanlIl-& : (3.17)

In the energy range of interest we can approximate F with

8 + 1
F “6—+'3—2- ’ _ (3.18)
k4 *
where &8 =e + BE - 3mN in MeV. This is indicated with
a short-dashed 1line in fig. 7. The NN c¢ross sections in
2 . . , . . .
IMNN’eNN'I in (3.13) are taken, for simplicity, as isotropic.

Equation (3.3) plays such a role as the detailed balance
relation in case when there are two particles in initial and final
states. It ensures, in particular, a proper form of thermodynamic
equilibrium distributions. with (3.3), (3.17), (3.13), and

(3.11), the deuteron formation rate (3.10) may be written as

3
o N "4 T2 3
J(2n)3 J(2n)3 e(pl)e(pz)e(p3) e(P)E(P) '“ppn»pdI (2m) a(pl P

+ Py - P - P) 2nd(elp) + e(py) + e(py) - e(p) - E(P))

= v 2

12 + Vv

+ v (3.19)

“opopp 73+ V13 “pnspn Y2 * V23 %pnspn V1

with volume

* * % *
o3 ‘P TMg% Jdn
y)

~ 2
Py (e + E )e3

3=
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ze** 5

m

S I R - Jd53 2 1<Byles1? (3.20)
P, (e + E )p3e3 e,

The rate may be interpreted in such a way that after an NN
scattering a nucleon may form a deuteron if it finds a partner
within the momentum-dependent volume ¥ given by (3.20). Specific
factors at the r.h.s. -of the first equality in (3.20) are as
follows: 3/4 is for spin, next in front of the integral is the
ratio of fluxes and kinematic factors, finally, for low spectator
momenta the square of the momentum-space wave-function is of the
order of spatial volume of a deuteron.

For the elastic Nd interactions, we use the isotropic cross
sections in calculations. The dd interactions are treated as
entirely elastic, with the cross sections assumed to be twice the
pd cross sections at half the bombarding energy. Angular
dependence of NN elastic differential cross sections is taken such

as in ref. 17).

4, Pion Production

Pion production in heavy-ion reactions has been a subject of

19-22

controversy over the years ), with fewer pions observed than

predicted by the cascade model. In cascade and other dynamic
descriptions of energetic heavy-ion reactions, pion production is

usually treated via the formation of A resonances 1in NN

- - *
collisions 14-17,24 32) IN resonances have also been
33,34

considered 1. The resonances may - be reabsorbed in the
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collisions with nucleons, and eventually they decay into nucleons

and pions. Decays occur after the completion of the heavy-ion

reaction +°°17.24,30 24-27,29,33,34

). or during its course ).

Pions may possibly form resonances when interacting with

24-29,33,34

nucleons ). In these references, the resonance

reabsorption cross-sections are taken from the detailed balance

relation of the form 17'64), in case of A resonance,
*2
_ Pp
TNASNN 557?7 “NNsNA - (4.1)

Here p’* and p* are the c.m. momenta in the NA channel in the NN
channel, respectively. Cross sections are averaged out over the
spin and isospin values in the initial states and summed over in
final states. The variable resonance masses are selected from

a Breit-Wigner distribution in the calculations 10/17,25-34

) .

In fact eq. (4.1) is not valid when the resonance is broad;
we shall now derive a cross section formula which applies to broad
resonances as well. This will considerably ameliorate the
discrepancy between cascade results and experiment.

The nucleon absorption rate will include a term associated
with resonance formation which may be written as
Ny Z J dpl my J dp’ My I dp*” [d@

e(P) R (21[)? e(p]_T (2")3 e(p') (2")3 2n

iz;(p) = ... + 2

3 f n
x s a2 2080 + by - b7 - pY)

x 2nd(e(p) + e(pl) - e(p’) - 8)fp(p1)(l - fN,(p'))
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X Ar(p“,g)(l - fr(p“,g}) + ... . (4.2}

Here Ar is the spectral function of the resonance, and fr is

’
an occupation factor for the resonance. Under the conditions in

the heavy-ion reactions gr is always small and may be neglected

compared to 1. In the vacuum the function Ar is

{(4.3)
2 2
{m - mr) + Fr/4

where m. is the resonance mass, m2 = 82

- 92, and Fr is the width

in the center of mass, which in general is dependent on m. When

the Nm channel dominates in the decay, the width is

dp dp*’ m —
Iy = Z TeNie = Z I 3 eTg) [ 3 e (;’) 1M N !
N N’ (2n) (2n) n

x (21)%8(p + p’) 2m8(m - e(p) - e _(p'))

*
NP - 2
—am L Mgl - (4.4)
Nf
Clearly, the pion production rate has to include

a term

corresponding to the resonance decay, and the absorption rate

a term corresponding to the resonance formation, of the form

m dp dp’ de
T 1 N 2 3
I M I 2n)78(p + P, - P')
e (P) J(Zn)3 e(py) J(Zu)j L.u Nror 1

x 2n8(e (P) + e(py) - 6) A_(p',6){_ (D".,8) , (4.5)
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for a pion with momentum p. It is relatively straightforward to
show that these results hold under the conditions of thermodynamic

equilibrium (when the quasiparticle approximations are used for

pions and nucleons), see refs. 41'18’65). General formulae for
resonant cross sections are given in ref. 66). In equilibrium the
occupations are
£ = L « exp (Bl - 6)) (4.6a)
r exp ({8 - pr)) + 1 r !
£ = 1 ~ exp(Blu_ - e (D)) , (4.6b)
= exp(gle (p} - ) -1 n L
and chemical potentials satisfy
p_A+="N*+=“p, pAosz*ozp,n,
Byt = 2up - My Bp~ = 2p - By v
Bt = @ - = Py ~ By (4.7)
From (4.7) we find
Myt - B = 2(up - o) (4.8)
and in a low-density system we expect
2
Nu+ Nb
— = |5 ] (4.9)
Nu Nh

The results for the rates, (4.2) and (4.5), hold also in
noneguilibrium, when the absorption rates of resonances are large

compared to to the time variations in the resonance production and
41,18)

as in the case of deuterons, we can show that for resonances the

absorption rates. 1In that limit, with a similar expansion
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following equation holds

o(f,A) + %'Eg(frAr - %-%(frAr = -iS3(1 - £)A - iS)f A
(4.10)

Here under the derivatives at the l.h.s. the condition Am = m - m_

= const (more generally Re(G"’)_1 = gonst) is satisfied. If the

dependence of the width in spectral function on space and time,
for fixed Am, is ignored, then the spectral function may be taken
out from under the derivatives and factored out from the equation.

An example of a term in the rates is

r (2m)> €P1! |(2q)° ©\P (2m)” €'P1
x My 1220380 + o) - p' - pI)2ws(E + e(py)
- e(@’) - e(P)))E (p) (1 - £,(p"))
x (1= £, (0])) + ... . (4.11)

Let us now discuss some consequences of the above results.
With (4.2), the differential cross section for the production of

a resonance with mass m becomes

3 'k
do ] [} D -
NN*eN = = m§ *2 % I"'{1\11\1’->N“r|21m7{r ’ (4.12)
dq dm 32n7e P

* *
Here e and p are nucleon c¢.m. energy and momentum in the NN
e
channel, and p’ 1is the c¢.m. momentum in the Nr channel. To the

extent that the variation of IMI2 with m may be ignored 67’68) the

resonance mass should be sampled using the function
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p’ mA_(m) , (4.13)

16,17,25-34

rather than Ar [refs. ). In consequence the masses m

*
close to to the maximum 2e - my get suppressed. The full cross

section for the resonance production becomes

*
m% 2e ~T . -
- dm ,* [an
NNNTE T ST J Tn AP Jﬁi" Mg s ! (4.14)

M+,

and with (4.11) the cross section for resonance absorption is

CN"rsNN’ S Z;;wg ;Tr I IMN"r»NN’I . {(4.15)

3 * "
e 1 da o .2
1 + aNN'
On neglecting the dependence of M!l2 on m, the cross sections for
the processes can be made proportional to one another, using
eq. (3.4). In the case of A, for the cross sections averaged over

the isospin values in the initial state, and summed over the

values in the final state, we find
*2

mp dﬂl" " “*
NASNN = 8 TTF ONN-NA PR GRS S (4.16)

l_\

p

The range of integration over the mass is fhe same as in (4.14).

Let us discuss the significance of the difference between
(4.16) and (4.1). Thermal equilibrium is established when
processes of production and absorption balance. In the processes
of the resonance formation and absorption in heavy-ion collisions,
of interest are the c¢.m. energies close to threshold, as
temperatures reach at most the order of magnitude of pion mass.

The c¢ross sections for resonance absorption from (4.16) are
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larger, on the average, than cross sections from (4.1), due to the
division in the r.h.s. of (4.16) by the integral over the portion
of spectral function. Equation (4.1) is derived assuming that
dengity of states in the NA channel is such as for two stable
particles, disregarding the spread of A in energy. If
A-reabsorption cross-section is underestimated by a factor of 2,
then, up to second-order effects, the total number of A’s and
pions will be overestimated, in equilibrium, by a factor of 2, in
comparison to (4.6) and (4.7). The average factor is expected to
be largest for the low temperatures or bombarding energy, and
decrease with the increase in energy. The reabsorption cross
sections are of lesser significance for light systems and large
impact parameters than for heavier systems and small impact
parameters.

The cross section for resonance formation in Nr interaction

is, with (4.5),

_ " 2 _ " 9
Newor = —F Myl A = w5 — Fronm Br (4.17)
P p -2
66

and in obtaining the last standard ) result we use (3.4)
and (4.4).

The numerical calculations are carried out with the isospin

components of multiplets made explicit. For the A width we
rake 69,70,33)
2 2 *212
mep B+ D
r. =22 4 (4.18)
A 34n 2 m 2 *2 ¢ :
m B +p

E |

*
with f§/4u = 0.37, 8 = 300 MeV/c, and for the N  width 1)
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*

p
**
Py

o 3
K - *
v = Iy p (4.19)

where rﬁ* = 200 Mev. The NN scattering data 61'68) are used to
obtain the cross sections for resonance production. For high

energies, corresponding to Tlab > 0.9 GeV, we use

* -
apnenN T iwpn Zopp ! (4.20)
and for lower energies the parametrization by VerWest and
Arndt 68), taking

3
GpnenN*+ = 7%01 - (4.21)

For the excitation to A resonances we use at high energies 68),

_ _inel 1
“ppsna*t = “op (“10 * 5“11)/(2’11 + 010) (4.22a)
_ _inel 3
“opspat = Tpp 29117 (2071 + o) (4.22b)
_ 1 inel
¢pn—>pA0 - ?pp ’ (4.22¢)
and at low energies we replace v;;el in (4.22) by 2¢11 +
¢19 * @19+ Angular dependence of the cross section is such as

determined in ref. 33

).

We conclude this section with some general remarks about the
transport approach to pion production. When the delta absorption
rate is large compared to the rate of variation of the production
of resonances, the processes of resonance production and
absorption nearly balance. The r.h.s. of eqg. (4.10) is close to

zero, and the equation describes the shifting of an equilibrium

distribution under the changes in the production and absorption
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rates. The delta decay rate may not be high enough to satisfy
this quasi-equilibrium condition when the mass is close to the
decay threshold. Still the A resonance functions may be the
equilibrium ones (with respect to processes of production and
absorption, and not necessarily thermodynamic), because the A is
mainly virtual in this situation and a much shorter time scale
applies to virtual particles. The other sufficient condition for
the equilibrium is that |m - mAI is large compared to the time
variation of the production rate. While eg. (4.10) can be
violated, the equilibrium A resonance functions might still be
used in the nucleon and pion rates. It appears then, that because
of equilibrium, one can eliminate the A occupations entirely, and
treat the NNr states explicitly as final and initial states of
interactions 72), in a similar manner as NNN states in Sec. 3.
This goes beyond the present paper.

Since we have discussed here pion production, we should

73 74)

We found out that transport theory with resonances has been

postulated before by Mrdéwczyhski 75).

mention recent works by Siemens et al. ) and Wang et al.

5. Quasiparticle Energies

The relativistic version of phenomenological Landau theory,

developed by Baym and Chin 76

), may be used as a guidance in
parametrizing the quasiparticle energies. We assume that particle

masses are independent of momenta. We take
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my = My *+ U, {5.1a)

e(p) = (p + mN)l/2 ' (5.1b)

for nucleons,

md = mdo + 20U , (5.2a)

E() = (2% + nf)1/2 (5.2b)
for deuterons, and

m.=m., + U, (5.3a)

m=m. + Am , (5.3Db}

g(p,am) = (p° + m2)L/2 , (5.3c)
for the resonances in transport equations. In the above ‘0*

denotes wvacuum masses, m.‘,_\0 = 1232 MeV/cz, mN*0 = 1440 MeV/cz, and

U is scalar potential

= U(PS) ' (5.4)
with
dp My, P mgg
Py = 2](2“)3 36 (f (p) + £ (P)) + 6{?5__7 (BT £4(P)
dp d& m
(21:) 2r m

Pion energies are such as in free space. The last term in (5.5)

associated with resonances, may be rewritten as

dp dAam LIPS

E ng 3 J #r(D.Am)Ar(D.Am) . {5.6)
2n) 2n &

r (
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The energy 76) corresponding to (5.1)-(5.6) is
1

dp
E = J da a Idr 2[—92—3 e(p,A)(fp(p) + fn(p)) + GJu———g E(P,k)fd(P)
0 (2m) (2m)

dAm
* ): J a3 ) I— €(p,Am, )¢ (p,Am)A_ (D, Am)]
n

dap
. Jdr[ZITE"*j e (P) (£, (®) + £,(P)) + GJ—w——g Ey(P)£4(P)

) (2n)

p

dp GAm s

+ z g JW J_ 8 (Prﬁm)t (p, Am)A (p,Am) + I dpé U(Pé)
"
r

(5.7)
The subscript ‘0’ in (5.7) denotes energies calculated with
free-space masses. The first three terms at the r.h.s. of (5.7)
represent the kinetic energy, and the last term the potential

enerqgy.

The dependence of the potential on density is taken such as

in nonrelativistic calculations 16'17), i.e.
Ulpg) = Alpg/pg) + Blog/p)° . (5.8)
The case of A = -356 MeV, B = 303 MeV, ¢ = 7/6, corresponds to

the soft eguation of state, and A = -124 MeV, B = 70.5 MeV, ¢ = 2,

to the stiff equation; p; & p0 « 0.145 fm_3. Unless explicitly
stated, the results of calculations are for the first set of

parameters.
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6. Numerical Results

The method of solving the set of coupled transport equations
for nucleons, deuterons, nucleon resonances, and pions is
described in the appendix.. We first compare results for the
particle yields in energetic heavy-ion reactions with data. These

are summarized in the table. Auble et al. 38

) have determined the
yields at all angles above their energy thresholds, of 15 MeV for
p and 21 MeV for d. The calculated yields given in table are for
emission above these thresholds. We should mention that the
deuteron yield is, in general, sensitive to the cutoff parameter
fc in eqg. (2.28). With less restrictive cutoffs than we have
used, the number of low momentum deuterons in the calculation

increases. The data by Nagamiya et al. 1

) have been taken at
large angles, outside of the fragmentation regions, and
extrapolated to small angles and low energies. We compare their
numbers with ours following a similar procedure, taking the
yields for sidewards directions only and extrapolating to the full
4m solid angle. At 100 MeV/nucleon we overestimate the proton and
deuteron yields, but the ratio of calculated yields is close to
the ratio of experimental yields. At this energy a substantial
number of nucleons is emitted in other light fragments. At higher
energies we reproduce the experimental proton yields. We
typically overestimate somewhat the deuteron yvields. The deuteron
to proton ratio changes by less than 5% when the mean-field
parameters are changed. The mass dependence of the deuteron to

proton ratio in reactions at 800 MeV/N is illustrated in fig. 8.
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The calculated pion yields are consistent with the experimental
yields, except for the case of Ar +.Pb at 800 MeV/N when only
yields calculated for the stiff equation of state are within
experimental errors. The values of calculated and experimental n'
to m ratios in the systems with significant isospin asymmetry,
are 1in essence consistent with values of (Z/N)2 in the
participant region 1). In the calculation, the deuteron formation
reduces somewhat NP/Nn compared to Z/N, cf. (4.9).

We next compare the calculated spectra of particles with data
in figs. 9-11. At 100 MeV/N we obtain too many particles emitted
with intermediate momenta compared to the data, and too few
particles emitted with very forward momenta. This can be related
to the use of free scattering cross sections in the calculations.
Except for 10° in Ar + KCl1 system, the description of proton
spectra in the reactions at 800 MeV/N is quite remarkable. 1In the
deuteron spectra we have problems with the fragmentation peak,
figs. 10(b) and 11(b). There are too few negative pions produced
at low momenta in the forward direction compared to the data. The
description of the 800 MeV/N data is, otherwise, fair.

We turn to comparison of our results with the data with
multiplicity selection. The ratios of composite to proton vields
have been studied as functions of participant baryon charge

multiplicity by Plastic Ball Group 77,78

). The experimenters have
established the ratios in the overlap regions of momentum space
with the identification of different particles. In fig. 12 we

compare our results for deuteron to proton ratio at wide angles
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77,78

with the data ) from Nb + Nb reaction at 650 MeV/N. The

baryon charge multiplicity in the calculation is determined using

cuts such as in experiment 78

). In this and other systems we
reproduce in the calculation the rise of the ratio with increasing
centrality of the collision. However, overall magnitudes are not
always as well reproduced as in the case in fig. 12. In
particular, the energy dependence of the calculated d to p ratio
for high multiplicity is stronger than observed. Experimentally,
the ratios of other composites to protons exhibit stronger energy

dependence than the ratio of deuterons to protons 78

}. Change
from the soft to stiff equation of state results in a ~4% rise of
the ratio for the b = 0 case of fig. 12. Similar sensitivity to
the equation of state is found for other bombarding energies.
We essentially confirm the result of ref. 13) and contradict that

of ref, 31).

The deuteron to proton ratio has been related in the

9,13,75-84

past ) to the entropy produced in reactions, first by

Siemens and Kapusta. The entropy is, in terms of particle

distributions, equal to

g
— — T - -
S = EW drjdp[ft log £_+ (13 £) log( 1 7 fT)], (6.1)
T
where upper signs refer to fermions and lower to bosons. In

equilibrium in the Boltzmann statistics 1limit, the entropy in
a system of nucleons and deuterons can be expressed with
a deuteron to proton ratio:

_51+r -1

S_2 - X - ¢
A2 T+rx tog —= ~ 100 r—pr =gy + (6-2)
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where r = Np/Nd, and ¢ = Z/A,. For ¢ = 1/2, the expression
simplifies to 43)

S _S52+r r

AT T+ o9 — . (6.3)

3v2

In fig. 13 we show the variation of deuteron number and
entropy with time in the central Nb + Nb collision at 650 MeV/N,
together with the variation of spatial density and pion number.
In fig. 14 we show the entropy per baryon obtained from (6.1) for
different impact parameters, for nucleons and deuterons emitted at
wide angles, and compare it to the estimate from (6.2). The
results agree at 650 MeV/N for the intermediate and low
intermediate impact parameters, to within ~0.25. (We believe that
we can determine the the absolute values of entropy per nucleon
using (6.1) with an accuracy of ~0.1.) With the lowering of
bombarding energy, fig. 15, the discrepancy between the results
from (6.1) and (6.2) grows.

In figs. 14 and 15 we further show the values of entropy
extracted from the data using the Quantum Statistical Model (QSM)

[refs 78,84,83

)1. Although our d/p ratios agree with the data
taken at 650 MeV/N, we obtain higher wvalues of entropy than
extracted using the model, by 0.5 or more for central collisions
and the soft equation of state. This is due to inclusion of
heavier composites in the analysis of data; in essence, the
entropy per nucleon for a composite with mass A is lower by the

amount of 1 - 1/A, than the nucleon entropy, under the conditions

of equilibrium. By preventing the production of deuterons in the
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calculation, we can find out how much effect this production has
on the entropy production. Without deuteron production we obtain
the entropy per nucleon lower by ~0.15. We can then expect that
if the production of heavier composites occured in the
calculation, then the discrepancy between the calculated entropy
and that extracted from data at 650 MeV/N would grow. The change
from a soft to stiff eguation of state decreases the discrepancy
by only 0.1. Too high wvalues of entropy from (6.2) may be
attributed in the calculation to the condition (2.28). A role
such as that of condition (2.28) is, in the model 84) used to
analyze the data, played by excluded volume. As from general
congiderations the entropy is expected to tend to zero with
decreasing bombarding energy, the ratios of composites to protons
for given entropy may be overestimated in the particular form of

78)_

In fig. 16 we compare the results of calculations with the

the QSM model used to analyze the data

negative pion multiplicity in central Ar+KCl collisions measured

by the Streamer Chamber Group 19

). This data has been the subject
of much previous theoretical study. The 1long-dashed and solid
lines correspond, respectively, to the soft and stiff equation of
state. Clearly, the pion yield is not sensitive enough to the
equation of state to use such data to distinguish different
models. The short-dashed line is computed with the frozen
resonance approximation, i.e. not allowing the deltas to decay

during the course of the heavy ion collision. This evidently

allows more reabsorption and lowers the final pion vyield. The
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dotted and dash-dotted lines are computed in the cascade-model
limit, i.e. with the mean field turned off. These curves
illustrate the importance of the detailed balance condition: the

dotted line is obtained following previous treatmentszs’17

) of the
resonance production and absorption using the relation (4.1), and
the dot-dashed line is obtained using the (4.16). The difference
between the lines comes entirely from a difference in the number
of resonances reabsorbed in interactions with nucleons. Thus
a substantial portion of the discrepancy between the cascade-model
results and the data may be attributed to the improper detailed
balance relation. For a heavier system than Ar + KCl, the
reabsorption would be even more important and the effect of the
different balance relations would be more dramatic. When the
reabsorption c¢ross sections from (4.1) and frozen delta
approximation are combined, results close to the data may be

obtained -°

). With (4.16) we get results that are close but at
a high side of the data for lower energies, cf. fig. 15 and table.
If deuteron quasiparticles were permitted to participate in pion
production, the calculated yields would be somewhat higher. We
note also that there may be some sensitivity to the momentum

30

dependence of the mean field. This was shown ) to reduce the

predicted rate for producing pions.

7. Discussion

We have derived a transport equation for two-body

bound-states with the production and absorption terms for the
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bound states. Two-body bound-states are produced in three body
collisions in the process that is inverse to the bound-state
breakup. We describe elementary features of few-body collisions.
Formal expansion of production and absorption rates in terms of
the number of interacting quasiparticles is discussed in ref. 42).
In particular, a sequence of two-body processes contributes to
three- or more-body collision, when kinematic restrictions are
such that particles cannot appear on shell in-between the
processes.

In parametrizing the matrix element for deuteron formation,
we apply the impulse approximation and renormalize the matrix
element so that measured cross sections for deuteron breakup are

reproduced.

We find that the phenomenological approach 16,17,25-34

) to
pion production with formation and decay of resonances with
variable mass, may be derived microscopically, when assuming that
decay rate is large cémpared to time variation of the production
rate. We show that detailed balance relation used in the
literature to obtain the delta reabsorption cross section, is not
valid for unstable particles. In the cascade model and in models
based on same assumptions, the relation leads to equilibrium with
a greater number of pions than in the fireball model.

In solving the set of transport equations for the energetic
heavy~-ion dollisions, we find that to some extent we can reproduce

the measured particle yields and spectra. The relative deuteron

vield increases in the calculation with the mass of a system and



-39-

a decreasing impact parameter. At 650 MeV/N we exceed by 0.5 the
entropy per nucleon in the calculation compared to the entropy
extracted from the measured composite yields. Neither the
deuteron yield nor entropy exhibit a sensitivity to the equation
of state at a detectable level.

The pion yields differ by 10 - 15% depending on the equation
of state, but this is not strong enough to tell the stiff and soft
equations apart in practice. Concerning our result on the
relation between the delta production and absorption cross section
it might be interesting whether the inclusion of that result would
reduce the disagreement 27) between the cascade predictions and
the data for pion-nucleus and proton-nucleus interactions.

For reasons stated at the end of Sec. 4, we do not consider
by any means the issue of the mechanism for pion production
closed. We intend to investigate the question of production with
the delta resonance appearing only in the amplitudes. Concerning
the deuteron production, a weakness of the current model is that
the deuteron formation time is somewhat long (or size large). We
intend to evolve 85) the model in such a manner that reliance on
the shortness of the formation time disappears, and the model is

extended to include the production of other light composites.
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Appendix. Numerical Method

We represent the distribution functions f £ f , and

N d '’ m
#rAr . with sets of pseudoparticles. The resonance distribution,
grAr » is, up to a factor, a density in space, momentum, and mass,

while other functions are densities in space and momentum. The

representations at any time instant are

9 fa 1 ) (R - RS - p) | (A.1)
(2m) N X
Iy 1
——g & =« =} 3(am)s(R - RSP - ) (a.2)
(27) ¥ Kk
where ¥ 1is a number of pseudoparticles per particle. The

pseudoparticle positions and momenta are taken to satisfy

k _ EEE (A.3)
dt 'apk‘ ’
'dp de

k x
i (h.4)

This serves to integrate the drift terms in the equations for the

distribution functions, such as at the 1l.h.s. of egs. (3.5)
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and (4.10). Times for evaluating positions and momenta\ are
shifted by half of a time step, At/2, in order to make this
integration approximately of second order in time 17'86).

For the purpose of evaluating the optical potential and the
collision integrals, the calculational' volume is divided into
cells of volume AV = (A£)3. After each time when the
pseudoparticles are moved in space, they are sorted according to
their c¢ell location. Pointers are set up so that all
pseudoparticles in any cell are immediately accessible.

For any two pseudoparticles in one cell the interaction cross
section ¢ is evaluated with the probability Nclﬂ, Nc = ¥. 1In the
case of the nucleon pseudoparticles, the volume Vv , eqg. (3.20), is
evaluated for other nucleon pseudoparticles in a cell, that can
lead to deuteron formation, with the probability NC/N} The

three-body collision is further processed with the probability
2
a12v12V3At/(ﬂcEV) ' (A.5)

when 1 and 2 are neutron and proton, and twice as large otherwise.
The cosine of a ¢.m. angle between the deuteron momentum and the

momentum of a spectator nucleon 3 is sampled according to
~ 2
I<p5le>1" (A.6)

cf. (3.20). This is done by having an integral such as at the
r.h.s. of the equality in (3.20) tabularized, and using an inverse
method with section strategy to obtain the cosine. The
probability density for deuteron formation is uniform, in our

model, in the azimuthal angle about the momentum of a spectator
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nucleon. The collision occurs, if the condition (2.28) is
satisfied, with a probability (1 - f) associated with the nucleon
in the final state. We ignore the deuteron statistics of which
the effect would be small under the condition (2.28), as fd ~ g2
for the same momentum per nucleon.

If the selected pseudoparticles are not involved in
a three-body collision, a two-body collision is processed with

the probability
wvAt/(NCEV) . (A.7)

In the case of deuteron breakup, the c.m. momentum of a spectator

*
nucleon Py is sampled according to the subintegral function

*max
3

onto 0 to 1, and applying the Metropolis algorithm. The drawing

in (3.15). This is done by mapping the interval from 0 to p

in each case extends over the whole interval, and the value of p;
is picked after ND drawings. We have used Nﬁ = (10-20). The
value in the interval from 0 to 1 is retained as a starting value
for the next breakup. After the wvalue of p; is picked up,
a statistical decision is made on the identity of the spectatof
and participant nucleons, according to the wvalues of NN cross
sections, eq. (3.15). Next, the cosine of a c.m. angle between
the deuteron momentum and that of a spectator nucleon is sampled
according to (A.6). The breakup cross section is uniform in our
model in the azimuthal angle of a spectator nucleon with respect
to the deuteron, and in the spherical angle of the participating

nucleons in their c.m.

For the 2 5> 2 processes with nucleons and deltas, the
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inversion for the scattering angle can be done analytically when

using the cross sections from refs. 17) and 33

}. Rather than the
mass, eq. (4.13), in case of a resonance in the final state, we

sample the ¢.m. momentum,
*
mdm = gu—?wgi— p'*dp'* . (A.8)
e
The sampling is done using the Metropolis algorithm as in the
case of deuterons.
For the purpose of evaluating the Pauli-blocking factors,

a smooth distribution f is extracted from the distribution of

pseudoparticles using a parametric form

£ = 4’
exp ( (vin® + 52 - wY/T'Y + 1
+ 4 . (A.9)
eXp((Vﬂz_:_gjz - p"}y/T) o+ 1
Here the two terms correspond, respectively, to the
pseudoparticles from projectile and target nuclei. This

parametrization is flexible enough to describe the distributions
in both the initial stage of the reaction and in a fully
equilibrated final state. The parameters for the distribution are
established from the pseudoparticles in a given cell and the
neighboring cells, in a sequence of steps. First, the rest frames
for the particles from projectile and target are determined.
Next, for the two groups of particles the moments

¢t = <plp3> (A.10)

are evaluated in the respective frames. The momenta are then
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rescaled to define the 52 which appear in (A.9). This is given by
~2 i3
Pp = .z‘ Bijp | R (A.11)
i,]
where
-1 2
313 = (c )lj <p~>/3 , (A.12)

However, if the principal axes of the momentum tensor do not
differ by enough to be statistically significant, the rescaling is
suppressed or is the same for two of the directions. The average
momentum squared is <p2> = Tr(c) = <§2>. For the two groups of
particles values of <|p|> in the respective frames are calculated.
Finally for the given <|p|> , and <§2>, tabularized wvalues are
used to obtain g - m, and T. In cases <§2> falls below the
minimum compatible with a given <|pl>, it is reset to the minimum
value. The constants 4 in (A.9) are determined from the invariant
density Es’

3/2

4 = (<p®>/3)3%/(det (c)) 12 , /3

s/ Py (A.13)
The invariant densities are used separately for the two groups of
particles. Finally, if f at the center of one of the
distributions is found to exceed 1, then the <|pl> for that
distribution is increased until the f is reduced to 1. The
neutron and proton pseudoparticles were grouped jointly in most
cases.

In calculating the entropy we use (A.9) and the fact that the

entropy changes only due to collisions and decays, and we

reevaluate the entropy only in the cells where collisions or
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decays occur. The calculation of the dJeuteron entropy is
problematic because the number statistics is low. We therefore
made the approximation fd = fpfn in the argument of the
logarithm. Here the nucleon distributions are taken at half the
deuteron momentum in the frame of the distribution. We also tried
other procedures to get the deuteron entropy, obtaining similar
results. In any case, the additional entropy coming from the
production of deuterons is small.

The values of the parameters in the calculations are: ¥ =
(60-600), with ¥ = 170 used most often, ”c = 40, AL = 0.9 fm, and
at = (0.15-0.35) fm/c. Stability of the results with respect to
the variation in all of these parameters has been tested. The
colliding systems were further enclosed into a box, the optical
potential was put equal to zero, and the Pauli principle was
temporarily switched off, to verify whether the equilibrium
numbers of pions and deuterons and the equilibrium value of

entropy were obtained after prolonged evolution.
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Table Caption

Particle yields from heavy-ion induced reactions. The

100 MeV/N data are from ref. 38) and the remaining data are from

1

ref, 7). The uncertainties in the measured vields from the

100 MeV/N reaction are: 2% for p, 3% for & and 3H, 6% for 3He, and

10% for 4He. The uncertainties in absolute values of yields from

ref. 1) are: 20% for p and d, and 30% for 3H, 3He, ' and n .
However, wuncertainties in relative vields are smaller, in
particular 10% for d to p and 20% for n  to p. The symbol ’~’ in
front of a figure indicates uncertainty of 40-50%. The

calculations are for the soft and stiff equations of state.



Table

Reaction Yield (b)
p d 3H 3He « n T
O + Ni exp. 4.62 2.04 0.87 0.71 2.0
100 MeV/N  soft 7.16 3.38
Na + NaF exp. 3.9 1.2 0.19 0.17 0.077 0.086
400 MeV/N  soft 3.8 1.5 0.09 0.10
Ne + Cu exp. 8.6 3.1 0.66 0.44 0.14
400 MeV/N  soft 8.8 4.0 0.17 0.20
c+C exp. 2.2 0.41 0.039 0.034 0.1s
800 MeV/N soft 2.2 0.54 0.18 0.18
Ne + NaF exp. 5.1 1.12 0.16 0.14 0.36 0.41
800 MeV/N  soft 5.2 1.46 0.42 0.42
Ar + KC1 exp. 14.1 4.0 0.62 ¢.52 0.1s 1.0 1.4
800 MeV/N soft 13.3 4.60 1.11 1.47
stiff 13.5 4.55 1.00 1.32
Ar + Pb exp. 43.0 18.9 5.0 2.7 1.4 2.2 4.3
800 MeV/N soft 47.0 19.7 3.4 6.9
stiff | 46.7 20.5 2.8 6.2
Na + NaF exp. 5.1 0.8 ~0.07 ~0.05 “1.6 1.63
2100 MeV/N soft 5.8 0.9 1.40 1.50
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Figure Captions

Fig. 1 Irreducible part of the 2-particle Green’'s function ¥§:

(a) 8° and (b) sC.

Fig. 2 The P~pF- plane, showing the region in which the
neutron-proton Green’s function has a discrete pole. Here P is
the total momentum of a pair and Pp is the Fermi momentum of
nuclear medium. The region with a pole, labelled "deuteron”
and "Cooper pair", is bounded by a solid line. The dashed line
indicates the momenta for which the energy of a state is E =
2uF , and the dotted line the momenta for which E = 0. The
dash-dotted 1line is the boundary of a region where the

condition (2.28) is satisfied.

Fig. 3 Expansion of deuteron production and absorption rates.
The lines indicate here quasiparticle contributions to the
functions only, in distinction to fig. 1. For more details see
ref, 42). Production or absorption in proton-neutron

interaction (a) and in three-nucleon interaction (b).
Fig. 4 Processes accounted for at the r.h.s. of eq . (3.1).

Fig. 5 Two-body (a) and three-body (b) collision. Transition may
be considered to occur once the particles find themselves

within a specified distance.

Fig. 6 Matrix element squared for deuteron breakup in the impulse

approximation, see text. The element for deuteron formation
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may be represented with the direction of lines inverted.

Fig. 7 Ratio of the measured inelastic Nd cross section to the

cross section in the impulse approximation.

Fig. 8 Ratio of deuteron to proton yields in the 800 MeV/N
reactions as a function of the sum of projectile and target

masses.

Fig. 9 Proton and deuteron spectra from 100 MeV/N 16

C + Ni
reaction. Data from ref. 38) are indicated with dots and the

results of calculation with histograms.

Fig. 10 Proton, deuteron, and negative pion spectra from

2

800 MeV/N 1 C + 12C reaction. Data from ref. l) are indicated

with dots and the results of calculation with histograms.

Fig. 11 Proton, deuteron, and negative pion spectra from
800 MeV/N Ar + KCl reaction. Data from ref. l) are indicated

with dots and the results of calculation with histograms.

Fig. 12 Ratio of deuteron to proton yields at wide angles as
a function of participant proton multiplicity in the 650 MeV/N

Nb + Nb reaction. Data from refs. 77 78

) and ) are indicated
with filled circles and the results of calculations with open

circles.

Fig. 13 Evolution of the central baryon density, total entropy,
negative pion number, and deuteron number in a central Nb + Nb

collision at 650 MeV/N, for the stiff equation of state.
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Fig. 14 Entropy per nucleon produced in Nb + Nb collisions at
650 MeV/N as a function of participant proton multiplicity.
Open circles and squares indicate, respectively, the results
from eq. (6.1) and (6.2) obtained using the soft equation of
state. Cross indicates a b = 0 result from (6.1) for the stiff
equation of state. Diamond indicates a b = 0 result obtained
without deuteron production and using soft equation of state.
Filled circles indicate the entropy extracted from the data in

7 84).

ref. 8) using QSM model of refs.

Fig. 15 Entropy per nucleon produced in central Nb + Nb
collisions as function of bombarding energy. Open circles and
squares indicate, respectively, the results from eqg. (6.1)
and (6.2), wusing soft equation of state. Filled circles
indicate the entropy extracted from the data in ref. 78) using
the QSM model. The short-dashed and long-dashed lines
indicate, respectively, the results from the fireball and

hydrodynamical models, given in ref. 78).

Fig. 16 Negative pion multiplicity as a function of the
bombarding energy per nucleon in céentral Ar + KC1 collisions.

Dots indicate data of ref. 19

). Calculations were done for
b=1.7 fm. The long-dashed and solid line indicate the
results for the soft and stiff equation of state, respectively.
The short-dashed line is obtained in the frozen-resonance

approximation. The dash-dotted line indicates the results

obtained following our procedures in the cascade-model limit,
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i.e. without optical potential, Pauli principle, and deuteron
production. The dotted line indicates the results obtained in
the cascade-model 1limit following the procedures in the
literature, using eq. (4.1) and sampling the resonance masses

from respective spectral functions (4.3).
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