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ABSTRACT

Estimates of the magnitude of the pion phase space distribution function in rela-
tivistic heavy ion collisions suggest the importance of considering final state enhance-
ment factors in a kinetic description of these collisions. We present & test particle
method for simulating the Boltzmann equation for Bosons and illugtrate it by way of
the mean collison times in equilibrium, and the approach to equilibrium.

1. Introduction

Much attention has been devoted in recent years to isolaie possble sgnds of a
phase trangtion to the quark gluon plasma in rdativigic heavy ion collisons’ It has
become clear that a detailed understanding of the find date hadronic system is re-
quired. Here we consider the “cool pion” excess (over the p-p case) observed in heavy
ion experiments & CERN and AGS.? Vaious authors have examined thus far the ef-
fects of softened pion dispersion relations;® collective flow;%® and heavy resonance’
and excited baryon' decays. The possbility of a non-zero chemica potentiad has aso
been pointed out by Katga and Ruuskanen:® a themad modd with non-zero chemi-
ca potentiad reproduces the experimentd’ negaive k,-data for 0+ Au a 200 GeV/n
if =167 MeV and g, = 126 MeV. However, transverse flow tends to wash out the
desired effect;® for such a sysem the pion mean free path is too short (A ~ 1 fm) to
be compatible with freeze-out radii, B ~ 7 fm;!®" and the corresponding rapidity
digributions are too narrow.

This suggests that one should consder non-equilibrium festures via a quantum
kingtic equation with redidic initid conditions. An example of such an approach
is the bosonic Boltzmann equation (BBE). In the next section we shdl demondrate
the need for quantum datidtics, i.e. an “induced radiation,” or “feedback,” effect. In
sections 3 and 4 we introduce a test paticle method for solving the BBE.



2. The phase space distribution function in heavy ion collisions

To estimate the magnitude of f(F, E,t) and motivate the necessity of considering
quantum statistics, we shall consider first a Boltzmann cascade simulation (no final
state enhancement; no mean field) of the mesonic component for 200 GeV/n O + Au
collisions. The initial conditions for the system are obviously important in making
this determination.

For %0+ Au collisions at 200 GeV /n the number of final state negatives per event
is ~ 150.'? Assuming a contribution of ~ 10% from K~ and -, this implies ~ 400
pions in the final state. If the mesons are produced according to their statistical
weight, the number of primary particles is therefore ~ 250. In accordance with
the baryon—free nature of the model, we choose a Bjorken-like initial scenario.l®
Therefore the space-time rapidity 7 is given by the fluid rapidity variable y, which
is given a Gaussian distribution with o, = 1.3 to reproduce roughly the data. The
local momentum distribution is chosen to be fully equilibrated at a temperature of
200 MeV. For central collisions, it is further natural to assume that the transverse
position distribution is given by an oxygen density profile.

The evolution of the distribution function may now be simulated using the stan-
dard test particle method for the classical Boltzmann equation.! Only particles whose
proper time exceeds the initial value of 75 = 1 fm are considered. Below s ~ 1 GeV the
m—n elastic scattering cross-section is taken from experimental parameterizations,!®
while all other channels allowed by conservation laws are incorporated using the
Hauser-Feshbach formalism.

To investigate the question of final state enhancement, we wish to compute within
this microscopic cascade framework the average value of the phase space distribution
{f**(t)) into which pions are scattered as a result of collisions or decays. To facili-
tate such a calculation the pion distribution function at fixed fireball time ¢ is first
parameterized as

-7 _ (2r)® 1 cosh®’n  d°N(2)
fFk) = g tmy coshy dydkldpdr? ’ (1)

dGN(t) 2490202 fn 2 2702 ]
g 112 1. 1.9 N =(y-n)* /2050205~ (PL~T18) [203 [T°L K . 2
dydk? ddr? o€ v 3 nX:)l 1(nBmy).  (2)

Here, K, is a McDonald function and 7, E 1,m) are the transverse position, momen-
tum and mass, respectively. The five parameters Ny, oy, 0, o, and 3 are functions
of ¢. The functional form of Eq. 2 is motivated partly by physical considerations, but
also allows for reasonable fits without resorting to multidimensional fitting. Fig. 1
shows the parameter values obtained, as a function of the fireball time.

For each collision or decay at time ¢ with a final state pion, Eqs. 1 and 2 now
permit an evaluation of the average distribution function { f**(t)) for the final state
of that pion. In Fig. 2 we show this quantity for all pions (solid line), and for
pions in the rapidity interval —0.5 to 0.5 (dashed curve), as a function of time. For
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Fig. 1. Fitted parameters as a function of the fireball frame time variable ¢.
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Fig. 2. The average value of the distribution function for pions produced in collisions or decays as
a function of time.



t ~ 156 fm/c, (f*') is an appreciable fraction of unity, indicating that Bose
enhancement factors for the final state are not negligible.*

It is the low momentum region (ky ~ y ~ 0) where the value of f (7,P) is large
(see parameterization Eq. 2),' and these states will be preferentially occupied in a
Boson-cascade model. This further leads to a “positive feedback,” i.e. preferential
occupation of the region about k¥ = 0 early on leads to increased scattering into that
region later on. The strength of this effect would depend on the initial conditions.
Considerations here show that boson enhancement factors will play an important
role in the evolution of the system. For this reason we describe in the next section
a method for simulating the BBE, and test the technique by way of two examples in
section 4. '

3. Test particle method for a bosonic Boltzmann equation

The evolution of the phase space distribution function f (7, k,t) for bosons may
be described, for example, by the Boltzmann equation

Qﬁft'l' = E‘%;: fdbdzdtuad&04 (2r) 64 (kv ko~ ks — k) [T { frfafsfs — ffafifa) (3)

The notation used here is described in these proceedings, Ref. [16]. We simulate Eq. 3
using a test particle method and accordingly represent f by N = NA point-like test
particles, where A is the number of physical particles with degeneracy g

fER &0 L f: §O(k — k(1)) 897 — 7(1)) (4)
E) - g N po t t .

Further, we shall assume that the distribution function is bounded by F,.., and
rewrite the collision term as

4_1§1- fdwzdwsdm (27)* 8% (kv + by — ka— ko) [T'? { f1f2Ps Py ~ f3f4P1P2} ()

where P; = (1+£;)/(1+F...) is a final state blocking factor for the transition amplitude
IT'[? = (1 + Frnae)*|TJ%.

The simulation is now performed according to the method described, for example
in Refs. [14,17]. A collision is blocked if for the final state (3, 4)

H Fr:al.l + n; / N“'"“'
i=3,4 Fr:qls + 1

b)

PP =

<z elo1) , (6)

*For a system in global thermal equilibrium at temperatures given by the fits to the transverse
spectra, the ( f*') at central rapidities correspond to a chemical potential of 70 — 110 MeV in the
time interval t ~ 1.5 — 6 fm, i.e. the equivalent thermal system is appreciably out of chemical
equilibrium. Note that the large value of { f*') is a consequence of the initial conditions.

tFor example, at t = 2 fm/c, the value of fisThaty=k  =r) =9n=0, falling off to 2.3 at
y=ky =0,rL = 0or(t=21fm/c) = 1.6 fm and 5 = o, (t = 2 fm/c) = 0.75.
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Fig. 3. Mean collision times in equilibrium as a function of temperature (see text).

where z is a uniform random number and #; is the test particle occupation of a phase
space sphere defined by radii ~ and k about the final states (3,4) :

g (47 /3)? (rk)® = (27)° N,.a/N . (7)

The value of N,... should be chosen large enough to avoid statistical fluctuations, yet
small enough to sample phase space locally. The number of ensembles N is governed
by practical considerations, but should satisfy (1 + F,...)(¢/N)"/? <« L, the linear
dimension of the system,!” and be such that the final state phase space is adequately
sampled, viz. N 2 O(1 + F,..)%.

4. Examples : mean collision times and equilibrium states

We shall illustrate the above simulation technique by way of a uniform spherical
pion gas with periodic boundary conditions. For simplicity, consider the case of no
mean field, and a constant elastic and isotropic cross section, so that |T|2=32r¢%s 0.
We shall choose o = 30 mb in the following.

In the first example, we consider test pions with a momentum distribution given
by the Bose-Einstein function. The mean collision time is T = p°/2Z°, where

Z° is the collision rate per unit volume in thermal equilibrium (see Ref. [16], these
proceedings)

7° = %/ H dw; (2#)464(k1+k2—k3—k4) TP R AL (8)
i=1,4

The delta function is best removed by transforming the invariant integrals for par-
ticles 3 and 4 to relative and total momentum variables in the (1,2)-cm frame and
evaluating the remaining 8 integrals by a Monte-Carlo technique. The resulting
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Fig. 4. Ratio of moments of the magnitude of the momentum vector to those of an equilibrated
Bose-Einstein distribution (see text).

collision times are shown as function of temperature in Fig. 3 (solid lines; top to
bottom: x = —100, 0 and 100 MeV). The points with error bars show the times
obtained from a test particle simulation in a system with the indicated temperatures
and chemical potentials. For comparison, we include in the graph corresponding
Maxwell-Boltzmann collision times (dashed curves). The test particle simulation is
seen to be in good agreement with the analytical result, though some of this is a
simple density effect.

In the second example, we consider whether the simulation technique yields the
correct equilibrium states. To this end, the initial momentum distribution is chosen
to be isotropic with a fixed magnitude of | 5’ [= py = 427 MeV /¢, while the coordinate
space distribution is chosen to be uniform with a particle density of 0.23 fm~2. Since
the collisions conserve 4-momentum and particle number, we expect the system to
relax to a Bose-Einstein distribution with T = 140 MeV and p = 100 MeV. To
determine if this is indeed the case, it is useful to define a ratio of the momentum
moments as;

M &P |FIfP) (9)
My fd3 |9 feu(B;T,p) °

where f is the distribution function for the corresponding equilibrated Bose-Einstein
system. In Fig. 4 we show this ratio for i = —2,-1,1,2,3 and 4 as a function of ¢/r.,,
where 7., is the mean collision time in equilibrium. The error bars are standard er-
rors in the mean from a calculation with 40 ensembles. Shown as dashed lines are
the ratios of Eq. 9 for f = fus, where fyp is the Maxwell-Boltzmann distribution
function for a system with T' = 124 MeV and p = 169 MeV, i.e. with the same energy
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and particle density as the system under consideration. Clearly, the system relaxes
to the correct Bose-Einstein equilibrium distribution, and not to the corresponding
Maxwell-Boltzmann distribution.

5. Summary

We have considered a Boltzmann-cascade simulation of mesons produced in an

O + Au collision at 200 GeV /n. Realistic initial conditions imply that the inclusion of

final state enhancement factors is important for a correct description of the evolution

of the system. To this end we have introduced a test particle method for solving

the bosonic Boltzmann equation, which was shown to yield correct collision rates in

equilibrium, and the correct Bose-Einstein equilibrium states. The next step is to

consider a system with realistic initial conditions, in an attempt to reproduce both

~ the transverse momentum spectra and the rapidity distributions observed in heavy
ion collisions. Work towards this goal is in progress.
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